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ABSTRACT This paper describes our approach to the problem of automated knowledge

acquisition from large databases of examples using an information-theoretic

approach. Our previous research has resulted in practical algorithms (ITRULE)
for the automatic induction of rules from large example databases. Utilizing

these algorithms, the raw data can be transformed into a set of human readable

IF THEN rules, thus giving insight into the knowledge hidden within the data.
These rules can then be automatically loaded into an expert system shell.

Alternatively, they can be used to build a new type of parallel inference

system-a rule-based neural network. This process enables a prototype expert

system to be automatically generated and up and running in a matter of minutes,

compared with months using a manual knowledge-acquisition approach. The

resulting expert system can then be used as a sophisticated search and analysis

tool to query the original database capable of reasoning with uncertain and

incomplete data.

INTRODUCTION munications industry in which sophisticated

networks exist that automatically report a vast

Current database technology, in which the USA array of traffic information, data on module

is a world leader, is being overwhelmed in failures, system-performance analyses, and so

many applications by the sheer weight of on. In turn, these reports are automatically logged

automated information gathering brought on a database system as a historical record

about by advances in hardware (Database of network operations. However, although the

Systems, 1990; French et al., 1990). Across a databases contain a wealth of information in

variety of scientific, engineering, and business terms of system performance and fault diagnosis,

applications, it has become commonplace to they are often too complex to manually search.

collect and store large volumes of data. Examples Another familiar example is the automatic scan-

in the scientific area include the potential ners used at checkout counters in modem-day
storage of terabytes of interplanetary explo- supermarkets. These 'scan data' are automatically
ration and satellite image data by NASA (French recorded and used for market research purposes.

et al., 1990; NASA, 1991), and the large amount The volume of data available overwhelms what

of DNA sequence data being contributed to was previously a manual market-analysis task.

the National Institute of Health (NIH) Human There exist many other examples in business in

Genome Project by recent advances in auto- which transactions are routinely logged and

mated DNA sequencing (Burks et al., 1985). could provide a wealth of knowledge if only

Commercial examples include the telecom- they could be automatically processed.
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Advances in software have not kept pace knowledge effectively and efficiently to perform
with the hardware advances that have caused intelligent problem solving. The major advan-
this data explosion of the 1990s. Current datab- tages of this approach compared with tra- "
ase technology from a user's point of view ditional programming techniques are the

allows the extraction of small text-based objects explicit coding of knowledge in the form of

that are satisfied by relatively simple logical rules and the ability to handle uncertain and
or declarative keyword queries. In the large incomplete data via inference techniques. How-

commercial databases of the future such simple ever, these advantages do not come for free.

queries will not be able to extract the relevant Explicit knowledge representation is an
information with such a query. This is because important aspect of modeling rational behavior.
the data will be increasingly multi-media, and Thus the power of the system lies in its
simple logical queries will return far too much knowledge base, an explicit representation of
data at too Iowa level to be of use. We predict the domain knowledge, as opposed to being

that each query in the future will have to have buried in 'procedural code'. This facilitates
the complexity of an expert system which can modularity so that portions of the knowledge
reason with uncertainty to give the user the can be added, deleted or modified without

knowledge that they want from the query, worrying about the control structure of the

because a return of the 'matching' (in a loose program. Maintenance, debugging and audit-
sense) records will simply overwhelm the user ing are also easier. This is an important issue
with data. Using an example from Database in terms of today's large-scale software projects
Systems (1990) (and assuming it could be where maintenance and debugging can be very

done with current technology), the company expensive. The knowledge base is also an asset ,

president could pose the query 'How many to the developer both as a training tool, a ..

employees in the Widget department will retire marketable commodity, and as a repository of

in the next three years?' What would be human expertise which is relatively permanent. c;

returned is that number, or possibly the Developing knowledge bases is one of the most'
employee records. Of course, the president difficult aspects of building expert systems, and

really wants to know 'What is the implication of is commonly called the 'knowledge-acquisition
employee retirements on the company pension bottleneck'. Knowledge acquisition is the pro-
fund over the next three years?' The answer cess of translating the domain expertise into a

the president wants is 'The pension fund will form which can be used by the expert system,

be underfunded by 10% next year with certainty in our case, rules. Traditionally, this process

80%, but achieve level funding the year after has been performed by a 'knowledge engineer'

with certainty 90%.' To answer such a query interviewing the expert to identify the knowl-

involves building at query time a complete edge. This is problematic as it is very time-

expert system, based on the data in the datab- consuming (and, hence, expensive) and inef-
ase, capable of answering the fuzzy and incom- ficient. Very often experts are not very good at

plete query. Our approaches are a first step at describing their own expertise, and may be in
automating the process of building expert disagreement with each other, Also, when

systems from data, which could then be used it comes to acquiring knowledge involving

in query systems of the future. uncertainty such as probabilistic statements,

A major success of the Artificial Intelligence humans are not very good at giving consistent

(A.I.) field of research has been the arrival in information of this form. In addition, we can

the 1980 of Rule-Based expert sytems. The conceive of real-time problems (such as plant

basic paradigm behind expert systems is that control) where no human expert exists. The

knowledge, in an explicit form such as rules, quality of the final expert system is critically
is the key to building intelligent machines dependent on the quality of the knowledge-
(Hayes-Roth et al., 1983). The notion of expert acquisition process, and there is therefore an

systems was developed from the simple idea urgent need to develop tools to automate and

that human experts can be characterized as assist this.

having both a large amount of detailed knowl- Motivated by results from cognitive science ,

edge about a domain and the skill to use this and neurobiology, and a desire to develop a
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more robust approach to modeling intelligent The ITRULE algorithm (Goodman and Smyth,

behavior, a more recent (but related) AI para- 1988a, 1989a,b; Smyth and Goodman, in press)

digm has emerged-that of artificial neural is our information-theoretic algorithm for the

networks or connectionist machines (Rumelhart extraction of rules from example data. ITRULE

and McClelland (1986». Essentially, this takes in a database in the form of example
approach can be characterized as modeling vectors of attributes. These attributes can be
intelligent behavior using distributed parallel categorical (e.g. color = red, blue, or green) or
architectures. However, the implicit coding of analog (e.g. pressure = 5.32). The algorithm

knowledge in such machines remains a major then searches for probabilistic rules of the form:

stumbling block for applications which require IF A = a AND B = b then C = c with

higher-level cognitive processes at the reason- probability p and utility U. ITRULE produces

ing rather than the perceptual level. This a list of rules ranked in accordance with the
'implicit' coding of knowledge in the weights utility U, which is an information-theoretic

and activations of a neural network is just measure of the 'goodness' of the rule. The
the same problem that was recognized with rules produced by ITRULE can be used (and

conventional programming. Notwithstanding optimized) for several different purposes.

these problems, the inherent computational First, as the algorithm has efficient search

advantages of the connectionist approach make techniques it can be used on large databases,
it an appealing candidate for the implemen- in order to perform exploratory data analysis
tation of fast parallel intelligent machines, or 'database mining'. This is useful for generat-
provided their structure and operation can be ing an initial understanding of dependencies
made explicit to humans. among variables, causal relationships, and so

Our previous work has been to develop a on, in an interactive and exploratory manner.

novel approach to solving some of the above One of the early successful applications of
problems using the formulations of information ITRULE was for a financial database describing
theory. The field we are developing is the the characteristics and performance of a variety

application of information and communications of mutual fund investment companies averaged

theory techniques to the design and analysis over five years.
of real-time rule-based expert systems. We The second use of the algorithm is in

have developed a novel information-theoretic knowledge acquisition for standard expert sys-
approach to the design of rule-based expert tems. The probabilistic rule output can be

systems, in which we can automatically extract directly used as the knowledge base for an

an explicit model of the data in the form of expert system. Hence, one can use ITRULE to
rules, automatically load the model into an automate the rule-elicitation process, circum-

expert system shell, or onto the weights and venting the often inefficient manual knowledge-

nodes of a neural network, and then run the acquisition methodologies. Indeed, even when
network to perform fast real-time probabilistic no database is available, one can, in principle,
inference on unseen data. In particular, we are use expert-supplied case studies as a synthetic

developing an information-theoretic approach data set. We have routinely used the algorithm

to the following areas: to produce rules from data for various commer-

cial rule-based shells. The ability to go directly
(1) Automatic derivation of generalized rule from data to a working expert system in a

graphs from real world example data; matter of minutes is particularly powerful,

(2) Handling uncertain information and how allowing for rapid prototyping of a system and

uncertainty propagates through inference iterative improvement by adding new attrib-

(uncertainty calculus); utes and rerunning the rule induction in
(3) Knowledge representation from example conjunction with human experts. The utility

data; measures produced by ITRULE can be used to
(4) Controlling and guiding the inference pro- provide rule priorities to the expert system

cess; thus providing a method of performing conflict
(5) Fast parallel execution using artificial neural resolution during inference. A side benefit is

networks. that the knowledge engineer can produce a
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tentative set of rules and hence a working An Information-theoretic Approach

expert system to show the human expert. As

a basis for discussion this is a much more In this section we summarize our infonnation-

efficient use of the expert's time, and results theoretic approach to expert system design. The
in significant productivity improvement in techniques fall into two interrelated categories:

the knowledge-acquisition process. We have automated rule induction using ITRULE, and
reported an application of this technique using the induced rules to perfonn inferencing
for the development of expert systems for under uncertainty, using our Bayesian prob-
telecommunications network management ability-estimation techniques.

and control, where this was used to great The basis of our approach is that of a
effect (Goodman et al., 1989; Goodman and probabilistic rule, that is, a generalization of

Latin, 1991). the usual detenninistic rule. Say there are
Third, the rules can be loaded onto a new N attributes under consideration. Thus each

type of Rule-Based Neural Network Bayesian sample datum of the database consists of a

classifier which has also been developed in vector of some N particular attribute values,

our research (Goodman et al., 1990a). This where each attribute has a discrete alphabet,
classifier, which has achieved excellent classi- and is a discrete-valued random variable. Real-
fication performance in empirical tests, uses v~ued attri~ute~ can be handled by ~~ a~pro- ,

appropriate conditional independence pn~te quantIzatIo~ scheme. A proposItIon IS an ::

assumptions to combine rule probabilities attnbute-~al~e a~slgnment of the fo~ Y = Y ,

into an estimate of the class probability. In where .y IS m Y s alphabet. ~~ ~asls of ~ur

addition, the weight of evidence of each rule model IS ~hat we call a ~robablilShc produc.h.on :

that contributes to the estimate can be used rule, that IS: a rule whIch has a probabIlIty
t t t I at .o f ho the classl. attached to It. In general such an Ith-order rule

0 cons ruc an exp an 1 now - . .. .. .

fi t . d .. . d t .d . contaInS a conjunctIon of I van abIes m Its LHS
ca Ion eclslon was arrIve a, provl mg ..

th b . f d .. t t Th ' and some other vanable as Its RHS. For
e aSlS or a eclslon-suppor sys em. IS

I. f . . h d. I examp e:
IS 0 great Importance m areas suc as me lca

diagnosis, where the final decision must be If Y = ythen X = xwith probability Pr and utility U

made by the human user. Our rule-based where X and Yare discrete random variables

classifier also has advantages in that the (attributes), the probability Pr is the rule

rule~ are mapped. o~to a neural net~~rk transition probability given by the conditional i

architecture, resultIng m a ve~ .fast class~fier probability p[X = x!Y = y], and U is the !

whose weights have explIcIt. meanings infonnational utility or 'goodness' of the rule. C

(Goodman et al., 1990b). These weIghts have a The attachment of a probability to the rule
direct interpretation as the evidential support allows for the inherent handling of uncertainty :
provided by the rules-positive weights imply with our model, as opposed to other ad hoc
that the class is true while negative ones uncertainty measures.
imply that it is false. Hence we see that while In order to search the database for 'good' .

statistical in nature, this scheme possesses rules of the above form we need to define the

the ability to provide direct explanations to utility or goodness measure U. We utilize an .

the user in terms of how the classification information-theoretic measure of the 'goodness' .:

decision was arrived at. Most importantly we of a rule (Goodman and Smyth, 1988), called

have shown that if the rules generated by the average infonnation content of a rule, or 1-
ITRULE are conditionally independent in the measure, and define it as: ;

left-hand sides, then the network perfonns
[ [XI] ]correct Bayesian inference. Furthennore, by the J[X; Y = y] = p[y] . ~x p[xly].log ~

addition of an exponentiation and nonnaliz-
ation output step the network can be made to This measure can be interpreted as the infor-

output correct posterior probabilities for the mation that the event Y = Y yields about the

right-hand side variables (Goodman et al., 1992 variable X when it 'fires'. The I-measure is

Miller and Goodman, 1990). fundamental to our model and is the basis of ~

,
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the utility functions that we have defined. The bootstrapped from data with minimal use

actual utility measure U used can be obtained of human experts; and

by modifying the basic I measure to account (3) Used to perform Bayesian inference and

for costs or other subjective preference criteria. probability estimation using a Rule-Based
Neural Network.

. ITRULE has significant advantages over other
The ITRULE Algorithm rule induction methods such as 103 (Quinlan,

1986), which are essentially decision tree induc-
The I measure forms the basis of a rule- tion algorithms as opposed to ITRULE's gen-

induction algorithm that we have proposed, eralized rule induction. In fact our early research

called ITRULE (Information Theoretic Rule in decision trees (Goodman and Smyth, 1988b)

Induction) (Goodman and Smyth, 1988a, 1989a, led us to discover the limitations of trees and
b; Smyth and Goodman, in press). The algor- seek a new approach, the result of which is
ithm takes as input a set of discrete attribute ITRULE. ITRULE has been used experimentally
vectors and it produces as output a set of the on many applications, including:

K most informative probabilistic rules available

M d . 1d. .. . . e 1ca 1agnos1s
from the data, as ranked by the utIlIty measure. . .

Th al .th k f al (1 d ) . TelecommumcatIon trouble ticket analysis
e gon m wor s rom gener ow-or er d f 1 fi d.1 " 1" d (h . h d ) 0 an au t n mg

ru es to more spec1a 1ze 19 -or er conJunc- 5 k k d al f d 1 0
" . f . ". toc mar et an mutu un sana YS1S

tIve rules and uses the m ormation-theoretic "

rt . f th I t d t . . Real-time telephone network alarms analysis
prope 1es 0 e -measure 0 e ermIne 0 0" 0 " 0 "

h th t rt . I al 1 " rth . Mmeral classIfication USIng satellIte synthetic
weer or no a pa 1CU ar gener ru e IS wo

d" 1"" I f t . th t " b d d aperture ra ar returns
spec1a 1zmg" norma 10n- eore 1C oun s an

A f I d " "
h JPL d0 . "d d . ntenna au t 1agnos1s on t e eep

small sample statistics are used to gUl e an

k. 0 1) space networconstraIn the search so that an (exponentIa 5 0 1 0

. 0" d . onar returns sIgnature ana YS1S
exhaustive search of all rules IS not requIre 5 k d / 1 I .I t d b th d t . upermar et pro uct sa es ana YS1S
un ess suppor eye a a. 0 .Th 1. t f 1 d d b ITRULE . Census and questionnaIre data

e raw IS 0 ru es pro uce y

can be filtered and optimized according to a
number of different criteria. For example, low- U' ITRULE

order rules can 'subsume' higher-order rules sing

with less information. Alternatively, an MOL 0 " 0

(M " " 0 " t " L th) .t . ITRULE requIres a flat database text file m a
m1mum escnp Ion eng cn en on can 0

b d t t d ff th 1 " ty f th d 1 rows and columns format" The columns or fields
e use 0 ra e 0 e comp eXl 0 e mo e f h d b h ' o b ' , 0

bl '

(th b d d f th 1 ) o th th 0 t e ata ase are t e attn utes or varIa es

e num er an or er 0 e ru es WI e . ."

d f fit f th d 1 (th 1 "fi t o of the domaIn. Each row IS an example or
goo ness 0 0 e mo e e c aSSl ca Ion" . .

f th t f 1 ) Al t b Instance of the problem. The entrIes m the
accuracy 0 e se 0 ru es . so, cos scan e . " "

" tr d d th t ' t b O t ' f t t .al matrIx are the values taken by the attrIbutes.
m 0 uce so a a cos per 1 0 po en 1 " 0 0

" f t " b d fi d R I h o h h Attnbutes (data van ables, field names) can
m orma Ion can e e ne" u es w 1C ave " 0 0 .

h . h t b O t th b b d b be eIther categoncal or continuous. Categoncal
a 19 cos per 1 can en e su sume y . 0 0 "

th " th 1 t b .t t Th fi 1 (or dIscrete) attnbutes take a fInIte set of values;
ose WI a ow cos per 1, e c. e na . , ,

It f th ITRULE " t . 0 d for example, the attrIbute Rank may take the
resu 0 e process IS an op 1m1ze al 'p " , 'c 1, d 'S '

AI " t f 1 th t b d t v ues nvate , orpora, an ergeant "IS 0 ru es a can e use 0: 0 " b k " h 0 1continuous attr1 ute ta es e1t er Integer va ues
(1) Give a summary of the important infor- or real number values" For example, the attri-

mati on in the data, particularly the relative bute 'Temperature' takes real number values
importance of different attributes; such as 28.45°" An attribute such as 'number

(2) Be loaded into a standard expert system of shipments' takes integer number values such

shell (with the Utility measure being used as 28 or 65. Continuous attributes need to be
to assign a 'rule priority' figure to each rule quantized (made into discrete attributes by

in order to perform conflict resolution) thus splitting into ranges)" This can be automatically
allowing an expert system to be directly performed by ITRULE, but it is much better if
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'meaningful' ranges of the data can be identified rather like a neural network. However, unlike
given the context of the data. For example, a neural network which is an implicit 'black

within a particular context it may make sense to box' predictor, the ITRULE Rule-Based Network

split a continuous variable called 'Temperature' has an explicit architecture and operation. The
into three significant ranges, thus resulting in architecture is explicit because links in the
a discretized 'Temperature' variable which network correspond to rules. The inference is
takes the values 'below-zero','zero_to_boiling', explicit because the weights on the links
and 'above_boiling'. correspond to the 'weight of evidence' associ-

ITRULE optionally needs to know which ated with each rule. That is, our belief in the
attributes are 'right-hand-side' (RHS) or truth of the rule RHS, given that the rule LHS

'hypothesis' attributes, and which are has fired.
'lefLhand-side' (LHS) or 'data only' attributes. The explicit nature of the Rule-Based Network

RHS attributes will appear both in the con- allows all its decisions to be audited by humans,

clusion part of rules and in the LHS of other and, if necessary, shown to a third party or

rules. Data only attributes appear only in the judge to prove that it is operating in the desired

LHS of rules. By default, ITRULE uses all manner.

variables as RHSs. The Rule-Based Network is a powerful new

ITRULE's output can take several forms: extension of a simple first-order Bayesianclas-

printed rules, rules in a format suitable for a sifier. The network is capable of acting as a
number of standard expert system shells, rules classifier or, much more powerfully, outputting
that can be loaded onto a number of neural probability or 'confidence' estimates for each
network simulators, or rules for ITRULE's output decision. This enables a higher-level

own internal probabilistic Rule-Based Network decision maker (such as a human) to make the

inference mechanism. The rules can then be final decision. The advantage here is that

used to perform prediction on new examples. situations in which a completely unknown
input is presented can be identified by low
confidence on all the outputs. This alerts the

Rule-Based Neural Networks system to the fact that more training, or more

input attributes, are necessary to derive rules
ITRULE uses the rules it has discovered to to handle the new situation.
build a parallel probabilistic inference network The structure of the rule-based network is

I
y YI

I

YI

I ':

Y2 .:

y 2 '
2 Y 2 .S '

3 ioo
Y2

I

YK YK

2

YK

Summation and
hlput Attrilxltes Conjunctive Rules Exporentiation ..

,

Figure 1 Rule-based network.
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shown in Figure 1. The input layer contains attribute to be ~ 1, thus allowing the actual

one node for each input attribute-value. The posterior probability of each class via:
hidden layer contains one node for each rule. I ( (IR .» = Ero;,. E h E = I ( (IR .»ff . I h . h og P X, I e I~Je ,were og p X, I .

These nodes are e ectIve y AND gates w lC

output a 1 if the left-hand side of the rule is A classification decision on the posterior value

satisfied, and a 0 otherwise. The third layer for each RHS attribute can then be made by

contains a node for each value of the class choosing the value with the largest positive
attribute. Each second-layer node representing value of p(xJRJ in the winner-take-all layer.

a rule is connected to a third-layer node via a The output of the network is thus the most

multiplicative weight of evidence Wij- Also likely value taken by each RHS attribute, given

feeding into and summed by each third-layer the rules that fired due to the evidence vari-

node is a bias value ti. This sum of activations abIes that were presented. Note that a complete

is then exponentiated to produce the node evidence vector is not necessary, that is, as
output O'i. The output of the exponentiators is little or as much evidence information can be
then fed into a normalization layer which presented to the system, which will then
constrains the outputs to sum to one. The compute the best decision given the evidence
output of this layer is the desired probability available.
estimate of each class. If a classification decision The inference process outlined above com-

is required, a winner-take-all stage can be putes the best Bayesian estimate of the values
added to decide on the most likely class. taken by each RHS attribute, given the evidence

The network uses the rules found by ITRULE that was presented, and the particular rule set

to perform probabilistic inferencing in a data- found by ITRULE. Note that this can be a

driven forward-chaining manner (Goodman et dynamic process in that as new evidence

ai., 1990a). Given an input vector consisting of appears, the inference process is rerun to
a known subset of evidence variables, we will provide the new estimates. In addition, back-

have in general a set of rules Ri which 'fire' ward chaining is possible by observing which

(i.e. their left-hand sides are true) and which output conclusions are most uncertain (by
have a particular attribute-value Xi on the observing their posterior probability) and this

right-hand side. The network estimates the allows for the system to suggest that certain
conditional probability p(xiIRi), that is, the evidence variables should be determined in
posterior probability of each RHS attribute- order to be able to fire rules which will increase

value given the rules that fire, using the confidence in those RHS conclusions. The

incorporation of these advanced features would

10g(p(x;!RJ) = ~jWij + log (p.) result in an expert system based on sound

probabilistic and information-theoretic prin-
where Wij = 10g(p(xiILHSJ)/log(pi) has the direct ciples, capable of inferencing with uncertain,

interpretation of being the weight of evidence conflicting (and missing) evidence on real-
provided by a particular rule's LHS about the world problems.

RHS attribute, positive for true, negative for

false. This weight is equal to the log ratio of
the rule transition probability pr and RHS prior An Example of ITRULE Analysis using a

probability, and is found by the ITRULE Mutual Funds Database

process. The log (Pi) = ti term is the prior bias;
thus if no rules fire for a particular RHS As an example of using ITRULE, we show how

attribute the estimate of its posterior probability rules can be generated from a database of
is equal to the prior. The above equation thus mutual funds information. Table 1 shows a

specifies the inference process. The weights of portion of the raw database of mutual funds

evidence provided by the j rules which fire, (AAII, 1990). Note there are several thousand
together with the prior evidence, is accumulated funds in the whole database. Each row rep-
for each RHS attribute-value. The exponenti- resents an example of a particular mutual fund

ation and normalization layers serve to con- (the name is omitted). The column headings

strain the sum of evidence for each RHS are the attributes of interest when thinking of
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investing in a mutual fund. An example of a pIe of a continuous attribute is the 'Beta' or
categorical attribute is 'Fund Type' which 'risk' variable of the fund.
takes three possible values: 'Growth', 'Growth Table 2 shows a derived database in which all&lncome', and' Aggressive Growth'. An exam- the continuous variables have been quantized.

~-- RU =

. Ve5 <lAI.I.J).F~T¥'-~8Wth ?

1He qAuJ>.nv8~l'RetIrn-b81owSnP? Ru~~ ?
~ ~:::::~~- 8t q~).£)(pn5RltieperJew T~ '?

Vn <lALU>.Asuts.J"V8 7 >Ru1eIJ .t;.p.rJew et <I~>.ExpnsRltleP8r'Jew TRUE 7 ? 7

1:00
No <lALU>.Fl8ldTv,-JJrowth 7

,.STCI' lto ctALU>.C.apG~LIOto2~er '? 18&4 '?+~ ->L8t qAlU>.fiv8~rR8turn-lb8V8SnP 1,?
He <lAlU>.stecks-Avw75per ? )Ru 7. ,-- !!

.1.
.)Let <lAlU).ftve~,.Return-lb8ves.ll' 17 i~

..
'1

He qALU>.F~Tv,...Dr8Vth
'?~ 1!j . II

V85 cfALU> .AS5ets.J ? u1e3~ ? flye~,.R8t...n-Ab8V8SnP '? .. III

->L8t <lALU. .fiV8~rRetlr'n-M8v.S" 1? 'rn
".

? ri v.. QAUj>.Fl8IdTv,--Drowth 1 'Ii Vn ctAUj..AsS.tS.Jwg8
7 Ru1e57 ? I;

II->L.t ctAUj..five~l'R.tIr'n-M8V8S" 1? . .'

,'i;j,~!"'i' I"""""'.'."""""i;;;i'i'i'!i"j ", j." l'I'1;1'j~"":"':."'."'.""'.""""'.",,0;0; ! ',!""""'I"'""""""""";

CCN>ITlaIS : RULE OUERUIEW

No <IALLI>.FundType_G.-th

Y88 <IALLI>.A8"~._l.rq.
HYPOTH1:STS: r1_JZ"~.EB ACTICJiS : - .Let <IALLI>. tlV8-yr_tum_.bov8SnP TRUEINFEREIC!: CA~Y: 550
NAME:: ..1835

~~~

CacllTIaiS :

R;;;Yo. <IALLI>.Fwxft'ypo_Cr<*th Y.. <IALLI>.A8..t8_1.~ HYPOTHESIS: .1_~ '" --

ACTlaiS : ;;p;---

Let <IALLI>.!lv8Jr-tum_ab0V8Snp TIWE
lWERE1C~ CA~Y : 4:1~ -~~ -NAME: "'1a5'7

Figure 2 Rules loaded into NEXPERT@
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The expert has a significant say in this initial data can be categorized by the expert, or by '" ?#l'c J

process which serves to both categorize numeri- using automatic statistical 'binning' algorithms ~

cal data, and select attributes of interest. Note that we have developed (Smyth and Goodman, .

that over-specification of the problem is accept- in press). The expert can accept this advice or 1

able, because non-informative attributes will modify the value to make the categorization ,

be penalized by low J measures. Numerical more meaningful. Some of these quantizations
,

52 R.M. GOODMAN AND P. SMYTH j

~



are 'obvious', and some require expert contex- Acknowledgements

tual knowledge of the database domain. For
example, the 'Beta' or 'risk' attribute is naturally This work is supported in part by Pacific Bell,

defined as above and below I, where 1 is the in part by the Army Research Office under

market risk. On the other hand, the Capital Contract No. DAALO3-89-K-O216, and in part

Gain attribute has been quantized to three by DARPA under contract no. AFOSR-90-0199.

ranges on expert advice. In addition this work was carried out in part
Table 3 shows the rules output by ITRULE by the Jet Propulsion Laboratory, California

ranked in order of information content. The Institute of Technology, under a contract with
probability value is a measure of the 'reliability' the National Aeronautics and Space Adminis-
of the rule; for example, a completely determin- tration.

istic rule (a certainty) has probability 1. The

Utility value in this case is the relative infor-
mation of the rule relative to the most informa- Rete ces

tive rule. The 'strength' value is the weight of ren

evidence of the rule, and is used in the AAII (1990) The Individual Investors Guide to No-

rule-based neural network. The rules display Load Mutual Funds, AAII, International Publishing

information of interest to the investor, and can Corporation.
be used to predict the performance of new Burks, C.J. et al. (1985) '.The. Ger:'bank nucleic acid

database', Compo Appllc. BIOSCI., No.1, 225-33.
funds. For example rule 15 states that IF Assets Database Systems: Achievements and Opportunities

are small THEN the 5 year Return of the fund (1990) Report of the NSF Invitational Workshop
will be below the Standard and Poor's Market on the Future of Database Systems Research, Palo
average return with high probability (0.87). Alto, California, February.

Figure 2 shows the rules derived by ITRULE French, J.C., Jones~ A.K. and Pfaltz, J.L. (1990)
. 'Summary of the Fmal Report of the NSF Workshop

loaded Into a standard expert system shell, on Scientific Database Management', SIGMOD

NEXPERT@, in this case. This is almost 'instant' Record, December.

knowledge engineering. Goodman, R.M. and Smyth, P. (1988a) 'Information-

Figure 3 shows a rule-based network which theoretic rule indu~t~o.n', Proc~edings of European

has been built to predict the value of the C.onference ~n ~rtlficlal IntellIgence, 2-5 August,

. . PItman PublIshIng, London.

vanable .FI~e- Year Return. ~e network has Goodman, R.M. and Smyth, P. (1988b) 'Decision tree
been optimIzed by a rule prunIng process that design from a communication theory standpoint',

selects the best set of rules to predict this RHS. IEEE Trans. on Information Theory, 34, No.5,
979-994, September.

Goodman, R.M. and Smyth, P. (1989a) 'The induction
of probabilistic rule sets-the ITRULE algorithm',

CONCLUSIONS Proceedings of the Sixth International Workshop on

Machine Learning, Los Altos, CA: Morgan Kaufman
In this paper we have described a novel pp 129-132.

hybrid approach to knowledge acquisition and Goodm.an, R.M. and. Smyt~, ~. (1989b) 'The ITRULE
designing expert systems from example data. algonthm for rul~ mductIo:n ,1989 ijCAI Workshop

. on Knowledge DIscovery m Databases, 20 August.

~e .~le-based neural netwo,rks outlIn~d have Goodman, R.M., Higgins, C. and Smyth, P. (1990a)

sIgnIficant advantages over black-box neural, A hybrid rule-based/Bayesian classifier', Proceed-

networks in that the network is directly derived ings of the 1990 European Conference on Artificial
from the data by an efficient information- Intelligence, Pitman Publishing, London, pp

th t . h t h .

F rth th 610-615, August.

eore IC searc ec roque. u ermore, e

G d RM H . .
C M . II J dS th PI .fi . f f h I b d 00 man, . ., 199ms, ., I er, . an my , .

c assl cation. per ormance 0 t e ru e- ase (1990b) 'A rule-based approach to neural network

scheme on dIscrete data has been shown to be classifiers', INNC 90 Paris-International Neural

comparable with that of conventional neural Network Conference, Palais Des Congres, Paris,

network classifiers, while its probability predic- France, 9-13 July.. ,

tion performance tends to be superior. Most Goodman, R.M. a?? LatIn, H. (1991) Automated

. .. . . . knowledge acquIsItIon from network management

slgn~~cantly, the resulting net~ork.exhlblts an databases', Second IFIP-IEEE International Sym-

explIcIt knowledge representation m the form posium on Integrated Network Management,

of human-readable rules. Washington, DC, 1-5 April.

RULE-BASED NEURAL NETWORKS 53



Goodman, R.M., Smyth, P., Higgins, C. and Miller, J. from marginal constraints', Sixth Conference on
1992 'Rule-based neural networks for classification Uncertainty in AI, Cambridge, Massachusetts,

and probability estimation', in press, Neural Com- 27-29 July.
putation. Quinlan, J. (1986) 'Induction of decision trees',

Goodman, R.M., Smyth, P. and Latin, H. (1989) Machine Learning, 1, 81-106.
'Real time autonomous expert systems in network NASA Oorgenson C., Buntine W.) (1991) Workshop
management', Invited paper-First IFIP Inter- on Pattern Discovery in Large Databases, 14-15
national symposium on Integrated Network Man- January, NASA Ames, CA.

agement, Boston, 14-17 May. Rumelhart, D.E. and McClelland, J.J. (1986) Parallel

Hayes-Roth, F., Waterman, D.A. and Lenat, D.B. Distributed Processing, Volume 1, Cambridge, MA:

(1983) 'An overview of expert systems', in Hayes- The MIT Press.

Ro~h,. F., Waterman, D. and. Lenat, D.B. ~eds), Smyth, P. and Goodman, R.M. (in press) 'An

Bulldmg Expert Systems, Readmg, MA: Addlson- information theoretic approach to rule induction
~esley, pp. 3-30. ,. from databases', IEEE Transactions on Knowledge

MIller,J.W. and Goodman, R.M. (1990) Apolynomlal and Data Engineering.
time algorithm for finding Bayesian probabilities

54 R.M. GOODMAN AND P. SMYTH


