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Learning Texture Discrimination Rules space into an array of l5-dimensional feature vectors each vect. M I . , ' or

In a u tlresolutlon System corresponding to a local window in the original image. The learning

mechanism shown next derives a minimal subset of the above filters
H. Greenspan, R. Goodman, R. Chellappa, and C. H. Anderson which conveys sufficient information about the visual input for its

differentiation and labeling. We reduce the feature space both in the

Abstract-We describe a texture analysis system in which informative unsupervised,and su~rvised sta,ges of analysis. In the unsupervised

I discrimination rules are learned from a multiresolution representation stag~ a mac~lne-learnlng clustenng algorithm is used to quantize the

of the textured input. The system incorporates unsupervised and suo continuous Input features. The supervised learning stage follows in

per vised learning via statistical machine learning and rule-based neural which labeling of the input domain is achieved using a rule-based
networks, respectively. The textured input is represented in the frequency- network Ultimately a m'n'm 1 t t" ~ lob forientation space via a log-Gabor pyramidal decomposition. In the un-, " , " I I a repres~n a Ion, or a I rary,o p~tterns

supervised learning stage a statistical clustering scheme is used for the IS learned In a training mode, following which the classification of

Iquantization of the feature-vector attributes. A supervised stage follows new patterns is achieved, The texture-analysis task is defined next

in which labeling of the textured map is achieved using a rule-based followed by the system description and simulation results.

network. Simulation results for the texture classification task are given,
An application of the system to real-world problems is demonstrated.

II. THE TEXTURE ANALYSIS TASK

I. INTRODUCfION Visual texture is one of the most fundamental properties of a visible

We describe a hybrid texture analysis system that incorporates surface. It participates as one of the major modalities which help us in

the advantages of learning paradigms, in~luding statistical machine the understanding of our visual environment. As such it takes part in

learning, knowledge-based systems and neural networks, in the lower-level to higher-level tasks, from scene segmentation to object

context of multi-resolution feature extraction techniques. The main reco~nit!on. Text~re-analysis methods can be utilized in a variety of
goal of the system is to learn a minimal representation for a given appl~catl~n domains, s,uch as remote sensing, automated inspection,
library of textures, based on which one can successfully classify and medlc~llmage processl~g and ,advanced image-compression schemes.
segment new mosaic test images into homogeneous textured regions. The different textures In an Image are usually very apparent to a
Of particular interest is to apply the system to noisy images arising human observer (see.Fig. 2), but no good mathematical definition can
in real-world computer-vision problems. encapture the very diverse texture family. It is this lack of definition

The main features of the system are the following: A multi- that makes automatic description or recognition of these patterns a '
Iresolution pyramid is used for a computationally efficient feature- very complex and as yet an unsolved problem. ;

extraction scheme. The important c~aracteristics of the input domain Although researchers ap~roach texture diff~rentl~, most wou~d '

are then learned from examples, with both unsupervised and super- agree t~at the texture family can be categonzed Into two main

vised learning techniques utilized. An information theoretic technique categones-structured and unstructured, more stochastic textures.

enables the characterization of the most informative correlations Methods that can handle the more structured textures use structural j
between the input features and the texture class specification. The models of texture which assume that textures are composed of
learned correlations are specified as discrimination rules which pro- te~tu,r~ primitives: The textur,e is produced by the placement of these
vide probability estimates for the output classes rather than just pnmltlves according to certain placement rules [2]. One needs to be
a hard-decision label. These probability estimates can be used for able to define a priori a good set of primitives and placement rules (a
higher-level analysis, such as feedback for smoothing and the learning ~ree gram,mar is commonly used) in order to characterize the textured
of an unknown class, the so called "pattern discovery" problem [1]. Inp~t. This approach c~n handle very regular patterns. Some textures

} The learned rules are available to the user and can enhance his or which can be handled In this manner are shown in Fig. 2 (top row). .
her knowledge of the input domain and the classification task at Stochastic models, such as the Markov Random Field (MRF) 1hand. Finally, the learned rules can be mapped onto a rule-based models, are used as methods to handle unstructured or stochastic .

neural network and thus the classification scheme is parallelizable textures. ~ere the image is seen as an instance of a random process,
and suitable for implementation using special purpose neural-network define~ via th,e model parameters [3]. The model parameters need to
hardware. be estimated In order to define adequately the perceived qualities of

The system consists of three major stages, as shown in Fig. 1. the texture. This model-based technique can capture certain textures
The first stage performs feature extraction and transforms the image very well (see bottom row of Fig. 2), but they fail with the more

, regular textures as well as inhomogeneous ones
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Fig. 2. Structured (top row) and Unstructured (bottom row) texture examples. Top row (left 10 right): raffia, herringbone weave, canvas I, canvas2, jeans.
Bollom row (left to right): grass, cork, handmade paper, pigskin, cloth. -

than specified a priori via parametric model-based schemes such as pyramid consists of low-pass filtered (LPF) versions of the input

the structural or stochastic models mentioned above. In the following image, with each stage of the pyramid computed by low-pass fil-

sections the system is described. tering of the previous stage and corresponding subsampling of the

filtered output. The Laplacian pyramid consists of band-pass filtered '"

III. FEATURE EXTRACfION STAGE (BPF) versions of the input image, with each stage of the pyramid

In the texture-analysis task there is both biological and com- constructed by the subtraction of two corresponding adjacent levels

putational evidence supponing the use of a bank of orientation- of the Gaussian pyramid. We use the Filter-Subtract-Decimate (FSD)

selective bandpass filters for the feature extraction phase [4], [5], [7]. Laplacian pyramid [10], which is a variation on the Bun and Adelson
Orientation and frequency responses are extracted from local areas Laplacian pyramid [9]. In the following we refer to the input image

of the input image and the statistics of the coefficients characterizing as Co, the LPF versions are labeled C 1 thru C N with decreasing

the local area form the representative feature vector. In this work, we resolutions and the corresponding BPF versions are labeled Lo thru

use the log-Gabor pyramid [8], or the Gabor wavelet decomposition, LN respectively, A recursive procedure allows for the creation of the

to define an initial finite set of filters. FSD pyramid, as follows:

A computationally efficient filtering scheme is used based on a CO - Ii! * C 'L - C - CO ,pyramidal approach. In a pyramid representation the original image ,. + I - " , "-,, ,. + I , .
is decomposed into sets of low-pass and band-pass components via C..+1 = Subsampled c?+,o (I): I.

Gaussian and Laplacian pyramids, respectively [9]. The Gaussian The LPF, Ii!, is Gaussian in shape, normalized to have the sum of ';1
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Fig. 3. Detailed s!'etch of the system.

its coefficients equal to I. The values used in this work for W, which and
is a 5-sample separable filter,. are (.1/16, 1/4, 3/8, 1/4, 1/16). . 8,. = (7r /4)a; (a = 0,1,2,3).

In order to extract the onentationally tuned band-pass filtenng
responses, the oriented pyramid is formed next. The oriented pyramid Here, n is the scale coefficient and a represents the orientation

is the result of modulating each level of the Laplacian pyramid with coefficient. A three-scale pyramid is utilized (n = 0, 1,2). Each level

a set of oriented sine waves, follQwe4 by the same LPF operation of the pyramid is multiplied with four sine waves at four orientations

used above, and corresponding subsampling, as defined in (2)1: (0, 45, 90, 135 degrees). The orientation and frequency bandwidth

0",. = LPF[e(ik: .,." L" [;r, V]] (2) of each orientationally tuned bandpass filter is thus 45 degrees and I
~ ~ ~ . . .. octave, respectively. For a theoretical analysis of the pyramid filters'

where r = ;rl + YJ (J' and Y are the indICeS of the Laplacian Image), characteristics the reader is referred to [II], [12].

k,. = (7r /2)[cos 8ai + sin 8ajJ It is the local statistics of the oriented pyramid's coefficients which

characterize the image local-area response to the different orientations
I This filtering operation is not the standard one found in the literature. Most and frequencies. A mea,sure of power associated with each filtered

modulate the filter and then perform a convolution with the image. Here we map is defined next as the nonlinear operation given ~Iow:

proPl?se a reversal in the order of operations for a computationally efficient
I filtering scheme. p",. = 10",.1. (3)Ii :I
I I,
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TABLE I

CLASS-CONRJSION MATRIX

raffia herring canvas 1 canvas2 jeans grass cork hmpaper pigskin cloth
raffia 91.02 0 0 0 0 0 0 0 8.98 0
herr 13.28 84.76 0 1,95 0 0 0 0 0 0 [,

I
canvas 1 0 0 100 0 0 0 0 0 0 0 ii
canvas2 0 0 0 100 0 0 0 0 0
jeans 0 0 0 0 100 0 0 0 0 0
grass 0 0 0 0 0' 100 0 0 0 0
cork 0 0 0 0 0 7.03 92.58 0.39 0 0
hmpaper 4.68 0 0 0 0 0 4.29 91.01 0 0
pigskin 3.51 0 0 0 2.34 0 0 0 86.72 7.42
cloth 1.17 0 0 0 0 0 0 0 1.56 97.26

The mean values of the power maps, at three scales and four

orientations, together with the power of the nonoriented component
Ln at each scale, produce 15 feature maps which we use to represent
the input image. Gaussian pyramids are formed on each of the power

maps, Pnu. The Gaussian levels of the p,.a which have the same

size as the lowest spatial frequency power map are used to form the

feature vector. These generate reduced-size feature maps, with the
features corresponding to the average of the power of the image's
local response to specific orientation and frequency ranges. Using I'
15 equal-sized feature maps generated in this way, each 8 * 8 local ,

window of the input image gets mapped t~ a 15-dimensio~al feature Inputs Rules Class l

vector as the output of the feature extraction stage (see Fig. 3). Probability

Estimates
IV. THE LEARNING SYSTEM Fig. 4. Rulc-bascd nctwork.

The goal of the learning system is to use the feature representation
described above to discriminate between the input patterns, or tex- stage is a I5-dimensional quantized vector of attributes which is
tures. Both unsupervised and supervised learning stages are utilized. the result of concatenating the discrete-valued codewords of the

A minimal set of features are extracted from the 15-dimensional individual dimensions. Each dimension can be seen to contribute a

attribute vector, which convey sufficient information about the visual probabilistic differentiation onto the different classes via the clusters

input for its differentiation and labeling. We thus use the learning found. As some of the dimensions are more representative than others,

system to extract the most important features. it is the goal of the supervised stage to find the most informative
dimensions for the desired task (with the higher differentiation

. . capability) and to label the combined clustered domain.
A. Unsupervised Clustel;mg In the algorithm implemented here, I( was chosen as the number

The unsupervised learning stage can be viewed as a preprocessing of output classes we wish to learn. A different value of J\- could

stage for achieving a more compact representation of the filtered have been chosen with comparable results [II]. The fact that this is

input. The goal is to quantize the continuous valued features which a preprocessing step, prior to the rule-based network classification,
are the result of the initial filtering, thus shifting to a more symbolic reduces substantially the difficulty of picking an appropriate number
representation of the input domain. of clusters.

The output of the filtering stage consists of 15 continuous-valued
feature maps. Thus, each local area of the input image is represented
via a l5-dimensional feature vector. An array of such vectors, viewed B. Supervised Learning via a Rule-Based System
across the input image, is the input to the learning stage. A detailed The goal of the supervised stage is to classify the input image,
sketch of the system is presented in Fig. 3. while finding the most informative input dimensions, or attributes,

We wish to detect characteristic behavior, across the 15- for the desired task, thus reducing the dimensionality of the rep-

dimensional feature space, for the family of textures u! be learned. resentalion. We wish to learn a classifier which maps the output

In this work, each dimension out of the 15-dimensional attribute features of the unsupervised stage to the texture class labels. Any

vector is individually clustered. All samples are thus projected onto classification scheme could be used. However, we utilize rule-based

each axis of the space and one-dimensional clusters are found using information-theoretic approach (ITRULE) which is an extension of
the I{-means clustering algorithm [13]. This statistical clustering a first-order Bayesian classifier, because of its ability to output
technique consists of an iterative procedure of finding I{ means in probability estimates for the output classes. The classifier defines
the sample space, following which each input sample is associated correlations between input features and output classes as probabilistic
with the closest mean in Euclidean distance. The means, labeled rules of the form: If Y = y then .Y = ;1' with probability P. Here,

0.1,2,...,1\- - 1 arbitrarily, correspond to discrete codewords. Each Y = (l"..., Y/v) represents the attribute vector and .Y is the set

continuous-valued input sample gets mapped to the discrete codeword (;1'1,. . " ;!"",) of 111 possible output classes. In this work, N = 15

representing its associated mean. The output of this preprocessing and 111 is the number of texture classes learned. Given an initial
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class. This conclusion was based on the negative weights of evidence

for each of the prelearned classes-indicated as zero probability in the

corresponding probability maps. We have thus successfully analyzed
the scene based on the existing source of knowledge.

The application of the texture discrimination system to natural
scene analysis has been pursued [17] and is demonstrated in the

Train' g S t following two examples. In Fig. 7. the three texture classes of gravel,
III e rock and wood were learned (top) and a new mosaic test image was

presented for recognition and labeling (bottom left). Here the images

were taken using a 35 mm camera at the Jet Propulsion Laboratory
(JPL). Note that the training image patches are different from the

testing images. The input test image is successfully segmented and

labeled as can be seen in the result label map (bottom right). Note

that black represents a class label in this figure. An example of an

airborne image classification is presented in Fig. 8. In this example

the classes learned are bush (output label dark gray), ground (output
label gray) and a structured area, such as a field present or the man-
made structures (white). Here, the training was done on 12S' 12S

image examples (I example per class). The input image is BOO' BOO.

In the result presented (right) we see that the three classes have been

found and a rough segmentation into the three regions is achieved.
nput utput Note in particular the detection of the bush areas and the three main

Fig. 7. Natural-scene analysis: 3-texture case: The training set, composed of structured areas in the image, including the man-made field, indicated
gravel, rock and wood textures, is presented (top). II is followed by an input in white. The above results demonstrate the network's capability for
test image (bottom left) and the corresponding output label map (bottom right). generalization and robustness to noise in complex real-world images.

textures (grass, raffia, wood, sand, herringbone weave, and wool, left VI. SUMMARY AND DISCUSSION
to right, top to bottom, respectively). The input poses a very difficult We have presented a texture-analysis system in which learning

task which is challenging even to humans. Based on the probability of texture-discrimination rules is achieved in a multi-resolution

maps (with white indicating probability closer to I) the very satisfying environment" We have thus combined a learning paradigm with

result of the labeled output map is achieved. The five different regions pyramidal feature-extraction techniques.

have been identified and labeled correctly (in different shades of gray) We have demonstrated the ability of the learning approach to

with the boundaries between the regions very strongly evident. It is contribute in a variety of applications. High-percentage classification

worth noting that the probabilistic approach enables the analysis of rates are achieved for both structured and unstructured (stochastic)
both structured textures (such as the wood, raffia and herringbone textures. The classification results presented in this work are com-
weave) and unstructured textures (such as the grass and wool). petitive in performance with other techniques widely used in the

Table I presents the class-confusion matrix for the 10 textures of literature. The main advantages of the learning approach are the

Fig. 2. Very high percentage classification rates are achieved for both ability to handle all types of textures within one framework, and

the structured (top row) and the unstructured (bottom row) textures. to produce probability estimates for the output classes. A minimal

The training set consists of one 12S' 128 image for each texture. feature set is learned and the classification rules are available for
Three other images are used in testing. Four runs were made, each the user's information. The system can thus enhance the user's

with a different training input, and the averages of these four runs knowledge of the input domain via its own extracted rule knowledge

are listed in the table. Note that the classification rates are based base. Note that a segmentation of the image is achieved via the

on labeling correctly 8 * 8 windows. This defines a very high- recognition process.
resolution classification strategy which enables segmentation as well ~~ output probability maps give. ~ore information about the
as recognition. dectslon process than do the hard-decIsIon output common in other

Fig. 6 demonstrates the capability of the system to generalize methods. We have demonstrate~ .the generalizatio.n ca?abil"ity of
to the identification of an unknown class. In this task a presented the system, based on the probabIlity maps, to the IdentIficatIon of
pattern, which is not part of the prelearned library is to be recognized an unknown class, so-called "pattern discovery." An application to

as such and labeled as an unknown area of i;terest Thl .s t k . natural scene analysis, with initial attempts at remote-sensing image
. as IS I . h Th ... aI It d .. tt d. " d .t I. t. . .d d f ana YStS, are sown. ese mltl resu ts are very encouraging and

erme pa ern tscovery an I s app Ica Ion tS WI esprea ,rom. . . . . "

f "d t .r . t d t t h I . f f . mdlcate the robustness of the system m copmg wtth noIsy real-world
i. I en I ymg unexpec e even sot e se ectton 0 areas 0 mterest I ... I . d. Le " h nk .. app tcatlons.

m scene exp oratIon stu les. arnmg t e u nown IS a dtfficult 'IT h I h. d I "fi . 0/.. . . . yye ave recent y ac leve c assl catIon accuracy rates of 97 Iv
problem m whtchthe probabtllty estImates prove to be valuable. Our I I d t b f 30 [II] [18] d .

. .. . , on arge comp ex a a ases 0 textures , , emonstratmg

cntenon for declanng an unknown class IS when the sum of Wj s th I b " l .t fth t rf S I d . . .
.. .".. e sca a I I Y 0 e sys em pe ormance. ca e an rotatlon-mvanant

(5) IS negatIve for each class; I.e. there IS negatIve evIdence for each reco .t. . th t . f t . t" . E . .
gm Ion IS e OplC 0 curren lOves Igatlon. ncouragmg rotatlon-

prelearned cl~ss: In the presented example, a three texture library was invariant recognition results can be found in [18].

learned, conslstmg of the wood, raffia and grass textures. The input
consists of wood, raffia and sand (top left). The output label map (top ACKNOWLEDGMENT
right) which is the result of the analysis of the respective probability
maps (bottom) exhibits the accurate detection of the known raffia and We are grateful to P. Smyth for useful discussions and suggestions
wood textures, with the sand area labeled in black as an unknown regarding the ITRULE algorithm and the manuscript as a whole.
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Fig. 8. Aerial image analysis. The input test image is shown (left) followed by the system output classification map (right). Dark gray indicates a bush
area, light gray is a ground cover region and white indicates man-made structures.
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