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Abstract

Minimum-distance decoding of convolutional codes has generally been considered impractical for other than
relatively short constraint length codes, because of the exponential growth in complexity with increasing constraint
length. The minimum-distance decoding algorithm proposed in the paper, however, uses a sequential decoding
approach to avoid an exponential growth in complexity with increasing constraint length, and also utilises the
distance and structural properties of convolutional codes to considerably reduce the amount of tree searching
needed to fmd the minimum-distance path. In this way the algorithm achieves a complexity that does not grow
exponentially with increasing constraint length, and is efficient for both long and short constraint length codes.
The algorithm consists of two main processes. Firstly, a direct-mapping scheme, which automatically fmds the
minimum-distance path in a single mapping operation, is used to eliminate the need for all short back-up tree

. searches. Secondly, when a longer back-up search is required, an efficient tree-searching scheme is used to minimise
~ the required search effort. The paper describes the complete algorithm and its theoretical basis, and examples of its

,.. I operation are given.

List of symbols wrong path and that it is necessary to search for a better one. The de-

': . .. coder then backs up in a node-by-node manner, and searches for a

bm = maXImum b.ack-up dis.tance m segments that can be per- path that has a better metric value. If a better path is found then de-
formed by direct ~a?p~g . coding continues along this new path, subject to the threshold con-

V = number of code ~gIts m one branch of a smgle-generator- ditions being satisfied. If a better path cannot be found then either the
sequen~e convolutional code. threshold value is loosened or a buffer overflow may occur. Because

K = constramt length of the code msegments the number of branches rises exponentially with depth in the tree, it
r = genera~or sequence . . . ... can be seen that the maximum decoding effort of such a scheme could

g(2) = an ~bltrary code segment m '§'where liS a poSItive mteger also rise exponentially with back-up distance. Several efficient
? ~ I ~ K - I decoding algorithms have been proposed;,3 but even so, the perfor-

S = lrutlal code. t:e~ mance of a sequential decoder is directly related to the time available
So = upper-half ~n~t.lal code tree for searching the tree, that is, the probability of a buffer overflow. In
S I = l°:-v~r.half ~Itlal code tree . addition, decoder operation is not maximum likelihood, because any

d(k) = mm~um distance between half-trees of any k-urut path that is chosen is not guaranteed to be the path at minimum dis-
v = recelv~d sequence tance from the received sequence, but rather a path that satisfies the

w = tentatively decoded sequence threshold conditions.

t = test-error sequenc~ . The algorithm presented in this paper is maximum likelihood in

tb = the se~uence conSIstmg of the last b segments of t that at every node the path chosen is guaranteed to be the path at
It 1 = the ,:"elght of.t .. minimum distance from the received sequence. On the face of it,

p(j) = the Ith permissible pat~ stored m the ~e~ory, a code path such a decoding scheme would appear to be impractical, because every
sele~ted from SI acc?rdmg t.o a set of cntena . path in the entire code tree would have to be tested at every forward

bt = m~mum back-up dls.tance m.segments for a gIven It I node extension to guarantee minimum distance from the received
bo = maXIm.um back-~p dIStance m segments after the back-up sequence. However, the advantage to be gained from minimum-distance

. redu~tion operatlo~ . decoding is the capability of spotting incorrect decoding paths as early

bt = required back-up distance m segments as possible. This has the effect of halving the number of branch-search

. operations for every one segment reduction in back-up distance. The

1 I ntroductlon algorithm presented differs from other convolutional decoding schemes

It is well known that convolutional codes are capable of in that it finds the minimum-distance path, and utilises the distance
performing better than block codes in most error-control applications. and structural properties of the particular convolutional code used, to

For a particular application, the realisation of this superiority depends eliminate the need for testing the whole tree and also to substantially

on the efficiency and practicability of the decoding algorithm used. In reduce the required decoding effort in two main ways. Firstly, all

general, maximum-likelihood decoding (in the minimum-distance short searches with a back-up distance of up to bm nodes are

sense) of short constraint length codes can be achieved by using the eliminated by a direct mapping scheme which guarantees that the path

Viterbi algorithm. However, to achieve low probabilities of sink bit chosen is at minimum distance from the received sequence. Thus a

.. error rate « Ia-S) with minimum signal/noise ratio requirements, it is maximum of 2(bm+ I) - 2 branch searches is replaced by a single

necessary to use codes with long constraint length, and this renders mapping operation. The value of bm depends on the storage available,
the usual Viterbi decoder impractical on the grounds of complexity. and would typically be in the range 10-20 for a half-rate code.

"; In this case non-maximum-likelihood sequential decodingl is usually Secondly, when a back-up is required (because the path we are

used, because its complexity is insensitive to constraint length. This searching for diverges at more than bm nodes back and cannot there-

paper presents aminimum-distance decoding scheme whose complexity fore be mapped to) we can not only derive a maximum back-up

does not grow exponentially with constraint length, and which distance, but also determine the exact nodes at which the divergence

requires much less decoding effort than normal sequential decoding, might have occurred. As the number of these nodes is considerably

because of the elimination of needless tree searching. less than the total number of nodes between bm and the maximum

If a convolutional code is represented by its (semi-infmite) tree back-up distance, the number of searches required (which increases
structure (Fig. I), then encoding can be considered as the selection of exponentially with every node back) is very significantly reduced.
a path through the tree, one branch at a time, in accordance with the For reasons of brevity the discussion in this paper is limited to

message digits. The decoding operation then consists of determining hard-decision decoding of binary half-rate single-generator con-

the correct path through the tree, given that the received digit volutional codes. The approach used, however, can be extended to

sequence, on which this determination is based, may contain errors. other codes and to soft-decision decoding.

A normal sequential decoder operates by computing the value of a This paper develops in the following way. Firstly we introduce the
suitable metric based on the distance between the received sequence distance and structural properties of convolutional codes that are
and the (tentative) path being followed. If the metric exceeds some utilised in the algorithm, and describe the basic decoding strategy.

running threshold, it indicates that the decoder may be following the Next, the concept of decoding with permissible paths is described, and

then this is developed into the direct-mapping scheme for eliminating

Paper 8028 E, first received 10th March and in revised form 30th August 1977 all short back-up searches. The technique for minimisin~ the number

Mr. Ng and Dr. Goodman are with the Department of Electronic Engineering, of actual back-up searches is then outlined, and finally the algorithm

UniversIty of Hull, Hull, England is summarised and discussed.
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2 Convolutional codes and their structural properties Consider, for any node in the infinite tree, all the paths that
In this section we introduce some of the distance and struc- extend k segments forward from that node. The resulting sub tree is

ture properties of single-generator convolutional codes that are referred to as a truncated tree, or k-unit, and is divided into two half-

utilised in the decoding algorithm. trees depending on which branch was chosen at the first node. The

A single-generator convolutional code is one in which each message initia;i c?~e tre.e (8) is the k-unit stemming f!o.~ the very first node,

digit is encoded individually into V code digits, where V is a positive and IS dlV1~ed mto the upper- and lower-half mrtlal code trees (So and

integer, giving a maximum information rate of I/V. The V code digits SI, respectively),

for each message digit depend on both the present message digit and We may now,summarise several use!ul, properties, of these codes.

the K_- 1 previous message digits, where K is the contraint length of (a) The code IS a grou~ code. Th,at.I,s, If w and ware two equal-

the code in segments. Such a code is generated by a K-segment length cod~ paths, belongIng to the mltl~, tru~c~ted tree S, it implies
generator sequence ~ = g(2°)g(21 )g(22) . . . g(2K-I) and is a that there IS a path,x such that:x = w $ W IS Wlthm S.

systematic code if the first digit of each code segment is the same as (b) If ~ ~nd ware paths. m opposite halves of any k-unit, then

the corresponding message digit. The code can be represented by its x = w $ W ~s a code path m the lower-half initial code tree S I.

tree structure, the branches of which can be extended indefinitely (c) T~e ,dIstance bet~een ~he two half trees of any k-unit is defined

from any node (Fig. 1). Each branch has one segment of code digits as the mmlmum H~mmg dl~ta.n~e between pairs of paths, one from

associated with it, and the code digits of the two branches stemming each half tree. ~~nslder ~he InItIal code tree. Because of the group

from an arbitrary node are always ones-complements of each other. property, ~e mmlffiUffi dlstan~e, between the two halves of the initial

Fig. 2 shows the first five segments of the code tree for the rate one- code tree IS equal to the mmlffiUffi distance between the all-zero

half code used as an example in this paper, which has a fifty-segment vector and all the paths in S 1 , that is, the minimum distance equals
generator sequence. the weight of the minimum-weight code path in S I'

The encoding operation is one of selecting a path through the tree ,(~) Com~ining properties (b) and (c) above, we can state that the

in accordance with the message digits. At each node the upper branch ml~lmum dIstance between half trees of any k-unit is equal to the

is taken if the message digit is a zero and the lower branch is taken if weIght of the minimum-weight path in S l' We can then define a

it is a one. ' distance function d(.) such that d(k) is the minimum distance

between half trees of any k-unit, and depends only on k, and not on
the k-unit chosen. The guaranteed error-correcting capability of any .,

g(O) k-unit is then T(k), where T(k) is the largest integer such that T(k) ~

g(O} (1) [d(k)-I]/2. Table I shows the distance function dO for the half-

g(O) 9 rate code ~sed in this paper.

g(1) g(2) (e) From, properties (b) and (d) we can easily see that Iw$w'l ~

g(3) d(k) and Iw I ~ d(k) -Iwl, where Iwl denotes the weight of the

g(O) sequence w.

g(2) g(4)

g(1) g(5)

(6)n g(3) 9 Table 1
1 g(7) ~ DISTANCE FUNCTION d(.) FORRATEONE:oHALFeODE ,

f g(4) g(8) kcit' , ;' ;d(k)k ~... d(k)

g(2) g(9)=g(8)8g(1) 1 11 2 76 01 11
g(10)=g(8)8g(2) 2 01 J 27 01 11.

g(5)=g(4)$g(1) (11)= (B)8 (3) 3 00 3 28 01 11
g(1) 9 9 9 4 01 4 29 01 12

g(12)=g(8)8g(4) 5 00 4 30 01 12
g(6)=g(4)$g(2) 6 01 5 31 00 12g(13)=g(8)8g(5)

9(3)=g(2)8g(1) 7 00 5 32 00 12
~(7)= g(4)Ig(3) g(14)=g(8)8g(6) 8 01 5 33 01 13

g(15)=g(B)8g(7) 9 01 6 34 00 13
10 00 6 35 01 13

Fig. 1 11 00 7 36 01 14
"" 12 01 7 37 00 14

Th.= development of a sl¥~e;generator mltlal code tree, where 13 00 7 38 00 14
~-g(l)g(2)g(4).. .g(2 ) 14 01 8 39 01 14

15 01 8 40 01 15
16 01 9 41 00 15
17 00 9 42 01 15
18 00 9 43 00 15
19 00 9 44 01 16
20 01 9 45 00 16
21 01 10 46 01 16
22 00 10 47 00 16
23 00 10 48 01 11
24 00 10 49 01 l7
25 01 11 50 00 17

,
"

3 The basic decoding strategy

Consider the notation:

v the received sequence, which ,differs from the transmitted sequence
due to errors
w the tentatively decoded sequence, a path in the code tree which is
the decoder's tentative version of the transmitted sequence
t = w $P the test-error sequence, which has ones in the positions
where wand v differ

tb the sequence consisting of the last b branches of the sequencet;

Our basic decoding strategy is then as follows, We always seek a

code path w which is at minimum distance It I from the received

sequence v. In other words, a w is accepted to be the decoded

Fig. 2 sequence if and only if for all other paths w' in the corresponding

truncated tree w has min. t t . gh Th '

The development of the initial code tree for the half-rate code with ,Imum es -error wet t. at IS "

~=IIOI000I00",g(2K-I) It 1 = Iw$vl~lw'$vl = It'l
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We define the basic branch operation (b.b.o.) to be the decoding (ii) If t2 = 11, there exists the possibility of a w' with smaller test-
action of a single branch forward extension which selects the latest error weight. An examination of the lower-half initial code tree
segment W I of w. Whenever a decoded path w is accepted as b~ing the (Fig. 3) shows that P == 31 satisfies the conditions for a two-segment
minimum distance path, the decoder shifts out the earliest segment of permissible path, these conditions being IPI = 3 = odd, PI = 1, and

w, which is assumed to be a correct representation of the corre- IPI=3~2It21-I. Also there exists a t;=t2~P=II~3I=20,

sponding segment of the transmitted sequence, and shifts in the newly such that It;1 = It21-I, and hence It'[= Itf -1. We thus impose the

received segment VI of v. The b.b.o. then selects WI to be the segment condition that for any tentatively decoded sequence w which has a It I

closest in distance to VI. witht2 = II,wewilldirectlyreplacew2 by w; =W2 ~P, and t2 by
For the half-rate code, the b.b.o. results in a WI that always has a t; = t2 ~ P, where P = 31, and then return to the b.b.o.

test-errorweight Itll = IwI ~ vII ~ I. Thus It I I is either 0 or I. If we (iii)if t2 = 01, then t; = 00 and P2 = t2 ~t; = 01. Assume

assume that ~he new segmentwl results from the extension of a path III = Itl- 1 and It;1 = 1. Then as It;1 = It21 = 1 we have [It'l-

,that has minimum test-error weight, the following are implied. Firstly It;I]=[ltl-lt21]-I. Also as It;I=ltll-l=O we have It'l-

if Itll=O, the new path is guaranteed to have minimum test-error It;l= Itl-ltll. Thus I should be the test-error sequence resulting
weight, and the decoder returns to the b.b.o. Alternatively, if Itll = 1, from a b.b\o. extension of a path with minimum test-error weight,

it is possible that there exists some other path w' with smaller test rather than t. Hence It;1 = 0 and therefore P2 = 01 for all P longer

error weight III = Iw' ~ vi < Itl, and if so It;1 = 0 and III = Itl- 1. than two branches.

Proof of these assertions is given in Appendix 11.1. 'Fig. 3 shows the first six segments of the lower-half initial code
Thus whenever the b.b.o. results in a Itll = 1 the decoder either tree. Each segment is represented as a quaternary digit, and the

automatically utilises the direct mapping scheme to eliminate the need number in the upper right-hand comer gives the weight of the code

to search for w', or else determines whether or not a back up search path up to that segment. A number in the lower right-hand comer

for w' is needed, and if so, how far to back up and how to conduct indicates a permissible path, and gives the sequential order i of the

" the search. permissible path P(i). It can be seen that there are only three permiss-
. .. ible paths which satisfy the conditions on P. These are P(I) = 31,

4 Permissible path decoding P(2) = 32201 and P(3) = 310101. It is therefore possible to search

Let us assume that the decoder needs to search the b-unit the entire 6-unit without back-up, by making only three test-error

which spans the last b segments of the code tree, for a w' with smaller w~i~t comparisons based on III. = It ~ PI. In the next Secti~n w.e

test-error weight. Following sequential decoding practice, this would elIminate the need for even thiS small number of comparisons.

require a step-by-step back-up, with the basic branch-by-branch
encoding and examining method being used to calculate test-error
weights. This is obviously a very lengthy process. We now introduce

a systematic procedure for searching the b-unit, which requires. . .

considerably less effort than the method outlined above. 5 Direct-mappIng decoding
The ,procedure ~s based o~ property (b) of Section 2. T~is sta,tes In this Section we introduce a direct-mapping scheme to

th~t w can b~ directly derived ~y the modulo-2 .o?~ratlon w = eliminate all short back-up searches. In the Section it was shown pre-

w x,.~here x IS a truncated path In the lower-half initial code tree. vious that if the last two segments oft are t2 = 11, we can always find a

In addition path with smaller test-error weight, It'l = Itl- 1 < Itl, by directly

t' = w' ~v = w ~x ~v = t ~x changing w to w' = w ~P(I). The direct mapping scheme is an

extension of this. In the scheme a set of test error patterns and

and so if wand w' are in opposite halves of a k-unit we can derive the corresponding permissible paths are stored, and utilised to dir~ctl'f

test-error weight of w' by direct modulo-2 addition of t and the change w to w' = w ~ p(i).

k-segment path x. This is still a cumbersome process, however, if all To specify which test-error patterns do not have minimum weight,

2k - 1 truncated paths with length k ~ b in the lower-half initial and should therefore be replaced by some I during the decoding

b-unit have to be used to search for w'. We now introduce several process, we need to build up a minimum test-error pattern tree. The

conditions which the x must satisfy because of the code structure. tree is shown in Fig.4 and starts with the b.b.o. from the very

This serves to reduce the x required to search the b-unit to a very beginning. At each node in the tree the length of the test-error pattern

small number in most cases of interest. The reduced set of paths increases by one segment. Also, we know that there are only two

needed to search the b-unit are called permissible paths, and denoted possibilities for tl at each b.b.o. extension, and so two branches stem

by P. from each node in the tree'.

The conditions are as follows: Starting from the first node, there are only two possible one-

(0) IPlmust be odd. Consider the following two cases: segment test-euor sequences, 0 and 1. After the next b.b.o. extension
(i) Ifltlisodd,ln=ltl~limplieslt"liseven. there are four possible test-error sequences, 00, 01,10 and II.

If IPI is even, then 111 = It ~PI is odd. However, t2 = II is not a minimum test-error pattern because there is
(ii) If It I is even, III = Itl- I implies III is odd. a t; = t2 ~P(I) = 20 with smaller weight. We therefore replace

If IPI is even, then It' I = It ~PI is even. t2 = II by t; = 20 in the tree and assume that whenever a t2 = 11 is
In both cases It 'I = Itl-l is contradicted when IPI is even, and there- encountered, the decoder directly maps t to 1= t ~P(I)' and w is

fore IPI is odd. mapped to w' = w ~P(I)' We continue building up the tree in a

(b) [PI I = 1, as IPII = It I ~t;1 = Itll = 1. similar manner, sl;tch that each entry is guaranteed to be a minimum

" (c) IPI~2Itl-I.Nowl/l=lt~PI'~IPI-ltl. test-error pattern. In this way, we can build up a set oftest-error

If IPI ~ 21tl this implies 1t'1~ Itl, which is p~tterns tb and corresponding permissible paths P(i)' for which

a contradiction to It'l = Iti-l. It I = It ~p(i)1 = Itl-I < Itl. Note that the test-error patterns in
We may further restrict the number of permissible paths by imposing the upper half of the tree are the same as those in the lower half,

a rule on the b.b.o. Because of the complement property, a rate one- preceded by one or more zeros. The search for the tb can therefore

half code will always have a It II ~ I. That is, the last segment of t is be confined to the lower-half tree only.

either 00, 01, or 10. For convenience, the quaternary digits 0,1,2,3 Fig.4 shows the first five segments of the minimum test-error

are used to represent branches in this paper from now on. Therefore, pattern tree. The underlined sequences show where a tb has been

t I is given by the quaternary digits 0, 1 and 2, respectively. mapped to tb = tb ~ P (i), and the value of i is given in the lower
When It II = 1 it does not matter (in terms of distance) whether the right comer of that entry. The weight of each minimum test error

path giving t I = 1 or t I = 2 has been chosen. Let us then impose the pattern t is given in the upper right comer of each entry. Table 2

condition that t I must either by 0 or 1, and eliminate the possibility shows all the tb for b ~ 10 segments, together with their correspond-

of tl =2. We may then further restrict the number ofP, as the ingtb=tb~p(i).TheP(i)usedareshowninTable3.

following conditions now also have to be satisfied. A direct mapping decoder operating on this principle would there-
(d) PI = I, as PI = tl ~ t; = tl = 1. fore store the tb and corresponding p(i) in memory. Decoding pro-

(e) If P is longer than two segments, ceeds by using the b.b.o., and whenever the tentatively decoded

P2 = t2 ~ t; = 01. sequence w has a t whose last b segments exactly match a pattern tb

This assertion requires further explanation. Under the modified b.b.o, stored in memory, we directly map t to t' = t ~ P (i) and w to w' =

the only possibilities for the last two segments of tare t2 = 00, 11, or w ~P(i). No searching for w' is therefore necessary. If t is such that its

01. We consider each possibility in turn:. tail sequence does not match any stored tb' then either t has mini-

(i) If t2 = 00, the path w must still be at minimum distance from v mum test-euor weight, in which case the decoder can return to the

since it is the b.b.o. extension from the decoded path having mini- b.b.o., or the required tb and p(i) are ones which have not been

mum test-error weight. Therefore no search is required. stored. This latter case is dealt with in more detail later.
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Table 2
TOTAL tb AND tb FOR FIRST TEN SEGMENTS OF MINIMUM TEST-ERROR PAlTERNTREE,

,i
b t i of P t =1 $ P

5 1 0 '2 0 1 0. ""'..2 2~ '0 0 (}

5 2 0 "2 0 1 2 1 2 0.0 0
5 10101 3 300000
6 100101 3 210000
6 200101 3 110000
8 10020101 4 22100000
8 20020101 4 12100000
8 12000101 4 20120000
8 22000101 4 10120000
8 1 0 2 0 0 2 0 1 5 2 2 0 0 2 0 00
8 20200201 5 12002000
8 12000201 5 20202000
8 22000201 5 10202000
9 100120001 6 210010000
9 101002001 7 3000020000
9 100201001 8 3002000000
9 102001001 8 3000200000

10 1 0 0 1 0 0 2 0 0 1 7 2 1 000 2 0 0 0 0
10 2 0 0 1 0 0 2 0 0 1 7 1 1 0 0 0 2 0 0 0 0
10 1 1 0 0 0 0 2 0 0 1 7 2 0 0 1 0 2 0 0 0 0
10 1 0 0 0 2 0 1 0 0 1 8 2 1 0 2 0 0 0 0 0 0
10 2 000 2 0 1 0 0 1 8 1 1 0 2 0 0 0 0 0 0
10 1 1 0 0 0 0 1 0 0 1 8 2 0 0 2 2 0 0 0 0 0
10 2 0 0 2 0 0 1 0 0 1 8 1 1 0 0 2 0 0 0 0 0
10 3 0 0 000 2 0 0 1 7 1 0 1 0 2 0 0 0 0
10 3 0 0 0 0 0 1 0 0 1 8 1 0 2 2 0 0 0 0 0
10 2 0 1 0 1 0 0 2 0 1 9 1 2 0 1 0 2 0 0 0 0
10 2 3 0 0 0 0 0 1 0 1 lQ 3 3 0 0 0 () 0 0 0 0 0

10 2 3 0 0 0 0 0 2 0 1 fli 3 2 0 0 0 0 0 0 2 0 0 0
..,

Table 3
REQUIRED Pi AND EXPONENTIAL GROWTH OF THEIR APPLICATI~.,

,
P(i) " ( P(I) - - IP(I)I, ,\ A[P(I)J

""':"';;H:'.lH "ft"O ~~;g~ 1"6"5"4 ;""'1"1""': "'fOi""~;:i' 8 c;ii b6 S! '413'2"1
'! , ! ",

P(I) 'i' i,i) 3 1 3 83 31 19 11 3 2 2 ,-1-"..

P(2) 3 2 2 0 Ii 5 8 4 2 1 T 2 ""',..{';-":"'1

P (3) 3 1 0 1 0 1 5 9 5 4 1 2. 1.",-",,";; ;),;.,,4;;i.-

P(4) 3 2 1 2 0 1 0 1 7 3 - 4 -,., c.",,+ .,;Ii"" i:-iij';;\,

P 3 2 2 0 2 2 0 172 - 4 - "'- - "'~'~"'"(5) ! , "Cc : '.oCT... , ..."

P(6) 3 1 0 1 3 0 0 0 1 .7 - 1 - i~)"(rt(T;~ it';;mf>~!

P(7) 3 1 0 1 0 2 2 0 0 1 7 3 1 i)- b"1!i(t1f~;jpiJlTh ..~i.r!r;:!1Ii,:;
P(8) 3 1 0 2 2 0 1 0 0 1 7 4 3;- ~ ""c.,; 7 - -'~

P(9) 3 2 1 1 1 2 0 2 0 1 9 1 iT - - - ~ - - ~ ~

P(IO) 3 1 3 0 0 0 0 0 2 0 1 7 1 ~ - - - - - -i:?,.-,~

P(II) 3 2 2 3 0 0 0 0 2 1 0 1 9 1 - - - - - - - --c

.. "

A [P(I)] is the number of applications of P(i) used in developing the bth segment of the minimum test~rror
tree

Table 4 Table 6
COMPARISON OF GROWTH RATES BETWEEN d(k) AND It(k)maxl THRESHOLD CONDITIONS T*(b) ON BACK-UP DISTANCE b~ = b

~ i,

k d(k)~d(k)min It(k)maxl b r*(b),." ,b r*(Q) -
1 2 2 1 1 .2 26 7,
2 3 3 .-J, 2 ,2 '27 ; 7
3 4 3 2 3 3 28 7
4 5 4 2 4 3 29 7
5 6 4 3 5 3 30 7
6 7 5 3 6 3 31 7
7 8 5 3 7 4 32 7
8 9 5 4 8 4 33 7
9 10 6 4 9 4 34 8

10 11 6 4 10 4 35 8
1.1 4 36 8
12 5 37 8

Table 5 13 5 38 8
MAX1.MUM BACK-UPPISTANCE bt FOR DIFFERENT VAWESOF Itl, i'l 14 5 39 8

15 5 40 8
Itl d(bt> bt 16 5 41 9
f ,l,., '-' ,.'\:,~ 17 6 42 9
2 3 ."""'2 18 6 43 9
3 5 6 19 6 44 9
4 7 11 20 6 45 9
5 9 16 21 6 46 9
6 11 25 22 6 47 9
7 13 33 23 6 48 9
8 15 40 24 6 49 10
9 17 48 25 6 5010
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An example of direct mapping decoding is shown in Fig. 5. The Note that direct mapping can be used by itself as a sub-optimum
received sequence v has been obtained from an all-zero transmitted minimum-distance decoding procedure. In this case, if tl = 1 and the
sequence, and contains four errors. The decoder starts by using the tail sequence of t does not match any pattern in store, we must

b.b.o., and whenever the tail of the test-error sequence matches one of consider the possibility that w' (which has It'l = I tl - 1) diverges

the patterns in Table 2 a mapping operation is performed. The lines from w at greater than bin nodes back. The earliest segment of w

show the path taken by the decoder through the code tree. Each (which mayor may not be In error) is then shifted out of the decoder,

segment of w is given above the path, and the corresponding segment which reverts to the b.b.o. and direct mapping. A sub-optimum direct-

of t appears below the path. It can be seen that to correctly decode mapping decoder of this type therefore does no searching at all, but
the 12-segment received sequence, it is necessary only to perform 12 will sometimes accept errors and then recover to the correct path in
b.b.o.s and four mapping operations. This is considerably less than the time.
decoding effort required by other sequential decoding schemes to The algorithm proposed in this paper, however, uses direct map-
correct the same pattern of errors. ping to eliminate all short back-up searches, up to a maximum range

The range over which direct mapping can be operated in a prac- of bin nodes. If t I = 1 and no direct mapping is possible, then either

tic~l decode~ depends on t~e storage requirements of the tb andP(i). w has minimum test-error weight or else w' diverges from w at greater

ThIS range, In segments, will be denoted bin' For example, Table 2 than bin nodes back. The next Section deals with the method for

shows that 30 tb and 11 P(i) are needed to operate direct mapping determining whether or !lot w has minimum test-error weight, and if

over bin = 10 segments. not, how to determine the nodes at which it is possible for a w' with

An idea of the growth rate of the number of P(i) required can be It'l = Itl- 1 < It I to diverge from w.
obtained by considering condition (c) in Section 4, which states that
IPI < 21tl. As P is a path in the lower-half initial code tree, we can 6 Determination of the back-up distance
compare the weight of P to that of other paths in the lower-half

.. initial code tree, as follows. Let d(k)lnin be the minimum distance of In this Section we examine the course of action to be taken if
, the code, that is, the weight of the minimum-weight path in the lower- Itll = 1 and direct mapping is not possible. Some of the results

half initial k-unit, and d(k)ave be the average weight of paths in the utilised are based on our previous work,4 and are therefore only
lower-half initial k-unit. If It(k)llnax is the maximum weight of summarised here.
k-segment test-error patterns, then in the worst case IPI < 2it(k)llnax. The first question to be answered is whether or not a back-up

Table 4 compares It(k)llnax, d(k)lnin, and d(k)ave for k ~ 10. From search is necessary. That is, whether or not there is a possible w' with

this Table it can be seen that the growth rate of It(k)llnax is not only It'l = Itl-l that diverges from w at greater than bin nodes back. If

less than the growth rate of d(k)ave, but also less than that of d(k)lnin' the answer to this is no, then w is at minimum distance from the

This indicates that the growth rate of IPI with increasing k is very received sequence v, and the decoder returns to the b.b.o.

slow, and also that the number of required P increases slowly with k, To answer this question we utilise an upper bound bt on the

because IPI must be much less than d(k)ave and only just larger than back-up distance. The bound states that when w (with Itll = 1) is the

d(k)min' b.b.o. extension of a path having minimum test-error weight, and if
The slow growth in the number of new P that must be stored as there exists a w' with It'l < Ill, then w' diverges from w at most bt

bm is extended also limits the growth rate of the number of new tb nodes back, where bt is the minimum value of i such that

~hat must be store~. Thus~ although the number of possible mappings d(i) = 2ltl-l (1)
Increases exponentIally WIth k, most of these are performed with
permissible paths of length less than k. It is therefore the number of Thus if bt ~ bm no search is necessary. The bound is proved in
applicatio?s of. existing tb (and correspondingly P(i») that grows Appendix 11.3, and Table 5 shows bt for various Itl. If bt > bin then
exponentIally WIth k, rather than the number of new tb. This is shown it is still possible that a search for w' will be needed. In this case the
in Table 3. For example, in developing the minimum test-error pattern first thing that must be done is to obtain an improved (lower) value of
tree from 1 segment to 2 segments deep, P(I) is used once. However, bt, which is denoted boo The process of reducing the maximum
~hen extending the tree from nine segments to 10, P(I) is used 83 required back-up distance from bt to bo is referred to as the back-up
tImes. reduction operation (b.r.o.), and is explained as follows.
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Fig. 3
Selection of permissible paths from the lower-halfi~itial code tree
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~y,,: The maximum back-up distance bt is based on the test-error Iflt2s1 = 4, then b2 = 11.lfltlll=4 then no further reduction i8"~

weight over the entire sequence t. If some of the test-error weight is possible and we have bo = 11.
due to errors which have occurred earlier than bt nodes back, that is We now consider the situation in which bo > bm. In this case we

Itl> Itbtl, then the value obtained for bt by using eqn. I will be too examine each node between bm + 1 and bo by means of a simple

high. Hence, as we are only interested in the test-error weight over the threshold value, to see whether or not it is possible that w' diverges '
last bt segments when searching for a w' with smaller test-error from w at that node, The end result is a small set of nodes, whose

weight, we can replace It 1 by Itbtl in eqn. I, and determine a new back-up distances are denoted b~ at which w' may have diverged

b.. < bt, which corresponds to Itb I in the same way that bt corre- from w.

sponds to Itl. Similarly, if Itb,l < Itbtl, we can again use eqn. I to The b~, are found as follows. Property (e) of Section 2 enables

determine a newb2 < b I, and so on, At some point the process stops us to write It'l ~ d(k) -I tl (see Appendix 11.2). For a given node at

with a minimum value boo If bo '-;bm then we know that w has back-up distance b we may then write Itbl ~d(b) -Itbl. Because we

minimum test-error weight, and so no back-up search is needed. are searching for a Itbl = Itbl-l, the necessary condition for the

An example of the b.r.o. is as follows. Suppose Itl=8; from existence of such a Itbl is Itbl~ [d(b)+IS]j2, where IS is 1 ifd(b)
Table 5 this gives bt = 40. If there is a test-error weight of 2 in is odd or 2 if d(b) is even. This gives us a lower found which Itbl

front of the last 40 segments of It I then It401 = 6, and hence bl = 25. must satisfy for it to be possible that w' diverges from w at b nodes
back.
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The above bound can be tightened slightly by noting that I t II = 1, 9 Conclusions

and It~ 1= O. By using the lower bound on Itbl in conjunction with the

upper bound on back-up distance (eqn. I), we can establish a new In this paper we have presented a new minimum-distance

threshold condition T*(b) which Itbl must satisfy in order for it to be decoding algorithm for convolutional codes. Initial simulation tests

possible that w' diverges from w at b nodes back. This threshold con- have confirmed that the amount of decoding effort is considerably

dition is as follows. It is only possible for w' to diverge from w at less than other convolutional decoding schemes. The advantages of the

b1 = b nodes back if Itbl ~ T*(b) = [d(j) + 1] /2, where j is the proposed algorithm are best seen in relation to sequential decoding.

minimum value such that d(j)~ d(b) and d(j) is odd. Table 6 shows Firstly, from the performance point of view: since our algorithm is
values of b and T*(b). minimum-distance decoding, it is clear that for any received sequence

An exa~ple of applying Table 6 is as follows. Suppose the b.r.o. v, the test-error weight obtained by the decoding algorithm will be

gives bo = 11, and tll = 10010000101. This gives Itbl < T*(b) for always .less th~ or equal to the test-error weight obtained from

b ~ 10, and Itbl = T*(b) for b = II. This indicates that the only sequentIal decoding. Therefore, the probability of decoding error will

possible back-up distance is b; = II. be always less than or equal to that of sequential decoding. Secondly,

The method of specifying the b1 given in this Section considerably from ~~ decoding operations poi~t of view: it is well known that the
cuts down the amount of tree searching needed to find w'. In the next probability of buffer overflow ultimately determines the performance

Section we outline an efficient method of searching for w' with the aid of a sequential decoder. By utilising direct mapping to eliminate all
of direct mapping. short back-up searches, by using minimum-distance decoding to catch

possible decoding errors in the earliest possible segment, and by using

7 Utilising direct mapping in the tree search the threshold conditions on back-up distance to eliminate unnecessary

.. *., back-up searches, it can be seen that the proposed algorithm will
. Havmg establ~she.d the values of bt at* which w may have require much less decoding effort than other sequential decoding

" diverged from ~, we InstIgate a search of the bt - I segment trunc- schemes. Therefore when the size of buffer is fixed, the proposed

ated tree stemmIng from the complement branch ofw, for each value algorithm will always give a lower probability of buffer overflow and

of b1, starting with the .smallest val.ue greater th:an bm .. hence a better performance. Future work will be aimed to~ards

Each truncated tree IS searched .m the ~olloWlng marmer. FIrst of all analytically establishing the distribution of the number of compu-

the curren~ test-error sequence t IS put Into storage for later use. At tations for the algorithm and in obtaining fuller simulated perform-

the node bt we force the decoder to take the complement branch to ance results.

w, and at the same time start a new test-error sequence t*, which has

It*1 = 0 at the node bt. The search of the truncated tree continues by

using the b.b.o., direct mapping, and the back-up operation, as

follows. 10 References
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threshold conditions on t*. If the threshold conditions state that the

smallest back-up distance is greater than or equal to c, then the search
of the truncated tree is abandoned. Otherwise, a back-up is instigated, .
and we carry out the search using the b.b.o., direct mapping, and the 11 Appendix

back-up operation. If each of the possible nodes between bm + 1 and 11.1 Proof of It'l = Itl-1
c - 1 have been searched, and no path of length c = b1 with test-error

weight It*l= Itb*I-1 can be found there is no w' with It'l = Itl-1 Since w is an extension by b.b.o. of an accepted path which

in the tr~catedttree corresponding 'to the present value of b1. In this has minimum test-error weight, we have Itl-ltll ~ It'I-lt~l. If

case the back-up distance is increased to the next value of b1, and the Itil = 1 th;n It'l < It 1 if and only if Iti-itil = It'I-lt~l, and It~1 ==

search procedure is repeated. O. Hence It 1= Itl- 1. --:-

--

8 The final algorithm

The decoding algorithm can be summarised as follows: 11.2 Proof of It'l ~d(k) -It I

(a) Decoding proceeds by means of the b.b.o. and direct mapping, F rt () f S t 2 1 'I ~ d(k) As -
which guarantees that the path being followed is at minimum distance rom prope y e, 0 ec Ion,. w E& w ,~ . t -

from the received sequence. Whenever the b.b.o. extension results in a w E& v, ,t~n Iw E& v E&~ E& W I ~ d(k). That IS, It E& t I ~ d(k). Hence
Itil = 0, the decoder returns to the b.b.o. It I + It I d(k), and It I ~d(k) -Itl.

(b) If I t II = 1 and the direct mapping decoder indicates that no- mapping has taken place, proceed to (c). If a mapping has taken place,

return to the b.b.o.
(c) Determine the maximum back-up distance bo by means of the 11.3 Proof of back-up distance bound

upper bound and the b.r.o. If bo ~ bm no search is needed and the Assume there is a path w' with test-error weight It'l < Itl

decoder retu~s to the b.b.o. If ~o > bm proc*eed to (d). which diverges from w at a back-up distance of b~ segments. Let

(d) Determme the values of bt for bm < bt ~ boo b' > b . This implies d(b') ~d(b) from the distance property of the
(e) For each value of b1 utilise. the direct mapping decoder to c~de. t t t ,

search for the p~th with minimum test-error weight, starting with the (a) If d(b~) > d(bJ.
lowestvalueofbt. *. * . From Appendix 11.2 It'l~d(b~)-ltl, that is, It'l~ [d(bJ+1]-

(t)Ifno path of length ~t wIth Itbtl=ltb*I-1 can be foundm Itl. Also, from Appendix 11.2 It'l~d(k)-ltl, if It'l= Itl-1 then

t~e the truncated tree stemmIng from the c~mp\ement branch of node d(bJ~ 2Itl-1. Hence It'l ~ [(2Itl-1) + 1] -It I ~ Itl, which is a

bt, repeat (e) for the next largest value of bt. contradiction to It'l < Itl.

(g) If the required path is found, replace tb7 with tbt and return to (b) Ifd(b~)=d(bJ.

the b.b.o. and direct mapping. Now It'l = [It'I-lt'II] + It~l. Substituting for (It'I-lt~l) gives

(h) If we run out of search time, then force the decoder to accept It'l ~ [d(bJ - (Itl - ItII)] + It~1 ~ [(2Itl - 1) -It 1 + 1] + 0 ~ Itl,

the earliest segment ofw, and return to the b.b.o. and direct mapping. which is a contradiction to It'l < Itl.

Thus an error may be accepted, but the decoder will recover to the Thus b~» bt and bt is the minimum integer which satisfies d(bJ ~
correct path in time. 21tl- 1.
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