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Abstract

A new adaptive controller based on a neural network was constructed and applied to tur-

bulent channel 
ow for drag reduction. A simple control network, which employs blowing and

suction at the wall based only on quantities measured at the wall, was shown to reduce the skin

friction by as much as 20% in direct numerical simulations of low-Reynolds number turbulent

channel 
ow. Also, a pattern was observed in the distribution of weights associated with the

neural network. This allowed us to derive a simple control scheme that produced the same

amount of drag reduction more e�ciently.

1 Introduction

The ability to control turbulent 
ows is of signi�cant economic interest. Successful control of

turbulent boundary layers by reducing drag, for example, can result in a substantial reduction

in operational cost for commercial aircraft and marine vehicles. Recent studies show that near-

wall streamwise vortices are responsible for high skin-friction drag in turbulent boundary layers

(Kim 1992; Choi et al. 1994). Some attempts have been made to reduce the skin-friction drag by

controlling the interactions between these vortices and the wall. Choi et al. (1994), for example,

used blowing and suction at the wall equal and opposite to the wall-normal component of velocity

at y+ = 10, giving approximately 25% drag reduction in a turbulent channel 
ow. Although the

method employed in their work is impractical, since the information at y
+ = 10 is usually not

available, it demonstrates a control scheme by which the skin-friction drag can be reduced by

manipulation of the near-wall streamwise vortices.

A systematic approach using suboptimal control theory has also been tried in the past. This ap-

proach, which attempts to minimize a cost function, was applied to the stochastic Burgers equation

and was found to be successful (Choi et al. 1993). Moin & Bewley (1995) applied a similar approach

to a turbulent channel 
ow to achieve up to 50% drag reduction. This approach, however, requires

information from the entire velocity �eld inside the 
ow domain and excessive computational time,

making it impractical to implement such a scheme in real situations. For practical implementation,
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a control scheme should be based only on quantities that are easily measurable at the wall, and

should be fast enough to be applied in real time. Our goal is to �nd such a scheme.

We seek wall actuations, in the form of blowing and suction at the wall, dependent on the wall-

shear stress to achieve a substantial skin-friction reduction. This requires knowledge of how the

wall-shear stresses respond to wall actuations, i.e., the correlation between the wall-shear stresses

and the wall actuations. Because of the complexity of solutions to the Navier-Stokes equations,

however, it is not possible to �nd such a correlation in closed form or to approximate it in simple

form. We use instead a neural network to approximate the correlation and then to �nd the optimal

wall actuations that will give the minimum value of the skin-friction drag. Neural networks have

been used to obtain complicated, nonlinear correlations without a priori knowledge of the system

that is to be controlled. Jacobson & Reynolds (1993), for instance, used a neural network to obtain

about 7% drag reduction in their simulation of an arti�cial 
ow. In this paper, we describe how

we construct and train a neural network, and then constructed a control scheme for drag reduction

based on that neural network. We then applied this control scheme to direct numerical simulations

of turbulent channel 
ow at low Reynolds number, and observed about 20% drag reduction. We

then describe how examination of the weight distribution from the trained neural network led to a

very simple control scheme that worked equally well while being more e�cient.

In section 2, a brief description of the architecture of the neural network used in the present

work is given. In section 3, results obtained from control using an o�-line trained network are

presented, while results obtained from control using a network with continuous on-line training are

given in section 4. In section 5, a simple control scheme derived from the weight distribution in a

successful neural network control is presented. A few turbulence statistics are given in section 6,

followed in section 7 by a discussion of practical implementation and the conclusions.

In this paper we use (x; y; z) for the streamwise, wall-normal, and spanwise coordinates, respec-

tively, and (u; v; w) for the corresponding velocity components.

2 Neural Network

In this section we describe the construction of a neural network to learn the correlation between

wall-shear stresses and wall actuations from given data set. Although a neural network generally

requires no prior knowledge of the system (or \plant"), knowledge about the near-wall turbulence

structures provides a guideline for the design of the network architecture. Initially @u=@y and

@w=@y at the wall were used as input data �elds and v at the wall was used for the output data

of the network. Later, it was found that using only @w=@y at the wall from one instance of time
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was su�cient for proper training, and that a controller based on this network performed very well.

Subsequently, we used only @w=@y at the wall as input. Because we wanted the output to be based

on a local input area, we designed our network using shared weights. The network had a single set

of weights that is convolved over the entire input space to generate output values. The template

(i.e. the set of network weights) extracts spatially invariant correlations between input and output

data. The size of the template was initially chosen to include information about a single streak and

streamwise vortex, and then was varied to �nd an optimal size. As for the network architecture,

we used a two-layer network with hyperbolic tangent hidden units and a linear output unit (see

�gure 1). The functional form of the neural network is:

vj =Wa tanh

0@ j+N=2X
i=j�N=2

Wi
@w

@y

����
wi

+Wb

1A+Wc ; (1)

where theW 's denote weights, N is the total number of input weights, and the subscript j indicates

discrete wall locations. The summation is done over the spanwise direction. Seven neighboring

points, including the point of interest, in the spanwise direction (corresponding to approximately

90 wall units with our numerical resolution) were found to provide enough information to adequately

train and control the near-wall structures responsible for the high skin friction. A scaled conjugate

gradient learning algorithm (Moller 1993) was used to produce rapid training. The sum of a

weighted-squared error given by

Error =
1

2

X
j

e
kjvdes;j j(vdes;j � vnet;j)

2 (2)

was minimized during training, where vdes is the desired output value and vnet is the network

output value. Note that the error exponentially emphasizes (proportional to k) large actuations.

Usually within 100 training epochs, the error reached its asymptotic limit.

3 O�-line Training and Control

As an initial experiment we investigated whether we could train a neural network to predict the

velocity at y+ = 10 from only the wall-shear stresses. The rationale behind this experiment was

that if a neural network could be trained to predict v at y+ = 10 based on the wall-shear stresses,

the output from the network could be used as input to the actuator. The network should thus yield

a similar amount of drag reduction to that obtained by Choi et al. (1994) without the knowledge

of the velocity at y+ = 10. The training data consisted of 100 time steps of output obtained from

a numerical simulation of channel 
ow under the control employed by Choi et al. (1994), i.e., using

the wall-normal velocity at y+ = 10. The 
ow regime is turbulent channel 
ow with Re� = 100,
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where Re� is the Reynolds number based on the wall-shear velocity, u� , and the channel half-width,

�. All numerical simulations presented in this paper were obtained using a modi�ed version of Kim

et al.'s (1987) spectral code with the computational domain (4�; 2; 4�=3)�, and a grid resolution

of (32, 65, 32) in the (x; y; z) directions, respectively. Each time step contained a 32� 32 array of

input values (@w=@yjw) and corresponding actuations, �v at y+ = 10.

We trained several networks with one hidden unit and di�erent sized input templates: 7 � 1,

7� 3, 7 � 5, 9� 1, 9 � 3, 11 � 1, and 11 � 3 (the number of input units in the spanwise direction

by the number of input unit in the streamwise direction). After training was completed, the

distribution of input weights was examined to see whether there was a discernible pattern in the

input template. The weight distributions in the spanwise direction at the same streamwise location

for di�erent input templates are shown in �gure 2. The same pattern for all 7 input template

sizes was observed, and is similar to a �nite di�erence approximation of spanwise di�erentiation.

Increasing the number of hidden units improved the performance marginally, whereas increasing

the template size reduced the �nal training error.

We then applied a control scheme to a regular channel 
ow using the �xed input weights obtained

from the o�-line training. This was perhaps a somewhat naive approach since the weights were

obtained from fully controlled 
ow data and the shear stresses used for the training were already

altered by the actuations. Nevertheless, two cases were tested: a control scheme based on 7 weights

in the spanwise direction, and another based on the same 7 weights plus 3 more in the immediate

downstream location. These 10 weights were chosen because among all weights obtained from the

o�-line training they had non-negligible values. In �gure 3, the mean shear stress variations at the

wall (i.e., drag) obtained with these two controls are plotted along with the no-control case. Nearly

18% drag reduction was achieved, with slightly better performance from the 10-weight network.

These results demonstrate that a correlation exists between the shear stresses at the wall and

the desired actuations, and that control based on this correlation produces a signi�cant amount of

drag reduction. This �xed-weight control scheme, however, was deduced from fully controlled 
ow

data; thus it does not guarantee the same performance for other 
ow situations.

We conclude this section by remarking that our initial network structures, which employed

@u=@yjw as well as @w=@yjw using a bigger template (7 � 5), did not produce a �xed pattern of

weights. This suggests that the large number of weights, together with the additional information

from @u=@yjw, reduced the capability of the network to identify relevant 
ow structures.
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4 On-line Control

In the previous section we showed how successful control based on o�-line trining can be obtained.

However, since the system we are trying to control is time-varying and nonlinear, this approach is

not likely to be successful in general. Continuous on-line training allows a controller to adapt to

the evolution of the system. In this section, we describe an adaptive controller for on-line training

and control.

There are various schemes for on-line neural network control. The most direct scheme is

adaptive-inverse model control (Widrow 1986). A schematic representation of this approach is

shown in �gure 4. Here the plant denotes the numerical solver of the Navier-Stokes equations. This

con�guration employs a neural network to model the (possibly time-varying) inverse plant mapping

the wall shear stress @w=@yjw to the wall-normal actuations, and then uses a copy of the model as

the controller with the desired shear stresses as input. One restriction of this technique is that it

usually requires an initial model training phase using random plant inputs and corresponding plant

outputs. This, however, caused no serious problem since usually one timestep was enough for the

model training in our application. Once the model represents a reasonably close approximation to

the actual plant inverse, a copy is then implemented as a feedforward controller.

The desired inputs to the controller are a fractional reduction in the shear stress from the

previous step, i.e.,  
@w

@y

!
t+1

= �

�
@w

@y

�
t

(3)

where 0 < � < 1. This indirect suppression of @w=@yjw , instead of @u=@yjw, turns out to be more

e�cient in achieving drag reduction. The output of the controller, which is the input to the plant,

is the predicted actuation necessary to produce this shear stress reduction. The quantity � should

be chosen such that sets of the desired large amplitude outputs are among the sets that are well

represented by the training sets. Good performance was achieved for the range of � = 0:8 � 0:85.

A turbulent channel 
ow at Reynolds number Re� = 100 was used to test the neural network.

We allowed all the weights in the network to adapt and examined the input template pattern after

each time step. As the control began, the weight distribution immediately assumed a �xed pattern.

There was no appreciable change in the relative magnitudes of the template weights over time,

indicating that the pattern is preserved. The absolute magnitudes, however, did vary indicating

that the need for gain and bias adaptation for each layer. The number of hidden layers, the size

of the hidden feature detector, the size of the input template, and the error scale of the training

error were 1, 1 � 1, 7 � 1, and 5, respectively. We also varied the values of the error scale, and

found 5 to be optimum, with larger values causing an instability in training. The converged weight
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distribution for 20 consecutive time steps after an asymptotic state was reached are shown in �gure

5. The pattern is only slightly di�erent from the one obtained from the o�-line training (see �gure

2). It should be noted that this pattern emerged immediately after the on-line control began.

Time histories of the wall-shear stress for 3 di�erent input template sizes are shown in �gure 6.

As the control began, the drag quickly drops to about 80% of that observed without control, for

the two cases with template sizes 7 � 1 and 9 � 1. The template size of 5 � 1, however, did not

produce as much reduction, implying that at least 7 spanwise points (which extended about 90 wall

units, with our grid resolution) should be used for good performance. At the initial stage of our

study, we tested a control using both @w=@yjw and @u=@yjw as input, with a 7� 5 input template.

It produced about the same amount of reduction, but the training time was excessive due to the

large number of weights and it did not produce a coherent pattern in the weight distribution.

Since the seven weights show a �xed pattern, we �xed the input template weights to this pattern

and used a single hidden unit network, giving only four adaptable parameters (a bias and gain for

each layer). This simpli�ed network had the following functional form:

vw =Wa tanh(Wbg +Wc) +Wd (4)

with

g =
3X

j=�3

Wj
@w

@y

����
j

(5)

whereWj's are the �xed-weight pattern obtained from the previous on-line control. On-line control

using this network also produced the same amount of drag reduction. The weight variation with

time was also monitored. The bias weights (Wc andWd) were negligibly small, but those controlling

the gain (Wa and Wb), which had �nite values, changed in time signi�cantly, although the product

of the two gain-weights remained almost constant. This suggests that e�ective control can be

achieved by simply using g with an adjustable amplitude. This will be discussed in the following

section.

5 A Simple Control Scheme

Since the control based on the network given by equation (4) produced a substantial reduction

in drag, this section develops a control scheme based only on the weighted sum of the wall shear

stress. The distribution of the weights can be approximated by (see �gure 5):

Wj = A
1� cos(�j)

j
(6)

where j = 0 corresponds to the point of interest. Since only the relative values are important,

the constant A has no special meaning. A highly resolved computation was run to con�rm that
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equation (6) gives the proper form of the weight distribution. It turns out that equation (6) is the

inverse Fourier transform of ikz=jkz j, where kz is the wavenumber in the spanwise direction, for the

�nite maximum wavenumber, i.e.,Z km

�km

ikz

jkz j
exp(�ikzz)dkz = 2

1� cos(kmz)

z
(7)

where km = �=�z is the maximum wavenumber and �z is the numerical grid spacing. Replacing

z with j�z in the right-hand-side of equation (7) leads to equation (6). From this result and the

convolution theorem, one can deduce the following simple control law for wall transpiration:

bvw = C
ikz

jkz j

d@w
@y

�����
w

= C
1

jkzj

d
@2w

@z@y
(8)

where the `hat' denotes a Fourier transformed quantity and C is a positive scale factor determining

the amplitude of the actuation. Equation (8) implies that the optimum blowing and suction at

the wall is proportional to @
2
w=@z@y with the high wavenumber component suppressed by 1=jkz j.

Note that the weights at even numberd grid spacing away from the center point vanish. This is

bene�cial for physical implementation, since sensors and actuators cannot be placed at the same

location. Because the Fourier integral is computed for a �nite value of km, the values of the weight

at non-integer j in equation (6) have no meaning. The above control law is equivalent to:

vw = C

1X
j=�1

Wj
@w

@y

����
j

(9)

where Wj is given by equation (6). The magnitude of the weights decays with increasing distance

from the center, which allows for good approximation with only a small number of weights; i.e.,

successful control requires only local values of the shear stress. A natural concern is how changing

grid spacing will a�ect the control. Since the above control law (equation (9)) is simply another

expression of equation (8), which is a good approximation as long as km is large enough, the control

should be relatively independent of resolution.

Control based on the above scheme (equation (9)) with only 7 points produced the same amount

of drag reduction (20%) as the neural network control did (see �gure 7). The constant C is chosen

so that the root-mean-squared (rms) value of the actuation is kept at 0.15 u� . Blowing and suction

of this magnitude at the wall suppress the near-wall streamwise vortices by counteracting the up-

and-down motions associated with these vortices. This result is consistent with Choi et al.'s (1994)

results, which were obtained by active control based on 
ow information near the wall.
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6 Turbulence Statistics

The computed 
ow �elds for a no-control case and a successful control case, based on the 7-point

weighted sum of @w=@yjw (equation (9)), were examined to investigate the mechanism by which the

drag reduction is achieved. The most salient feature of the controlled case was that the strength

of the near-wall streamwise vortices was drastically reduced. In �gure 8, contours of streamwise

vorticity in a cross plane are shown. This result further substantiates the notion that a successful

suppression of the near-wall streamwise vortices leads to a signi�cant drag reduction. Note that

for the controlled case the wall actuations were applied at both walls.

The probability-density function of the wall-shear stress in the streamwise direction (�gure 9)

indicates that the control is e�ective in suppressing large 
uctuations, thus reducing the mean skin-

friction as well as its variance. Furthermore, the rms values of turbulent 
uctuations in the wall

region are also reduced, as shown in �gure 10. The same trend was observed by Choi et al. (1994).

Finally, an actuation distribution at the wall used in our control compared with that from Choi et

al.'s (1994) v-control using the information at y+ = 10 for the same wall-shear stress distribution

is shown in �gure 11. They show a strikingly similar distribution to each other, even though the

wall actuation of our control is based only on the wall-shear stress @w=@yjw.

7 Discussion and Conclusion

We have presented a successful application of a neural network to turbulence control for drag

reduction. First we were able to construct and train a neural network o�-line to �nd a correlation

between the wall-shear stress and the desired wall actuations. Based on the optimal network

structure from the o�-line training, we successfully implemented an on-line inverse model controller

in numerical experiments of a turbulent channel 
ow, resulting in about 20% drag reduction.

Finally, we were able to deduce a simple control scheme (equation (9)) for drag reduction based on

observation of the weight distribution from a successful control case. This control scheme uses a

minimal amount of wall-shear stress information and requires only simple operations, thus rendering

a scheme whose actual implementation would be relatively easy.

There are still several issues that must be addressed. First, our numerical experiments were

performed in a very low Reynolds number 
ow. It remains to be seen whether the same control

scheme extends to higher Reynolds numbers. If the main cause of high-skin friction in turbulent

boundary layers at higher Reynolds numbers is also due to the near-wall streamwise vortices, the

same scheme should work equally well. Detection of these vortices through the wall-shear stress
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would become more di�cult, however, because the scales associated with these vortices decrease as

the Reynolds number increases.

Another important issue is the in
uence of the spatial resolution of sensors and actuators on

performance. We showed that a simple control scheme with 7 neighboring points in the spanwise

direction, which corresponds to 90 wall units, performed very well. This suggests that the distance

between sensors should be about 10 wall units. As the Reynolds number increases, the physical

separation between sensors must decrease. We note in passing that recent advances in microma-

chined sensors and actuators make those scale feasible (Liu et al. 1994), and the present work is

part of a joint research project aimed at integrating micron-sized sensors and actuators with control

algorithms implemented in analog VLSI.

A third issue is determining an appropriate scale factor C in equation (9). We tested a range

of C and found that the value that yielded an actuation rms value between 0:1u� and 0:15u� gave

the best performance. Smaller values resulted in less reduction, while larger ones caused rapid


uctuations of the wall-shear stress in time. The experiments were only performed for Re� = 100

and 180, from which the optimum value was deduced, but we expect that the same amplitude level

should produce similar reductions for higher Reynolds number 
ows. We further note that for this

amplitude the required power input to produce the actuation was negligible compared to the power

saved due to the reduced drag.

One �nal practical issue worth mentioning is the time delay between sensing and actuation.

None was included in any of our numerical experiments. In a real situation, however, there will

be a �nite time delay between sensing and actuation. A related issue is the location of sensors

and actuators. Ideally, sensors should register the response of the 
ow to be controlled due to wall

actuations. An actuation signal, however, might produce an immediate spurious response at nearby

sensors. One possible remedy to this problem is an underrelaxation of the actuation signal with

past signals. For example, an underrelaxation using the following formula:

v
t+1
w = �C

X
j

Wj
@w

@y

����t
j

+ (1� �)vtw (10)

could take into account all past signals with a single parameter � that has a value between 0 and

1. We used this approach successfully in our numerical experiment for Re� = 180 and found that

there is an optimum � depending on temporal resolution.

The most signi�cant �nding of the present study is that a single spanwise strip of information

of @w=@yjw is enough to achieve signi�cant drag reduction. Additional information about @w=@yjw

in the streamwise direction, or @u=@yjw, reduced the e�ciency of our neural-network based control.

We also tested di�erent sized input templates and found that as the template size increased, the
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�xed pattern in the weight disappeared, indicating that the feature-detecting capability of the

neural network decreases when too many weights are used.
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Figure 9: Probability-density function of the wall-shear stress: , no control; , control

with 7 �xed weights. The area under each curve is normalized to one.
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Figure 10: Root-mean-square 
uctuations normalized by the wall-shear velocity: , no control;

, control with 7 �xed weights.



(a)

x

(b)

x

z

z

Figure 11: Contours of the wall actuation: (a) control using @w=@yjw with 7 �xed weights; (b)

control using information at y+ = 10. The contour level increment is the same for both �gures.

Negative contours are chain-dotted.


