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Abstract: The maximum-likelihood decoding of convolutional codes has generally been considered
impractical for other than relatively short constraint length codes, because of the exponential growth in
complexity .with increasing constraint length. The soft-decision minimum-distance decoding algorithm
proposed in the paper approaches the performance of a maximum-likelihood decoder, and uses a sequential
decoding approach to avoid an exponential growth in complexity. The algorithm also utilises the distance and
structural properties of convolutional codes to considerably reduce the amount of searching needed to find

the minimum soft-decision distance paths when a back-up search is required. This is done in two main ways.

First, a small set of paths called permissible paths are utilised to search the whole of the subtree for the better

path, instead of using all the paths within a given subtree. Secondly, the decoder identifies which subset of ~
permissible paths should be utilised in a given search and which may be ignored. In this way many
unnecessary path searches are completely eliminated. Because the decoding effort required by the algorithm
is low, and the decoding processes are simple, the algorithm opens the possibility of building high-speed long

constraint length convolutional decoders whose performance approaches that of the optimum maximum-

likelihood decoder. The paper describes the algorithm and its theoretical basis, and gives examples of its
operation. Also, results obtained from practical implementations of the algorithm using a high-speed micro-
computer are presented.

List of principal symbols addition, the further penalty invoked by using the much more

. practical 8-level equal-spacing quantisation is only of the order
v = recelv~d sequence of 0.2 dB. Hence most practical soft-decision decoders use
w = tentatIvely decoded sequence either 8- or 16-level quantisation.

t = test erro.r .sequence Several good soft-decision decoding schemes exist for
[t] = soft-decIsIon t~st. error sequence convolutional codes. In general, maximum-likelihood decoding
tb = se~uence conslstmg of most recent b segments of t (in the soft-decision minimum-distance sense) of short
I t I = welght?f t constraint length codes can be achieved by using the Viterbi
I [t] I = soft weIght of t. . algorithm. However, in order to achieve high coding gains it is

Q = numbe~ o! quantIsatIon levels necessary to use long constraint length codes, and this renders

P = a perm~sslble path the Viterbi algorithm impractical on the grounds of com-

d(k) = code dl~tance over k segm~nts plexity. In this case non-maxim urn-likelihood sequential
K = constramt le~gth of c~e m segments decoding is used because its complexity is insensitive to

T(k) = error-co~r~ctmg capability. over k se~en~s constraint length. In this paper we present a soft-decision
~.(k) = soft-declslon error.-correctIng capability, m levels minimum-distance sequential decoding algorithm the

E = decoder effort ratIo complexity of which increases slowly with constraint length,

. and which requires much less decoding effort than normal
1 I ntroductlon sequential decoding because of the elimination of needless tree

In several previous papers [1-3] we introduced an efficient searching.
hard-decision decoding algorithm for convolutional codes. A normal sequential decoder operates by computing the

However, in order to realise the high coding gains that are value of a suitable metric based on the soft-decision distance
theoretically achievable with convolutional codes, it is between the received sequence and the code path being

desirable to perform a maximum-likelihood decoding. In followed. If the metric exceeds some running threshold then it
practice, an optimum soft-decision decoder can closely indicates that the decoder may be following the wrong path
approach the performance of a maximum-likelihood decoder, and that it is necessary to search for a better one. The decoder
and it is essential to use soft-decision information in a decoder then backs up in a node-by-node marmer, and searches for a
if coding gain is not to be lost. In a hard-decision system the path that has a better metric value. If a better path is found
receiver/demodulator makes a hard 011 decision on each then decoding continues along this new path, subject to the
incoming data signal before feeding the demodulated bit to the threshold conditions being satisfied. Because the number of
error-correction decoder. A soft-decision demodulator, on the paths rises exponentially with depth in the code tree, it can be

other hand, quantises each demodulated bit into Q > 2 levels seen that the maximum decoding effort of such a scheme

rather than Q = 2 levels as in the hard-decision case. This could also rise exponentially with back-up distance. Several

quantisation effectively informs the decoder of the efficient sequential decoding algorithms have been proposed
demodulators 'level of confidence' of its 0/1 decision, and this [6, 7] , but even so, the performance of a sequential decoder is
confidence information can be used to improve the decoder's directly related to the time available for searching the tree, i.e.
performance (in terms of lower output bit error rate) without the probability of a buffer overflow. In addition, decoder
incurring any further redundancy penalty. operation is not maximum-likelihood because any path that is

It has been shown [4] that hard-decision decoding invokes chosen is not guaranteed to be the path at minimum soft-

a coding gain penalty of 2 dB at low signal/noise ratios (SNRs), decision distance from the received sequence, but rather a path

rising to 3 dB at asymptotically high SNR [5] when compared that satisfies the threshold conditions.

with infInite-level quantisation soft-decision decoding. In The algorithm presented in this paper is maximum-

likelihood in that at every node extension the path chosen is
Paper 1335F, received 15th January 1981 guaranteed to be the path of minimum-soft-decision distance
The authors are with the Department of Electronic Engineering, from the received sequence. The advantage to be gained from
University of Hull, Hull HU6 7RX, England this rninimum-distance approach is that incorrect decoding

lEE PROC., Vol. 128, Pt. F, No. 3,JUNE 1981 0143-7070/81/030178 + 08 101.50/0 179



-

paths are identified as early as possible, thus eliminating many stemming from the very first node, and is divided into the
long back-up searches and ther~fore significantly reducing upper- and lower-half initial code trees (So and SI,
decoding effort. Also, the algorithm utilises the distance and respectively).
structural properties of the particular convolutional code used, We may now summarise several useful properties of these
to further reduce search effort. codes:

As regards complexity, a characteristic of the algorithm is (a) The code is a group code, i.e. ifw and w' are two equal-
that it utilises a set of stored paths called permissible paths to length code paths, belonging to the initial truncated tree S, it
search for the minimum soft-decision distance path. The main implies that there is a path x such that x = w 8 w' is within S.
complexity of the decoder is therefore the number of these (b) If wand w' are paths in opposite halves of any k-unit,

paths that must be stored in read-only memory. By using the then x = w 8 w' is a code path in the lower-half initial code
distance properties of the code the number of these paths can tree SI'
be easily kept to an economical value for storage in today's (c) The distance between the two half trees of any k-unit is

technology ROMs or EPROMs. defined as the minimum Hamming distance between pairs of

The algorithm significantly reduces decoding search effort, paths, one from each half tree. Consider the initial code tree.

when compared with other decoding schemes, in two main Because of the group property, the minimum distance between

ways. First, when a back-up search for the minimum-distance the two halves of the initial code tree is equal to the minimum

path is required, the decoder can identify the exact nodes at distance between the all-zero vector and all the paths in S 1, i.e.
which path divergence might have occurred. This eliminates the minimum distance equals the weight of the
many needless subtree searches, as the number of these nodes weight code path in S 1.
is usually significantly less than the total number of nodes in (d) Combining properties (b) and (c) above, we can state
the decoding constraint length. Secondly, the decoder that the minimum distance between half trees of any k-unit
identifies which subset of permissible paths should be used to is equal to the weight of the minimum-weight path in SI. We
search each sub tree, and conducts the search in an efficient can then define a distance function d(-) such that d(k) is the
manner, thus further eliminating needless searching. minimum distance between half trees of any k-unit and

. For reasons of brevity the discussion in this paper is limited depends only on k and not on the k-unit chosen. The
to binary half-rate single-generator convolutional codes. The guaranteed error-correcting capability of any k-unit is then
approach can, however, be generalised to other codes. This T(k), where T(k) is the largest integer such that T(k) ~

paper develops in the following way. First, we introduce the [d (k) - 1] /2. Table 1 shows the distance function d ( -) for
distance and structural properties of convolutional codes that the half-rate code used in this paper.
are utilised in the algorithm, and describe the basic decoding (e) From properties (b) and (d) we can easily see that

strategy. Next, the concept of decoding with permissible paths Iw 8 w' I ~ d(k) and !w'l ~ d(k) -Iw I, where iw r denotes

is described together with the technique for choosing such the weight of the sequence w.

paths. The search technique is then outlined and the algorithm (f) Consider now a received sequence v, which may differ

is summarised and discussed. Finally, results for coding gain from the transmitted sequence due to errors. We then define

and decoding effort are presented. t = w 8 v as the test error sequence, which has ones in the
positions where wand v differ. It then follows from (e) above

2 Convolutional codes and their structural properties that It' I ~ d(k) -Itl.

In this Section we introduce some of the distance and

structural properties of single-generator convolutional codes 3 Soft-decision decoding
that are utilised in the decoding algorithm. . ... ..

A single-generator convolutional code is one in which each Let us assume that each rece1ved d1grt 1S quant1sed. ~to <? = 8

message digit is encoded individually into V code digits, where levels, and. can there~ore be expressed as a 3-d1gtt, bmary

V is a positive integer, giving a maximum information rate of number or rts octal equ1valent. For example,

I/V.The Vcodedigits~~reachmessagedigitde~endonboth [0]8 = [000]2 ~ [Vi] ~ [111]2 = [7]8
the present message digIt and the K - 1 preVlous message

digits, where K is the constraint length of the code in where the square brackets indicate a soft-decision quantity.

segments. Such a code is generated by a K-se;gment generator Expressed in this way the code digits can only take the values
sequence G =g(2°)g(21}g(22) ... g(2K-') and is a sys- [000]2 = [0]8 or [111]2 = [7]8. The digits of the soft-

tematic code if the flfSt digit of each code segment is the decision test-error sequence [t], however, also take any value
same as the corresponding message digit. The code can be between [000] 2 and [Ill] 2' For example, if [Wi] = [000]

represented by its tree structure, the branches of which can [111]2 and [vJ = [010] [011]2, then [ti] = [010] [100]2.

be extended indefmitely from any node. Each branch has one Note that the sum of the digits of the soft-decision test error

segment of code digits associated with it, and the code digits sequence [t], when expressed in octal, give the number of
of the two branches stemming from an arbitrary node are levels in which v and w differ.

always one's-complements of each other. Fig. 1 shows the flfSt The distance function of the code, in the soft-decision

five segments of the code tree for the rate one-half code used sense, is given by (Q - l)d(k) levels, and its error correction

as an example in this paper, which has a 50-segment generator capability is T .(k), where T .(k) is the largest integer satisfying

sequence. T .(k) ~ «Q - l)d(k) - 1)/2. We can now estimate the

The encoding operation is one of selecting a path through theoretical improvement to be gained by using soft-decision
the tree in accordartce with the message digits. At each node decoding. In the hard-decision sense an error occurs when
the upper branch is taken if the message digit is a zero, and the sufficient noise is added to a transmitted digit to form a

.lower branch is taken if it is a one. received digit which lies on the opposite side of the 0/1
Consider, for any node in the infinite tree, all the paths that decision boundary. For example, if we transmit [000] 2 (hard

extend k segments forward from that node. The resulting zero) and receive [101]2 an 'error' in the hard-decision sense

sub tree is referred to as a truncated tree, or k-unit, and is has occurred. Similarly, with transmitting [111] 2 (hard one)

divided into two half-trees depending on which branch was and receiving [011] 2' Now, the minimum number of soft-level

chosen at the flfSt node. The initial code tree (S) is the k-unit errors required to cause an error in the hard-deciSion sense is
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Q/2. For example, transmit [000] 2 receive [100] 2' As the 4 Decoding strategy
simple code has a correcting power of T,(k) levels the best Consider the notation:
'hard' correcting power becomes [v] = 'soft' received sequence, possibly with errors

w = tentatively decoded sequence, i.e. a path in code

1 tree which is the decoder's tentative version of
T,(k)/(Q/2) = - [(Q-l)d(k)-l] ~ d(k) for Qlarge transmitted sequence

Q [w] = 'soft' version ofw

[t] = [v] 8 [w] = 'soft' test error sequence

Asymptotically, at high SNRs ratios, soft-decision decoding I [tb] I = 'soft' weight of test error sequence over most

therefore doubles the effective 'hard' correcting power of the recent b segments (actually the arithmetic sum of

code.. the octal soft values of each bit in [tb])
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Fig. 1 Development of initial code tree for the halfrate code with g = 11 01 00 01 00. . . g{2" - ')
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Table 1: Distance function d(.) for rate one-half code 5 Permissible path search decoding

k G d1k) k G d(k)
Let us assume that the decoder needs to search the b-unit

1 11 2 26 01 11 which spans the last b segments of the code tree for a w' with

2 01 3 27 01 11 smaller soft-test error weight. We utilise the permissible path

3 00 3 28 01 11

d d ' t h . . t d d '

R fi 1 Th hni4 01 4 29 01 12 eco mg ec mque m ro uce m e erence. e tec que
5 00 4 30 01 12 is based on code property (b) of Section 2. This states that w'

6 01 5 31 00 12 can be directly derived by the modul?-2 operation w' = w ~ x,

7 00 5 32 00 12 where x is a truncated path in the lower-half initial code tree.

8 01 5 33 01 13 AI9 01 6 34 00 13 so,

10 00 6 35 01 13 [t'] = [w'] ~ [v] = [ w] ~ [ x ] ~ [ v] = [t] ~ [ x
]11 00 7. 36 01 14

12 01 7 37 00 14

d . f d I. . hal f k .

13 00 7 38 00 14 an so 1 w an ware m oppoSIte ves 0 a -umt we can
14 01 8 39 01 14 derive the new test-error sequence [t'] by the direct modulo-2

15 01 8 40 01 15 addition of [t] and the k-segment path [x], This is still a

16 01 9 41 00 15 cumbersome process if all 2k -1 truncated paths with length

~~ ~g ~ :; 01 15 k ~ b in the lower-half initial b-unit have to be stored and

19 00 9 44 g~ ~: utilised to search for w', However, by introducing several

20 01 9 45 00 16 conditions which the x must satisfy because of the code
21 01 10 46 01 16 structure, we can significantly reduce the number of x

22 00 10 47 00 16 required to search the b-unit, These paths denoted P are called

23 00 10 48 01 17 "

bl th d t b d ' th d d24 00 10 49 01 17 permIsSI e ~a. s, an mus e store m e eco er.
25 01 11 50 00 17 The condItIons are asiollows:

(a) jP.1 = 12, i,e, choose only code tree paths with P. =
012 or 102 (proof in Appendix 11.2).

Our basic soft-decision minimum-distance decoding strategy is (b) an iterative weight constraint. If a test.er.ror weight may

then as follows. At every node extension through the code tree be reduced by the application of either p' over b' segments,

we always seek a code path w which is at minimum soft- or P" over b" segments, where b" > b' and P" gives a greater

distance I [t] I from the received sequence [v]. In other words reduction, a necessary condition is IP~"I < IP~'I.

a tentative w is only accepted to be the decoded sequence if Thus, to determine if Pb" is acceptable, calculate iP;'i for
and only if for all other paths w' in the corresponding 2 ~ i ~ b" -1. If, for any i, IP;'I ~ IPjlmax, where IPjlmax is

truncated tree, w has minimum soft test-error weight, i.e. the weight of the maximum weight previously selected path of
I , length i, then discard P;". This is proved in Appendix 11.3.

I [t] I = I[w] ~ [v] I ~ I [w ] ~ [v] I = I [t] I (c) an equal ending constraint. Discard the path Pb if any

We defme the basic branch operation (BBO) to be the of it~ subpaths Pj for 2 ~ i ~ (b - 1~, i~ identic~y equal to.a

decoding action of a single branch forward extension which prevIously selected, shorter path. This IS proved m AppendIX
selects the latest segment w. of w. Whenever a decoded path 11.4. . . .

w is accepted as being the minim1,1m-distance path, the decoder (d) gIven a permIsSIble path ofl~ngth b we know that P. =
shifts out the oldest segment of w, which is assumed to be a 012 o~ 102, so that only the leadmg (b - 1) segments of Pb
correct representation of the corresponding segment of the are umque. The decoder doe~ not, therefo~e, have to store the
transmitted sequence, and shifts in the newly received segment end segments, thereby reducmg the effectIve number of paths
v of v. by a further factor of two.

. The BBO selects w. to be the segment closest in soft Tabl~ 2 shows a list of .~e permissible .p.aths that .would be

distance to [v.], i.e. the segment which results in the smallest requ~red to per:°r.m a mlnlmum soft-decIsIon decodmg over a

I [t.] I. For the half rate code, t. may take the values 00, 01 6-umt. In pnncIple, then, the decoder would, on I the

or 10, i.e. the w. chosen by the BBO always results in a I t I ~ o.ccurrence o! a nonzero It. I, se~rch for a better path w. by
1 in hard decision, and a I [t. ] I ~ (Q - 1) in soft decision. If Slffiply . makmg 1 ~ pa~ mappmgs and test-error weIght
we assume that the new segment w results from the extension comparIsons (startmg wIth the shortest path) based on

of a path that has minimum test.e~or weight the following are! [t'] I = I [t] ~ [P] I and choosing the best. If no better path

implied: IS found the decoder assumes that the current pa~ is the best,

(a) If It. I = 0, i.e. 0 ~ I [t.] 1 ~ 38 = (Q/2) -1, then the and returns to the BBO. As the ?aths are st~red m read.-only

new path, which is the extension of the old path chosen by the memory, and the test-error weIght compansons are Slffiple

BOO, is guaranteed to have minimum soft test-error weight,

and the decoder returns to the BBO Table 2: Permissible paths required for decoding a

(b) If It. I = 1, i.e. Q/2 = 48 ~ I [t.] I ~ (Q -1), then it is 6-unit

possible that there exists some other path w' with smaller test- 'PI P b

error weights

[ I

] [ I ] ] ] 3 11 01 2
It 1=lw ~[vl<l[tl 4 111001 3

( ) If b tt th ' .

th . f .gh 4 11 01 00 01 4
cae er pa w eXIsts, en ItS so t test error wel t 5 11 10 01 01 4

I [t'] 1 is constrained by 5 11 01 00 10 01 5
, 5 11 10 10 00 01 5

l[t]I-78 ~ l[t]1 ~ l[t]I-18 6 11 10 01 01 01 5

5 11 01 00 01 00 01 6

These assertions are proved in Appendix 11.1. Thus, whenever 6 11 01 00 10 01 01 6

It. I = 12 the decoder initiates the search procedure either to 6 11 10 01 10 00 01 6

indicate that no search for w' is needed because w is still the 6 11 10 10 00 10 01 6

best path, or to conduct the search in a very efficient marmer. 7 11 10 01 01 01 01 6
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Table 3: Number of Pb at ead! weight

IPbl b

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 1 - - - - - - - - - - - - - -

4 0 1 1 - - - - - - - - - - - -

5 0 0 1 2 1 - - - - - - - - - -

6 0 0 0 1 3 3 1 1 - - - - - - -

7 0 0 0 0 1 4 6 3 3 3 - - - - -

8 0 0 0 0 0 1 5 10 8 7 8 3 3 - -

9 0 0 0 0 0 0 1 9 16 14 17 18 11 10 7

10 0 0 0 0 0 0 0 3 15 28 28 34 36 33 26

11 0 0 0 0 0 0 0 0 7 24 50 61 71 72 70

12 0 0 0 0 0 0 0 0 0 13 43 89 118 147 160

13 0 0 0 0 0 0 0 0 0 0 22 72 165 241 300

14 0 0 0 0 0 0 0 0 0 0 0 46 142 292 467

15 0 0 0 0 0 0 0 0 0 0 0 0 87 259 551

16 0 0 0 0 0 0 0 0 0 0 0 0 0 170 470

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 303

Totals 1 1 2 3 5 8 13 26 49 89 168 323 633 1224 2354

RUnnin

l g 1 2 4 7 12 20 33 59 108 197 365 688 1321 2545 4899

tota

2b-, 2 4 8 16 32 64 128 2~i 512 1024 2048 4096 8192 16536 33072

Table 4: Search matrix up to length b = 11

Soft weight

I[tb] i b

bounds 2 3 4 5 6 7 8 9 10 11

80unds on IPbl

0-10 - - - - - - - - - -

11-14 3 - - - - - - - - -

15-17 n 4 4 4 - - - - - ~

18-21 n n 4-5 5 5 - - - - -

22-24 n n n 5-6 5-6 6 6 6 - -

25-28 n n n n 5-7 6-7 6-7 6-7 7 7

29-31 n n n n n 6~ 6~ 6~ 7~ 7~

32-34 n n n n n n 6-9 6-9 7-9 7-9

35-38 n n n n n n n 6-10 7-10 7-10

39-42 n n n n n n n n 7-11 7-11

43 -.. n n n n n n n n n 7-12

logic operations, it is apparent that a simple fast hardware 6 Search effort reduction

implementation of the algorithm could easily be achieved.

Table 3 gives an idea of the growth rate of the number of By utilising the distance properties of the code we may form
permissible paths that must be stored against decoding the following relationship (Appendix 11.5) between permiss-

constraint length b in segments. Also shown is the rate of ible path weight and test-error weight:
increase of 2b-1 , the total number of paths of length b in the (Q - 1) ~ I ~ 2 I [t J 1- 1

lower half initial code tree. It can be seen that the number of b b

permissible paths required for each segment is very roughly This relation implies that, for a given length b, if a better path

2b-s. For example, the number of paths required at length does exist it is only necessary to try permissible paths up to a

b = 16 (32 bits) is = 2345 ~ 2". The total number of paths certain maximum weight, and that weight is a function of

that need to be stored to decode over length b is approxi- I [tbJ i. Thus, for a given b and I [tbJ I we have an upper bound
mately 2"-4. For example, a decoding constraint length b = on IPb I for a reduction in test-error weight to be possible. For

16 would require the storage of a total of approximately 5000 example, assume that we are at a point in the search where we

paths. This is not an excessive number when the densities of are looking for a better path [t~ J of length b = 9 segments. If

modem ROMs and EPROMs are considered. For example, the the weight of [t9J = 25 then the bound indicates that only

b = 16 decoder storage could be achieved by using 12 2 K byte permissible paths of weight 7 or less need to be tried at this

EPROMs. length. As there are only 4 paths that conform to this out of a

From the above we can conclude that the storage growth is total of 26 permissible paths of length 9, a considerable

not excessive. Also we will show later that many of these paths reduction in effort is achieved.

can be omitted without affecting coding gain significantly, and We may develop this technique by forming a 'search matrix'
this eliminates the exponential growth in storage requirement. which is stored by the decoder and utilised to conduct the

However, if the decoder has to search through all the stored search. Table 4 shows a search matrix for the half-rate code
permissible paths every time a nonzero I t II occurs the search used, up to length b = 11. Each entry shows the weights of

effort will be excessive, and this implies a slow decoder. In the permissible paths that must be used in the search. The dashed
following Section, however, we introduce several techniques entries indicate that no searching at all is necessary. For

which significantly reduce the number of test-error weight example, if the search is at length b = 11 and I [t II J I ~ 24,
comparisons that must be performed by the decoder in its then no length 11 permissible paths need to be tried, as a

search for the better path w'. reduction in weight is not possible. It is interesting to note
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that the row weight bounds on I [tb] I are independent of the as the best. For example, returning to the search map of
code generator, but the low and high limits on Wb I are set by Table 5, it can be seen that 1[71] I = 4, indicating that a
the specific code generator. maximum improvement of 1 level is possible. This occurs on

In an implementation the decoder would store the search the third mapping, i.e. the second permissible path of length 5
matrix, but the entries in the matrix would not be the weights results in a I [t~ ] I = I [ts] 1- 1 = 18. The se~rch therefore

of the P, but actual addresses into the stored P table. terminates after 3 trial mappings instead of the 10 indicated

Additionally, the table of P must be stored in order of earlier.

ascending weight, within each segment. Thus, whenever a non-
zero It 1 I occurs, the decoder undertakes a search and must try 7 Final algorithm
permissible path mappings from length b = 2 to b = DECL The decoding algorithm can be summarised as follows:

(decoding constraint length). At each length the respective (a) Decoding proceeds by means of the BBO. Whenever the

weights I [t2] I, I [t3] I, . . . , litDECL] 1 are calculated, and by BBO results in a It11 = 0, the new path is guaranteed to be at

looking into the search matrix the decoder directly knows the minimum soft-distance from the received sequence, and the
actual addresses of the stored permissible paths that must be decoder outputs the oldest segment of wand returns to (a).
tried for each length. The decoder thus produces a 'search- (b) If It 1 I = 1, then the decoder calculates the maximum
map' which directly pinpoints the subset of permissible paths possible improvement in soft-decision test-error weight that
that must be tried. We then assume that all these mappings are can be achieved by a mapping to another path w'.

tried from length b = 2 to b = DECL, and the best resulting (c) The decoder searches for the better path starting at

path I [t'] I (if one exists) is chosen. Table 5 shows an example length b = 2 and continuing in a segment by segment manner
of a search map for a typical test error sequence, which until b = DECL is reached. At each segment a reduced set of
contains 5 'hard' errors. It can be seen that the search matrix permissible paths as pointed to by the search matrix is utilised
has produced a search map in which only 10 permissible paths to search for w'.
needed to be tried to find the better path. Given that the total (d) If, at any stage, a mapping achieves the maximum
number of permissible paths of length 2 ~ b ~ 11 is 197, a improvement, accept that mapping and return to the BBO.
considerable saving in decoding effort has been achieved: Otherwise accept the best improvement achieved over the 'I

Table 5: An example search map decoding constraint length.

b I It ] I IP I upper bound No. of IP I (e) If no better path is found when all the necessaryb b b permissible paths have been tried, or if the decoder runs out of
2 4 - - time, accept the original path, and return to (a).
3 11 - -
4 15 4 1
5 19 5 2 8 Results
6 19 5 1 We have tested a software implementation of the algorithm on

~ ;g = = a Plessey Miproc 16-bit computer. Fig. 2 shows the decoder

9 21 - - performance in additive white Gaussian noise for decoding

10 25 7 3 constraint lengths of 6, 11 and 16. The curves plot output user
11 25 7 3 error rate against SNR Eb/No, and all curves are corrected for

For It] = 00 04 01 00 01 00 40 40 61 00 40. rate. It can be seen that useful coding gains are achievable; in
Total number of paths in search = 10 particular, at an output error rate of 10-s the length 16

So far we have assumed that the decoder searches all paths decoder achieves 4.25 dB of coding gain.
from length b = 2 to b = DECL utilising the reduced set of Also shown in Fig. 2 is the number of permissible paths

permissible paths as produced by the search matrix, in order to -1

fmd the 'best' path. However, we now introduce a 'search X)

termination' constraint that enables the decoder to know
when the maximum improvement in test-error weight has
occurred. This means that the decoder can then abandon any
searches of greater length, thus further saVing decoding effort. 1

First, in Section 4 it was shown that if a better path w'
exists then

I[I~]I;:?: 1[lb]I-78
i.e. the maximum improvement in test error weight is 7 levels. 1

Thus, if at any stage in the search an improvement of 7 levels -5

was achieved, we could immediately accept the mapping as the ~
'best', and terminate the search. g

Go

It is, however, possible to refme this bound, and it is shown ~ I

in Appendix 11.6 that the maximum improvement in test- .a 10

error weight is a function of the last segment weight only, and ~
is given by ~

(1[lb]I-I[I~]I)rrIG% = 21[1.]1-78

where [4] is the value of the soft-decision digit within [11]
whose 'hard'value is 1. Thus, 1[1.] I can only take the values 4,
5, 6,7, corresponding to maximum improvements of 1, 3, 5,
7, respectively. The decoder therefore calculates the maximum
possible improvement in test-error weight before starting the 1 3 4 5 6 7 8 9 10

search, and if any mapping achieves this improvement the Eb/No,dB
search is immediately terminated and the mapping is accepted Fig. 2 Decoder performance

184 lEE PROC., Vol. 128, Pt. F, No.3, JUNE 1981



-

(PPs) actually used for each decoding constraint length. It required by other sequential decoding schemes. Also, the
should be noted that for lengths 11 and 16, these are signifi- decoding effort is insensitive to decoding constraint length.

cantly less than the total number of paths indicated by the The ROM storage requirement for the decoder is similarly not

path selection criteria (Table 3). This is because high-weight, excessive. It was shown in Section 8 that many high-weight

high-length paths can be removed from the Table of stored long permissible paths can be deleted from the full list of
permissible paths without significantly worsening the output paths without significantly reducing coding gain. This makes
error rate. The number of stored paths shown in Fig. 2 for the the use of much longer decoding constraint lengths, and hence
lengths 11 and 16 represent the smallest set for which a the achievement of higher coding gains a practical possibility.
degradation in performance at low error rates was not notice- Ultimately, the performance of any sequential type decoder
able. It is in this way that very significant savings in path depends on the probability of buffer overflows; although the
storage requirement can be achieved. For example, the length results of Section 8 are for an 'infinite buffer' implementation
16 curve shown in Fig. 2' was achieved using 186 stored it can be seen that in this algorithm the buffer overflow
permissible paths, compared with the 4899 paths indicated in problem is not as severe as in other algorithms, for two main
Table 3. The length 16 curve also exhibits a 'crossover' effect reasons. First, there is a low amount of searching needed, and
at high error rates. This is also due to the limited number of this implies a low probability of buffer overflow. The small
paths used, and is an effect similar to buffer overflow. search requirement is a function of both the minimum-

Fig. 3 gives an indication of the average decoding effort by distance approach, which quickly spots a wrong path decision,
plotting 'effort', defined as and the search matrix technique, which eliminates many

. number of paths searched unnecessary searches in the quest for a better path. Secondly,
E =

b f I I only a small set of paths, the stored permissible paths, have to
num er 0 nonzero t 1 occurrences b h . . . .e searc ed even if a full back-up search is required. ThiS

against channel error rate, for the length 11 and 16 decoders. indicates that the algorithm requires a much smaller buffer
It can be seen that even at high channel error rates the E is than other schemes. Finally, the algorithm is simple in

significantly less than the total number of stored Eaths. In implementation. The processes and path handling involved are

particular, at an Eb/No of 5 dB the average effort E for the much simpler than in other algorithms. As example of this,

length 11 decoder drops below one path searched per search. the software-only implementation of the length 16 decoder,
This is significantly less than other types of sequential the results of which are shown in Fig. 2, ran at a channel bit
decoding algorithm. Also shown is the effort curve for the rate of 30000 bits per second at an output rate of 10-5. The
length 16 decoder which exhibits the same characteristics. As building of very fast hardware decoders which can achieve high
expected, the length 16 effort is greater than the length 11 coding gains is therefore a practical possibility with this
effort at a given Eb/No. This effort is again significantly less algorithm. Future work will be directed to investigating longer
than the maximum possible search effort. constraint length high-speed decoders, and investigating the

tradeoffs between speed, buffer size and performance.
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11 Appendixes

<w 11.1 Proofofl[tJI-78~I[t'JI~I[tJI-18

~ (a) I[t'] I ~ I[t] I -18 is a necessary condition of the

=t ten th 11 -- decoder.
9 (b)l[t]I-78~I[t']I.

Whenever the application of a permissible path leads to a
reduction in test-error weight, the reduction must be in the
last segment only:

[t]

1

4 5
Eb/No,dB

[t']Fig.3 Length 11 - 16 decoder effort
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If [t] is the lowest weight test error sequence up to node A, Now ,

then " ""I [tb'] I = I[tb'] 8 [Pb,] I ~ I[Pb']I-I[tb']1
l[tb]I-I[tl]1 ~ l[tb]I-I[t~]1 ,

for any t, otherwise the decoder would have been following t', "

] ]Thus, if I [Pb, I ~ 21[tb' 1-28

l[t~]1 ~ l[tb]I-18 By a similar deductionforP',

then I[~']I ~ 21[tb']1-18

l[t~]1 ~ l[tl]I-18 But we must replace this inequality by an equality otherwise

. contradicting the assumption that P" gives a better reduction

Now since the BBO restricts the maximum soft weight of than p', Thus

: [t I ] 1 to (Q - 1), then (Q - 1) is also the maximum reduction
in soft weight, then I [P;'] I ~ I[P~']1-18

l[tl]!-(Q-l) ~ l[t~]1 or

and over the whole sequence, with Q = 8 levels, I [P;.] I < 1 [P~,] I, but 1 [P] 1 = (Q - 1) IPI

1 [t] 1- 7 8 ~ I [t'] I :,

IP;'I < IP~'I

11.2 ProofoflP11=12

From the code tree, PI could take values 002, 012, 102 or
112, Clearly, ifP1 =002, no soft-weight reduction i[t'l]1 ~ 11.4 Proof of the equal ending constraint
I[tl] 1-12 could occur, If PI = 112, then 1 [tl] 1 ~ I[PI] 1- Referring to the sketch in Appendix 11.3 above, if~' = P;',
78, and since I[PI] 1-I[tl] I ~ l[t'l] I, this gives I[t~] I ~ 78, then I[t~'] I = 1 [t;,,] I. Also, since t is the minimum test-error
contradicting I [t'l] I ~ 1 [t I] 1- 12, .weight sequence to node A, then I [t" (b"- b')] I ~ I [t(b"-b')] I.

Thus, PI may only take values 012 and 102. Thus, the longer path P" cannot give a better reduction in test-

error weight,

11.3 ProofofIP;'I<IP~'1 11.5 Proof of (Q - 1) IPb I ~ 2 I [tbJ 1- 18

[t] Now

I[t~] I = I[tb] 8 [Pb] I

Thus

l[t~]1 ~ I[Pb]I-I[tb]1

and substituting

[t'] = [t] 8 [P'] , '
l[tb]1 ~ l[tb]I-18 i

gives )

[t"] = [t] 8 [P"] I [Pb] I ~ 21 [tb] 1-18

If the application of P' gives an improvement,
11.6 Proof of (l[tbJ 1-I[tbJ I)max = 21(£IJ 1- (Q - 1)

l[t~']1 ~ l[tb']1-18 From Appendix 11.1, the weight reduction l[t']1 ~ l[t]l-

b h li . fP ". b . h 18 is confmed to the fmal segment t1. Further, the weight
ut t e app catton 0 gives a etter tmprovement, t en

d t . . fi d t th d . .

t f t d '

thre uc 10n IS con me 0 e Igt 0 1 correspon mg to e
I [t;,,] I ~ l[tb"]1-28 nonzero digit of Pl., Now, for any given [tl],themaximum

value of (I [t 1 ] I - 1 [t 1 ] I) is given by

Now

1[ " ]I - I[ ]1 O[tl]I-I[t'1]I)max=21[tl]I-(Q-l)

tb"-b' "'" tb"-b'

. . " where [tl] is the digit of [tl]' whose value is ~ Q/2, i.e. the

otherwIse the decoder would be followmg t ; thus digit whose 'hard' value is 1. Now the maximum value of

1 [t;,] 1 ~ l[tb']1-28 (l[tb]I-I[t~]I)occurswhenl[t,,]I-I[tl]I=I[t~]I-I[t~]I,
Thus,(I[t,,]I-I[t~]I)max =21[T1]1-(Q-l).
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