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~ Abstract

In this paper we present the analytical results of the computational requirement for the minimum-distance decod-

ing of convolutional codes. By deriving upper bounds for the number of decoding operations required to advance

~~ , one code segment, we show that many less operations are required than in the case of sequential decoding This

.- implies a significant reduction in the severity of the buffer-overflow problem. Then, we propose several modifi-

cations which could further reduce the computational effort required at long back-up distance. Finally we investi-
gate the trade-off between coding-parameters selection and storage requirement as an aid to quantitative decoder
design. Examples and future aspects are also presented and discussed.

List of symbols conversely, r~duces the size of.bu:fer ~eeded to achie~e a given output
error rate. Fig. I shows the dlstnbutlon of computational effort fora

v = received sequence typical Fal:lo decoder operating at R ~ Rcomp. The probability of the

(AJ = tentatively decoded sequence number of computations required per branch Nr exceeding the
t = test-error sequence number of allowed computations per branch Na is plotted, where the

tb = sequence consisting of the last b segments of t unit of computation is taken to be the examination of one branch
It 1 = weight of t of the code tree by the decoder. Hence, by utilising the minimum-
bt = maximum back-up distance in segments for a given It.l distance decoding algorithm, a much more advantageous trade-off
b; = required back-up distance in segments between buffer size and output bit error rate can be established than

P = permissible path in the case of sequenti~l decoding.

T*(b) = back-up distance threshold condition The basic strategy adopted in the minimum-distance decoding
K = constraint length of the code in segments algorithm is to always seek a path at minimum distance from the

bm = maximum back-up distance in segments over which received sequence, at every node extension. Compared with the

direct mapping operates sequential decoding, this enables us to achieve a significant reduction
N = upper bound on the number of computations in the maximum number of decoding operations, in two main ways.

N. = upper bound on the number of computations for sequen- First, a direct-mapping scheme is utilised to fmd directly the

. tial ~ecoding. minimum-distance path in a single operation without the need for a
N = max~um numb:r of computatlo~s back-up search. Secondly, when a back-up search is required, an

L = maximum decodmg search length msegments efficient search procedure that directly identifies the possible nodes
d(k) = code. distance over k s~gments at which path divergence might have occurred is instigated.

b. '" maxlmu.m back-up distance for the back-up search pro- In this paper, we analyse the maximum number of computations
cedu!e, m segments. .. required to advance one branch when using the algorithm, and com-

bp = maximum back-up distance for the permissible path search
procedure, in segments

nj = number of paths of weight j in the lower-half initial code 10- \ \ \ \
tree \ \ \

1 Introduction

Sequential decoding is well known in achieving low b.e.r.
with minimum EbfN6,reqyiremem". Base;d:onoUIpre'viom work, we -
proposeQ,a,~istaRre,dec()dillg- scheme for convolu.t:i~, "0

.. codes 1,2 which uses the distance and structure properties of convol-
,

utional codes to significantly reduce the computational effort. In this
paper, we quantitatively assess the number of decoding operations
required by the proposed algorithm and show that this is indeed much '""'c

'Jc' less than that required by sequential decoding. In addition, by div- z
jding the decoding procedure into several regions in terms of required} 104 R=,. 12
back-up distance, we suggest modifications to the algorithm which ~
result in even further computational reductions.

In sequential decoding, the complexity is insensitive to the con-
straint length K and this allows the decoder to utilise a much longer
code than that used by usual convolutional decoders to achieve an
outstanding performance in extremely low b.e.r. region. But the 10 p=0,039

progress of the decoding is highly variable., involving both forward P = 0,03 5

extensions and back-up searches to find a tentatively decoded path
satisfying the current metric conditions. Because data are transmitted
at a constant rate, a buffer is required, and this then raises the possi-
bility of buffer overflow. Indeed, with sequential decoding, it is the -6
probability of buffer overflow that limits the effectiveness of the 10

decoder. Any decoding scheme that reduces the number of compu- 210 215 VO

tations required per message bit therefore reduces decoding delay No

and improves the output error rate achievable with a fIXed buffer, or,
Fig. 1
Distribution of computational effort for a typical sequential decoder
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pare this with the maximum required for sequential decoding, the(eby Table 1
showing a significant reduction in effort. Then, by dividing the decod- MAXIMUM BACK-UP DISTANCE bt FOR DIFFERENT VALUES OF .ltf
ing procedure to be adopted into several ranges of back-up distance, It I d(b) b
we introduce modifications of the algorithm in the area of subopti- t t

mum decoding. Future aspects of utilising the proposed decoding 1 ~ l

algorithm to achieve a maximum-likelihood decoding with long code 2 3 2:
are also discussed. 43 5 6

711
2 B ... d . dd . I . h 5 9 16

aslc mlmmum- Istance eco Ing a gorlt m 6 11 25

In this Section, we will review briefly the basic minimum- ~ ~3 33

distance decoding algorithm.I.2 Consider the following notation: 9 1 ~ :~

p = the received sequence, which may differ from the transmitted ~ 10 17 50
sequence due to channel errors

W = the tentatively decoded path, a path in the code tree which Table 2 )-

is being compared with P, and is the decoder's current estimate DISTANCE PROFILEd1b) AND THRESHOLD CONDITION r*(b) ON

of the corresponding transmitted path. BACK-UP DISTANCEbt = b
t= W~~ = the test-error s~quence, which has ones in those b d(b)T*(b) b d(b) T*(b)

positions where wand p differ
It I = the weight of t 1 2 2 26 11 7
tb = the last b branches of t 7 3 2 27 11 7. 3 3 3 28 11 7

The code studied in this paper is a single-generator systematic rate 1/2 4 4 3 29 12 7
code with constraint length K ';= 50 segments. The generator sequence ~ 4 3 30 12 7

~sg=310101011001011100?1100011111100101100110101010110 7 ~ ~ ~~ ~~ 7

m quaternary form; that IS, [00] = 0, [01] = 1, [10] = 2, and 8 5 4 33 13 ~

[11] =3. 9 6 4 34 13 8
We now summarise the basic procedures used in the algorithm: 10 6 4 35 13 8

(a) Basic branch operation (b.b,o.). II 7 4 36 14 8
Whenever an w is found which is known to be at minimum 12 7 5 37 14 8

distance It 1 from P, the decoder carries out the b.b.o. to select 13 7 5 38 14 8

the next segment of w, WI, which is the tentative version of the 14 8 5 39 14 8

corresponding transmitted segment, For the code in this study 1165 8 5 40 15 8
, '9 5 41 15 9

,!"e Impose a rule that the b,b.o. must choose an WI that results 17 9 6 42 l5 9

mati = 0 or 1, and eliminate the possibility of tl == 2, Hence, 18 9 6 43 15 9

wealwayshaveltll~l. 19 9 6 44 169
(b) Maximum back-up distance 20 9 6 45 16 c9

When the bob.o. results in a tl = 0 we can be sure that W has 21 10 6 46 16 9
minimum test-error weight, and the decoder can return to the 22 10 6 47 16 9

b.b.o. after outputting the oldest segment of W as the final ~~ ~g ~ ':~ 17 ~

decoded version of the corresponding transmitted segment How- 25 11 6 50 ~ ~ ~~

ever, if tl = 1 it is possible that another path w' may have smaller
test-error weight It'l = It I - 1. In this case, we must determine
whether or not a back-up search is needed, and, if so, how far to or else the required tb and P are not in the memory 0 Hence, only
back up. The maximum back-up distance in branches bt depends when b; ~ bm + 1 do we need to use ~he back-up search pro-

on the current value of I t I, and is tabulated in Table 1. cedures. Otherwise, at most, one direct mapping is all we need to
(c) Required back-up distance acquire the path having minimum test-error weight.

If the value of bt is ~bm, the range over which direct mapping
operates, then no search is needed and w' is found by a single 3 Upper bounds on maximum number of
mapping operation. If ht > bm, \"e can identify a set of nodes computations

b; ~ bt at which w' might have diverged from wand instigate 0' .

the sea h d t h f th d t t t fi d ' Th In this Section, we upper bound the maximum number of
rc proce ure a eac 0 ese no es 0 ry 0 m w, e , , ,

ne ce
ssarycondl' tl.on fo l'nst O g t o b h t b k - do t computations required to advance one segment with the use of

r I a mg a su searc a ac up IS ance 0 0 -d o d d o d h O' h t . 1d db* b ° It I ...,.T * (b) h T * (b) d d th d ' t mInImum Istance eco fig, an compare t IS Wit sequen la eco-t = IS b po , were epen s on e IS ance ,

profile of the code and is tabulated in Table 2. mg

T .
h d d ' d iI d ' h d ' s o

d he co e use IS as eta e m t e prece Ing ectlon, an t e .
(d) Pe771!issible path decoding search length L is assumed to be long enough (say, L ~ K ~ 50), so '

Assume that there is an w with test-error weight Ill, and we are that it could be a valid comparison with the equivalent sequential
searching for an w' of the same length as w but belonging to the decoder.
opposite-half truncated tree and having a smallertest-error weight Considering that the decoding proceeds with basic branch oper- 1

It'l. In this case, w' and t' can be derived from w' = wEeP and ations (b.b.o.s) and direct mappings (dJIl.s); the b.b.o. is taken to be

t 0= t Ee P, where P is a truncated path in the lower-half initial the unit of computation. We therefore assume that one dJIl. takes the

code tree and is called a permissible path. Searching for w' with same amount of time as one b.b.o. The underlying assumption is that

the aid of a specially selected set of P will be used to modify the it takes approximately the same time to compare two paths, regardless

basic algorithm to reduce decoding effort, and is described later of length, in the range from one to L segments.
in the paper. Whenever the b.b.o. results in t1 = 0, which guarantees that the

path w being followed is at minimum distance from the received
(e) Direct mapping (d.m.) sequence P, the decoder returns to the b.b.o. thus, the minimum

Consider a set of test-error patterns t and their corresponding computation for advancing one branch is one b.b.o. It'tl = 1 and the
minimum test-error patterns t', where ]t'l = It Ee PI < Ill, and the decoder indicates that one d.m. has taken place to find w', the de.

minimum length of P is ~bm, the range over which direct map- coder also returns to the b.b.o. In this case, it takes two computations,

ping operates. In the decoder we store two sets oft and Pinto the one b,b.o. and one dJIl.,toadvance one branch. However, if tl = 1,

memory. During the decoding process, whenever the tentatively and the decoder indicates that no direct mapping has taken place and
decoded sequence w has a test-error sequence t whose last b that bt> bm, then a back-up search for w' is needed. We develop an

segments tb exactly match a pattern stored in the memory., we equation for the maximum number of computations N as follows.

directly map t to t'= t EeP, and w' to W EeP. This guarantees that First, let us assume that we have to search the complete (bt -bm)

the new tentatively decoded sequence w' has minimum test-error unit at back-up distance bt, by examining every path in the unit.

weight. Once a direct mapping takes place, no more searching is (Note that this assumption is for simplicity in calculating the bound
needed and the decoder returns to the b.b.o. If t is such that its and is not the actual search procedure adopted in the algorithm).
tail sequence does not match any stored tb, either t has minimum Because there are (2(b + 1) - 2) branches in a b unit of the code, this
test-error weight, in which case the decoder returns to theb.b.o.., involves a (2(bt+ I)-bm - 2) branch search. However, the (bt - bm)
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branches belonging to the present tentatively decoded sequence have equal to the total number of branches in abt-unit, minus the number
already been searched, and so the required number of branch searches of branches of '" already searched, plus the original b.b.o. Hence
is (2(bt+ I)-bm - 2) - (bt - bm). Secondly, there are 2(bt- bm) paths N. = (2bt+1 - 2) - bt + 1. For bt = 25, N.(bt = 25) ~ 2.6 x 107,

of length bm stemming from the end of the (bt - bm) unit, and each and, if bt = 33, N.(bt = 33) ~ 1.7 x 101°. If bt = 50, N.(bt = 50) ~

of these is searched by direct mapping. Neglecting the present tenta- 2.3 x 1015.
tive1y decoded path, this requires a search of 2(bt- bm) - 1 bm -units. From the above calculations it can be seen that the ratio of N./N

Each bm-unit search could req~ire a maximum of bm b.b:o.s and is 2213 for bt = 25 and tends to a limit of2bm/!(bm + Itbm Imax} +

Itb Imox d.m.s. Hence, the maXImum number of computations for 11 ~ 5700 for large bt. This represents a considerable improvement

thi~ stage is {(2(bt- bm) - I) (bm + Itbm Imox)}' Finally, we ~dd one over sequential decoding.

computation for the original b.b.o. that resulted in tl =1. The
maximum number of computations for a back-up search of bt > bm is

then 4 Determination of maximum number of

N~ {(2(bt+ I)-bm - 2)-(bt ,-bm)} computations

+ ( 1(bt- bm) -':'1 ) ( b + } + i ( 1 ) In this Section, we tighten the bounds on the maximum
\( m Itbm Imax) number of computations for minimum-distance decoding by allowing

" Fig. 2 illustrates the above calculation for the case (bt- bm) = 3. In for the actual se~rch procedure utilised in a back-up search. We will
:i! ,f this case, there are 11 branch searches in the (bt - bm) unit, and show that this results in an even more marked decrease in decoding

~ 7 bm -unit searches stemming from the 7 branches at the end of the effort than that presented in the preceding Section compared to
~ (bt - bm) unit. sequential decoding. To facilitate calculation of the bound we divide

';; Let us now evaluate N for the decoding algorithm. We assume the analysis into four sections based on four back-up distances bt and

bm = 16; that is, the direct mapping range is 16 segments. This denote the new bound on maximum computation to be N*. On the

choice is determined by the memory size allowable in the decoder. basis of bm = 16, the four regions are bt ~ 16,25,33 and 50, co~.

For example, in Reference 2 it is shown that when bm = 10, we responding to the four test-error weight conditions It 1 ~ 5, = 6,7

only need to store 11 permissible paths and 30 tentative test-error and ~ 8.

sequences. Even if the memory requirement grows exponentially
with increasing bm-. the memory size of a decoder with bm = 16 *

is still feasible and relatively cheap to implement. The actual value of 4.1 Value of N for bt ~ 16

bm is therefore up to the individual h~rdware designer and does not This case has been previously analysed, showing that at most

affect the general nature of our calculations. . one b.b.o. and one d.m. are needed if bt ~ 16. Hence,N* = 2.

Assuming bm = 16 and that bt = 25 and It16 !max = 5, evaluation
of eqn. 1 shows that the maximum number of computations N(bt =
25) is equal to 11745.lfbt = 33,N(bt = 33) = 3014617.lf bt = 50, 4.2 Value ofN* forb = 25
N(bt=50)~4x1011. t

Consider now a sequential decoder utilising the same coding Let us assume that It11 = 1 and It 1= It251 = 6. We therefore
parameters as the minimum-distance decoding. When such a decoder have bt = 25 and want to search for a "'~5 whose 1t~51 = 5. We divide

enters a back-up search, the maximum back-up distance is bt, and, the analysis into three cases based on the three possible values of the

therefore, a complete bt-unit search is required. Thus, the maximum test-error weight of the first segment of t25; that is, (It251-lt24I).

number of computations required for sequential decoding N. is Fig. 3 .illustrates each case.

/! It251-[
PI Y/ bm 1

I t I I-I
25

bt

"' a
"'

r 1 I
I I ]1

I 2 3 21
}43' It25I-] 5 7 I

/ 1 6 84 1 B Y
/ 5

// I 9 I~61 'bm ~

,~ t/ I 71~:;::;:;:-- j. It251-lt241=1

/ L

r U;;C I
, I, I b

,
~ I 1-

l ~ bm-unil

I

.I
1 .

-'- '1 It251-1

'\1
Fig. 2

Maximum number of decoding operationsN for the minimum-distance It'251-1 t241 =0

decoding when (bt - bm) = 3
N .; [ (2(bt+,) - bm ~ 2) - (bt-bm) C

+ (fbt+bm) - I) (bm+ I tbm I max) + I}

Fig. 3
Theter~s of the expression are obtained from the Figure as follows: Calculation of N* for bt = 25 and I t251 ;: 6
A = fbt+ 1) -bm - 2) - (bL - bm) = II = number of required branch searches
in a (bt - bm) unit B = (2( t -bm) - I) = 7 = number of branches or nodes at a I.r,!!-:;:: 11'.2.1;,;0

the end of a (bt - bm) unit that requires search. Each node could require bm b l.t~...I;;-,I~~l~.

b.b.o.sand I tbm I max d.m.s. I = first b.b.o. that results in a t, = I c tt~i1-'¥t..I. 2
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(a)Fig.3a when the range of required back-up distance b; is such that 33 =
If It2sl-lt241 = 0, its complement segment has weight It~sl- b; .;; 25, the maximum number of computations is

It~ 1 = 2. Therefore, if there is a t~s stemming from b; = 25 such
that It~sl =;' 5, it will have weight It~ I = It~sl- (It~sl ~ It~ I) = N* (bt = 33)max = N*(bt = 25)max + (33 + 5)
5 - 2 = 3 over the remaining 24 segments. This implies that the 32
24-unit can be searched by using direct mapping only, as follows. + L (j + 3)

From the distance property I of the code (Appendix 9), we can j=17

see tha~ when a back-u,p search starts at b; > bm and the t' is such = 219+ 38 + 440

that Itj 1-lti-bm I.;; It I';; [d(bm) - I] /2, where b; ~ i > bm, the
t' can be searched by using only b; b.b.o.s and It'l d.m.s. In this case, = 697
bm=16 and [d(bm)-I]/2=4; therefore, It:I-lt:-161';;3<
[d(16) -I] /2 = 4, and the 25 unit can be searched with a maximum (c) If It331-lt321 = 2, its complement segment has weight It~] ~

of25 b.b.o.s and It~1 =3 d.m.s. Hence, when the range of required It~21 =0 and It321=5. Therefore, b; =33 only. After accepting the
back.up distance b; is such that every complement unit between 17 first segment stemming from b;, we consider two caSes based on the .

and 25 segments back must be searcheq; that is, 25 ~ b; ~ 17, the test-error weight of the two branches stemming from the accepted ..

maximum number of computations is node. These are detailed in Fig. 4.

25 1

N* = .L(j+3)+1 = 217 0/t33',

J=17 ~(1 bboJ

(b)Fig.3b ,."
If It2sl-lt241=1, its complement segment jt~sl-It.~I=I, /'JI-lt I ,,"

and It241 = 5 implying b; = bt = 25 only. Also,. It:I-lt:-161';; 5 ~ 2 ~

I =4 for 24';;i';; 17, which is equal to [d(16)-IJ/2,implying that t. 1
the search at b; = 25 can be carried out by means of25 b.b.o.s and 4 1 1 ] 3 bbos + 2(30 bbos+4dms)=71

d.m.s: Hence N* = 25 + 4 + 1 = 30 0 2
~ 15 bbos ~ (J bbos+3 dms)=366(c)Flg.3c 1 2 j=17

If It2sl-lt241 = 2, its complement segment It~sl-lt~ 1 = 15 ~ o 0 2.'.
0 d I I 4 . . 1 . b* b 25 1 I h . consecutIve 0,an t24 = again, Imp ymg t = t = on y. n t IS case, zero-wei ht ~,

Itis] = 5, which indicates that there is a po.ssibili~y that 1~:I-lt:-161 = segmentsg ~

It2s1 = 5 > [d(16) -1]/2 =4, for some 1 within 25 ';;,';; 17, and so (33 bb,as+6dms)=39
the search cannot be directly carried out with b.b.o.s and d.m.s only. a
The worst case situation is therefore one in which there are (25 -

~ i .13316) = 9 consecutive zero test-error weight segments stemming from 0
b; = 25. In this case the bm -unit at the end of the path is searched (1 b!>o.)

with direct mapping, and each of the 9 complement path segments ,.//
having double test-error weight are searched in a manner similar to
case (a). The zero test-error weight portion and the terminating bbos+4dms)=36
bm -unit can be searched with a maximum of 25 b.b.o.s and 5 d.m.s,
and the paths stemming from the double error segments can be

24 0 1]3 bbos+2(29 bbos+4dms)=69
searched with . ~ (j + 3) computations. Hence, the maximum num- 0

~ 29 - J=17 1 2 14 bbos+~(j bbos+3dms)=352

ber of computations is
~ 2 '.. j=17

14 consecutive 0"24 - N* (bt = 25)max = (25 + 5) + L (j + 3) + I = 219 zero-weIght segments ' j=17 b (33 bbos+5 dms)=38

From the above ~alculations, it can ~e seen that the maximum nu~- Fig. 4
ber of computatIons for bt = 25 WIll not exceed 219. Not only IS Determination of the maximum number of computations N* for

this significantly less than the value calculated for sequential decoding, searching a t~3 with It;31 = 6 when 1(.331 = 7, bt = 33 and It331-
but it is also 53 times less than the bound N(bt = 25) calculated in It321 = 2
the preceding Section. ""

a Distribution of test-error weight when It.;, I ,-It;,1 = 1 N* = 1 '+- 71 + 366 +
* 39 = 477

4.3 Value of N for bt =33 b Distribution of test-error weight when It;,1 -It;,1 * 1 N* = 1 + 36 + 69 +

352 + 38 = 496L:et:~~utf)e, t~~l..t! I~:;L.. 'I !!~ 143 r""q ;"ht'- ~,andw~ ; -: .
ar~ searthing fora "W~3 who$e !i'j;f=6:,ff.there is a'tjj satisfying
this test-error weight condition, the analysis can again be split into 4.3.1 Details of Fig. 4a
three cases based on the weight of the first segment of (.33, that is,
It331-1(.321: If the test-error weight of both branches is I, that is It~21 -

. . , It~ll = I, there are four contributions to the total number of compu-
, (a) If Jt331-lt321 =;O, 11s c~mplemen~ segmet;It has welght It331- tations. These are as follows: First, there is the original b.b.o. that

It32 1 = 2. Hence, It321 = It33 1 - (1(.331-lt321) = 4 = [d(bm) - resulted in Itll = 1 and It331 = 7. Secondly, the maximum number
1)/2 = ~jl-ltj-161, for 3.2 ~i~ I? This m~ans that the search for of computations for the search stemming from the two segments
t33 at bt = 33 can be camed out WIth a maxImum of 33 b.b.o.s and with weIght It~II-lt~ I = I is equal to 3 b.b.o.s + {2(30 b.b.o.s+
4 d.m.s. When each node between 17 and 33 needs to be searched,

4 d )} = 71 Thi dl th ea C h stemmin g from the segment withth . 33-.". b* -.".17 th . b f t t .. .m.s. r y, e s rat IS, P t P , e maxImUInnum ero compu a 10ns IS weight It~II-lt~ 1= 0 requires a maximum of (33 b.b.o.s +
33 6 d.m.s) = 39 computations. Fourthly, the searches stemming from

N* = L (j + 4) + I = 494 those branches opposite to the consecutive zero test-error weight

j=17 30
. . , segments require a maximum of 15 b.b.o.s + ~ (j b.b.o.s + 3d.m.s)(b) If It331-lt321 = I, 11s complement segment has weIght It331- j=17

lt~21 = I, and It321 = 6. From Tables 1 and 2 it Car) be seen that for = 366 computations...The maximum number of computations in this
It331= 7, and It321 = 6; we have 33 = b; .;; 25. Therefore, the maxi- case is therefore

mum.number of computations for this case ~s the, sum of ~he com- N* = (I + 71 + 39 + 366) = 477
putatlons for b; = 33 and b; .;; 25. If there IS a t33 stemmIng from
b; = 33 such that It~31= 6, we would be searching for a t~2 with

4 3 2 D .1 f F. 4bIt ' I .5 ft . th fi . f * . . etal 5 0 Ig.32 = a er accepting e lrst segment stemmIng rom bt.

Hence, the worst-case situation is similar to that of Section 4.2 {c)~; If the test-error weight of the two branches is 2 and 0,
that is, (32 - 16) = 16 consecutive zero test-error weight seg- that is, It~21 -lt~11 * I, there are five contributions to .the total
ments stemming from the first segment of t~3, ending with a bm -unit number of computations. These are as follows. First, the!e is the
search. Also, the 16 opposite branches each having double test-error original b.b.o. which gave It33 I = 7. Secondly, the search stemming
weight are searched according to case (a) in Section 4.2. Therefore, from the segment with weight It~21-lt~11 = 2 requires a maximum
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~"';:;

of (32b.b.o.s + 4 d.m.s) = 36 computations. Thirdly, the search weights equal to l,we would expect that niCk = i) ~2nJ(k=i + 1) ~
stemming from the segment with weight [t~II-lt~ 1= 1 and the 4nj(k = i + 2) ~ 8niCk = i + 3), where j = d(i)min = d(i + h)min. We

two subsequent parallel segments each of weight [t~o l-lt~9[ = 1 can then estimate the number of minimum distance paths for 34 ~
requires [3b.b.o.s + {2(29b.b.o.s + 4d.m.s)}] =69 computations. k~50. For example, as nI3(k=33)=12, nI3(k=34}~6 etc.
Fourthly, the search stemming from the path containing 14 consecu- Using this method, the total number of minimum-distance paths

tive zero weight segments requires a maximum of (33b.b.o.s + works out to be in the region of 124. We may now consider two

5 dm.s) = 38 computations. Finally, the search stemming from those ways of reducing the number of Pstored for 34 ~ b; ~ 50.

branches opposite to the consecutive zero test-error weight segments In the first case we apply the general rules for permissible path

requires 14 b.b.o.s + ~ (j b.b.o.s + 3 dm,s} = 352. Therefore, the selection: ~at is, IPI is odd and P2 = 01. In addition, we impose

j=17 the restnctlon [PI ~d(L = 50) = 17 that is, [PI = 15 and 17 only.

maximum number of computations for this case is From interpolation of the values in Table 3, and by knowing that

N* = 1 + 36 + 69 + 38 + 352 = 496 roughly 1/16 of all paths of a given length end in ~l, we can estimate

that the total number of paths needed to be sorted IS several thousand.
From the calculations presented above, it can be seen that the maxi- Hence, a maximum of several thousand path-comparison operations

. mum number of computations for bt = 33 will not exceed 697. This could be performed in search for a w' with I t' [ < I t I, via w' = w E!J P.

is an extremely small amount when compared with sequential decod- In the second case, we restrict the selection of permissible paths in

ing, and is 4325 times less than the value of N(bt = 33) presented iQ such a way that (a) only minimum weight paths are stored and (b)

Section 3. if the weight is odd P2 = 01, or if the weight is even PI = O. Only a

" very few of the estimated 124 minimum-weight paths would satisfy

4.4 Value of N* for b ~ 34 the above two conditions, indicating that an exceedingly small mem-

t ory is sufficient to store the permissible paths in this case. The de-

By extending the similar technique utilised in the preceding coder would then proceed as follows whenever a back-up search in
Section and using the weight distribution of the initial code tree, we the range 34 ~ b; ~ 50 is required:
can calculate the maximum number of computations required at ( 0 ) If d(b*) 0 0 dd F. 4a h .11b 0 d b* -b k do th 33 H 1 t t th o 0 t It m.n IS 0 , Ig. , a searc WI e carne out at t-

ac -up I~tance great.er an . owever, e us. a .IS porn say b to find a t' with It'l= !tffiPI<1 I wh h P h d

that we WIsh to restnct the number of computations m a back-up ..b 0 t , ere t e are t ose store

search to be an absolute minimum value in order to have a very small pe~IssI Ie paths ~th length equal to b segm~nts long. .~en such
buffer. We must therefore modify the algorithm to cope with searches a t ~.s found'.we WIll retur.n to the b.?o. Othe~WIse, go to (111).
at back-up distances of bt ~ 34. This is dealt with in the following (I~ If d(b! )min = d.(bt - 1 )min IS even, FIg. 4b, aback-up search

Se tion at bt = b WIll be carned out as follows. We first denote t-1 as the
c . portion of t without the last segment tl, which therefore has length

5 Searches at b ~ 34 using permissible path decoding (b --; 1) s.egme~ts. The~~e applies to t:1 and t'. We then search for
tat_I wIth It-II = It-I ffi PI < It-II where the P are those stored

Consider that we have a w with test-error weight I t I and per~issible path~ with length (b -]) segments. When such a t:1 is

we are searching for a w' With test-error weight It'l < It I. In this found, we extend it with the b.b,o. to derive at;. If the b.b.o. results

case, w' and t' can be found from w' = w ffi P, and t' = t ffi P, where in a t; = 0, we accept t' as the minimum-weight path. Otherwise, go

P is one of a set of truncated patterns from the lower-half initial to (iii). For the case of d(b;)min even, but d(b; -l)min is odd, w

code tree and is denoted a permissible path- Unfortunately, it is is accepted as the minimum-weight path without any search.
not possible to store all the possible P of length ~ 34 because of the (ill) We go to the next value of b; , or if this is (b;)max, we accept

large memory this would entail. This can be seen by examining one w as the best path and return to the b.b.o. In the latter case, the

of the weight conditions on P which is IPI < 2 Itl. In general, Itlmax oldest segment of w that i$ output as the corresponding segment of

increases with increasing search length Land IPlmax increases linearly the transmitted sequence could be in error. If this happens, however,
with Itlmax and., therefore, the number of permissible paths satisfying the decoder will eventually receover.
the weight condition IPI < 2 It Imax could exponentially increase with

Itlmax. Fortunately, we are obtaining results that show that the 0 ~ t

number of permissible paths can be reduced by simply limiting the --r' t. I
maX;imum. w~ight of P, and that the e~fect of th~s path re.duction o~ 1 I

codmg gaIn IS extremely small, even If the maxImum weIght of PIS --- I

reduced to IPlmax ~d(L), where d(L) is the minimum distance of the
< - I

code over L segments.3 bt I
Let us therefore evaluate the approximate amount of storage - - - Iffip

needed to store a reduced set of P by estimating the weight structure a I

of the code. I
Minimum distance and weight spectrum as a function of constraint - I

length has bee? studiedb~.,usjng..as6~\;Ientialdeco~f'simulatof t,o- t
analyse the structure of different halF-rate systematIccodes.4 From' --~ 0 i

. this study we may'conclude that, among the good-codes, there i~ - - - ~1'

very little difference in the weight distribution, and that the increase 1

in distance with constraint length is consistent with a relationship of{ the form d(K) = C + 0.22K, where C is a constant of about 2 to 4 .

and 0.22 is a factor equal to the asymptotic ratio of distance/con- ' 0 ~ I

straint length fo~ a half-rate code, based on the Gilbert bound. Table 3 ---I--l tl

shows a typical weight distribution for a half-rate code, where k indi- 1-1 I
cates the length of the path in segments and the value of nj indicates < --- I the number of paths of weight j. For example, it can be seen that b8 I
there are 1.2 paths of length 33 which have weight 13. Also, the Table I 'Gj

shows that d(i)min = d(t + h)min for i = 33, 37,41,45,49 and 0 ~ --- I p

h ~ 3. From the structure of convolutional codes, we can estimate the b I

number of minimum-distance paths for values k between those given in -- -- 1~1 = I_~p I
the Table, by interpolation. Because 50% of code branch pairs stemming -- -- - I

from a given node have weight 0 and 2 and the other 50% have -- -- 0 '
--~ 0

~t.

+Table 3 bbo results
WEIGHT DISTRIBUTION OF THE LOWER-HALF INITIAL CODE TREE OF in Q t -0

A TYPICAL HALF RATE CODE Fig. 5 1-

k nl3 nl4 nl5 n16 nl7nl8 Usingl;ermissible-pathdecodingtosearchforat'withlt'l<ltlac
34 ~b ~5033 12 142 848 4428 18066 65294 t

37 13 144 1019 5396 24156 a d(b;) is odd
41 12 170 1103 66,29 t'exis~sifthereisaPhavingb;SegmentslongsuchthatltOI=~1tEDPI<ltl
45 16 172 1333 bd(bt)=d(bi-l) is even

t' exisls if (i) there is aPhaving (bt -I) segments long such that It~l 1= [t -t ED PI
and (ii) b,boo. results in a t; = 0
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6 Discussion codes which could achieve maximum-likelihood decodiIig with long

In this paper, we have analysed the computational and co~es, and the de~odiIig algorithm discussed iIi this paper. could
storage requirements of the proposed minimum-distance decoding easily, ~e a~opted m both the forward and backward.decodmgs ~f
algorithm. By adoptiIig different search techniques at different ~he blduectIonal searc~ ,proc.edure, Further compu.tatIonal ana;tysls
stages in the search procedure we obtain an efficient trade-off be- IS ~roposed for. the bl~uect~onal search and h>:bnd ~onvolutIonal
tween coding parameter selection and memory requirement. We codIng system wIth the aid of Involved computer-sImulatIon study.
can now discuss the various options available when implementing the

algorithm by dividing the back-up distance into three regions: bm, 7 Acknowledgments
b. ~d bp, where 0 ~ b.lI:' ~ b.. ~ bp ~ L: This work was completed while Dr. Ng was with the

FIrst, we would utIlise duect mappIng for all back-up searches at University of Hull and before he joined the Aerospace Corporation.
distance b; ~ bm, because the maximum number of computations
N*(bt ~ bm)max is only equal to 2. This is the direct-mapping or bm 8 References
region. The bigger the bm region, the smaller the buffer requirements,

but the larger the decoder path storage requirement. 1 NG, W-H.: 'An upper bound on the back-up depth for maximum likelihood ;

Secondly, the region of back-up distance that uses the minimum- decoding of convolutional codes',IEEE ;rans., 1 ~76, IT :2~, pp. 3~4-357 ,

distance search procedure is denoted the b. region, where b. ~ bm. 2 NG~ W-H., ~d GOODMAN, R:M.F.: An efficlen.t mmlmu~-dlstanoe de" c
Th b . h al f b th b. th b f ,"' codIng algonthm for convolutIonal error-correcting codes, Proc. lEE,

e Igger t e v ue 0 ., e Igger e u ler reqUlrement, es- 1978,125, (2), pp. 97-103 r~
pecially if b. ~ 40. 3 NG, W-H., KIM, F., and TASHIRO, S.: 'Maximum likelihood decoding .

Thirdly, we denote the long back-up distance region that requires scheme for convolutional codes', lTC Record, Los Angeles, California,
a larger buffer size, and that often causes buffer overflow in sequential 1976 . , . . ,
d d.

th b . I thi . . . bl th 4 FORNEY, D. Jr.. HIgh-speed sequential decoder study. Contract DAAeco ~ng, ~ e p regIo~. n s region, we use permlSSI e pa. B07-68-C-o093, Codex CorP., 1968
decoding Wlth path reduction on the total number of paths, and this 5 NG, W-H.: 'Bidirectional search for convolutional codes', Proc. lEE, 1978,
implies that the decoding is now suboptimum. Two different path- 125, (6), pp. 495-500
reduction techniques are used: one with IPI ~ d(L)min and another

with IP1 = d(k)min. The. value of k used could be e!ther L ~ k > b. 9 Appendix
or L ~ k > bm dependIng on the trade-offs requued. The IPI =
d(kJmin~approach requires much smaller memory and much fewer Fundamental distance property
computations than the IPI ~ d(L)min approach, but will result in Convolutional codes are group codes,. and if w and w'

a slight loss of coding gain in the lower signal/noise-ratio region. are paths in opposite halves of any k-unit, then x = W Ee W' is a code

As has been shown, the minimum distance decoding at present path in the lower-half initial code tree. Therefore, the distance be-

requires significantly less computational effort than sequential de cod- tween half trees of any k-unit depends only Qn k and not on which

ing, resulting in a much reduced probability of dismissal. .In a pre- k-unit is chosen, and is equal to the minimum weight path in the
vious paper,s we proposed a bidirectional search for convolutional lower-half initial code tree.
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