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es = cs/U(xs,ys), and here ¥(zs,ys) # 0 by the choice of the
points P, -+ , P. Remark, that deglv(z,y)] = p2 < h, by the
assumption j > (3/2)m— (3/2). 1t > to we simply add points with
errorvalue zero to the previously stated construction. This concludes
the proof of the theorem. a

We have used the Hermitian curve because the rational points on
this are so easy to handle, but this is probably also the case for many
other curves.

For a code C*(j) from a Hermitian curve, we have however
more information in the decoding situation than the syndromes
Sas. @ + b < j, and this can be used to get a minor improvement.
This fact has no influence on the general results for the algorithm
as previously described, but since the extra information is readily
available in this specific situation we will make some comments
about it.

From the curve equation 3" '
that

_ 2" — 2 = 0 follows, in general,

Sabprtt = Satrbt+ Sat1b-

Therefore, when we arc decoding a code C*(j), we know the
syndromes Sab, a+b < Jj and Soj+1, S1j» 00 Si—rrt. Using
all these syndromes as input to the algorithm one can realize, either
by theoretical arguments or by experiments in concrete situations, that
an error pattern as the one in Theorem 1 will be correctly decoded.
To construct examples where the algorithm breaks down also with
this extended input, one must change things a little.

We choose the error points in the same way as before, but such
that the smallest degree h of an error locator satisfies

h=p1+pg.p2:m—3—(j—2h)—l. (3.11)
Let us now imagine, that we run the algorithm with all syndromes
Sa.b, a+b < j+1,asinput. Then, with notation as above, because of
(3.11) the rank of the matrix F' 41—k is smaller that ¢ (cf. Lemma 3).
One can then, as before, find an error pattern for which the algorithm
fails, and therefore of course the algorithm also fails if the input is
the syndromes Sab, a + b < j,and Sojt1, " .8;—rr41. To find
the smallest number of points for which this construction is possible,
we shall minimize an expression corresponding to (3.6). Carrying
out the calculations one obtains
3m 1

&t m?
h=F -5 T3 % @12)
which is a somewhat greater bound than (3.8). But the difference is
not significant compared to the bound itself, and we will not discuss
this problem further.

This situation can only occur if m > 6, so the smallest case in
characteristic 2 is * = 8, which gives codes of length 504 over
GF(64).

The bound (3.9) is the same as the bound (1.3), and hence the
results in this correspondence shows, that the bound obtained in (2]

in the general case is the optimal one for the method considered.
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Phased Burst Error-Correcting Array Codes

Rodney M. Goodman, Robert 1. McEliece, and Masahiro Sayano

Abstract—Various aspects of single phased burst error-correcting array
codes are explored. These codes are composed of two-dimensional arrays
with row and column parities with a diagonally cyclic readout order; they
are capable of correcting a single burst error along one diagonal. Optimal
codeword sizes are found to have dimensions n; X ng such that no is
the smallest prime number larger than n,. These codes are capable of
reaching the Singleton bound. A new type of error, approximate errors
is defined; in g-ary applications, these errors cause data to be slightly
corrupted and thererfore still close to the true data level. Phased burst
array codes can be tailored to correct these codes with even higher rates
than before.

Index Terms— Error-correcting codes, array codes, phased burst cor-
rection, approximate errors.

I. INTRODUCTION

In computer memory and communications applications, informa-
tion can be corrupted by bursts of noise which occur within one of
many predetermined sectors or time intervals. These noise patterns
will be called phased burst errors [1] because although the noise
pattern may be random at each burst, its duration and starting
points are restricted to certain intervals. Noise sources which can
generate these errors include line noise, synchronization errors in
demodulation, timing errors in multivalued memories, and backscatter
radar signals. These errors are often periodic in time (or, in the case
of memories, in position) and can be long in duration. (See Fig. 1).

A motivation for studying this problem is the encoding of multi-
level random access memories, where each cell contains more than
one bit of data. These memories use dynamic RAM cells to store
one of several discrete voltages. An experimental 4-Mbit chip with
16 possible voltage levels (4 bits worth of data) stored in each cell
was reported in [2]. Voltage levels in each cell are stored and sensed
by ramping the voltages on pertinent row and column select lines.
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Fig. 1. Phased codeword. Errors can occur only within each b-symbol

section.

These memories, unlike CCD type memories, are not serial, but have
random access times which are much longer (~ 200 psec) than binary
RAM’s and are therefore not optimal for working memory. However,
since an entire row can be read at each access, blocks of data are
available quickly; this, coupled with their high density, makes them
ideal for mass storage devices.

The advantages of multilevel memories are evident when they are
used as mass storage devices. Compared to magnetic hard disks,
multilevel RAM’s have faster block access times (~ 200 s vs.
~ 20 ms), comparable throughput (20 Mb/s), and low power require-
ments (standby power of ~ 100 pw and active power of ~ 10 mW
vs. standby and active power of ~ 1 W). Magnetic disks require
mechanical drives that cannot be scaled downward with disk capacity;
that is, for smaller disks, there is a significant “volume overhead”
which decreases the storage density with respect to the entire disk
package. Multilevel RAM’s have no such penalty. Therefore, these
memories are useful for replacing medium to small capacity magnetic
hard disks where power is restricted, as in laptop computers.

The main drawback of multilevel RAMs, aside from the need for
constant power to maintain memory contents, is the following. Since
the cells contain charges separated by small discrete steps and since
access timing accuracy is important, timing errors can cause errors
in entire rows of memory. Error-correcting codes used at the chip
level typically encode a single row as a codeword; thesc types of
codes are thus useless in this case, where the entire row can be
erroneous. In practice, large random access memory chips are broken
up into a number of blocks. A code can be placed across these
block lines to break up the long burst at the cost of increased access
circuitry and encoder/decoders. The resulting codewords experience
long phased bursts of errors in relatively short codewords. (See Fig. 2)
A code which can correct long phased bursts with high rate and short
codeword length is desired for this application.

Most well-known (or standard) burst error-correcting codes which
can correct long bursts have extremely long codewords which must
be shortened—and therefore result in a lower rate code—when used
in applications with small block sizes. Fire codes, for example, have
high rate at the expense of large codewords, and they do not take
advantage of the phased nature of the error. Thus, standard burst error
correcting codes such as the fire code may not be best for correcting
phased bursts in practice, especially where a high-rate, high-speed,
short codeword length code is needed. However, some codes, such
as Reed—-Solomon codes over serially arranged bit blocks, have high
rate, can correct phased bursts, and are optimal. Here, array codes are
presented as an alternative to the Reed—Solomon codes to correct
single phased burst errors.

Array codes offer the advantages of block structure and casy
encoding and decoding. The concept was first introduced by Elias
[3]; the first array codes were Gilbert codes, developed in 1960 [4].
Gilbert codes are constructed from a two-dimensional array of cells
with row and column parities, and their size can be varied greatly.
Given a diagonal (helical) readout order on a rectangular array of
size n; by n,, with s being the diagonal skipping value, burst error
correction is possible. An example is shown in Fig. 3.

Bounds on correctable burst lengths of Gilbert codes were studied
by Neumann in 1965 [5]. Bahl and Chien in 1969 [6] made cor-
rections to Neumann’s work, and generalized the result for higher

1)23/4] 5[67/8 n-3n-2n-1 n
Memory Memory 1,2(314) 5i6.7/8 n-3n-2n-1. n
Block #1 Block #2
1.2:34 5.6! 78! n3n-2n-1 n N
7
Memory Memory 1/2/3.4 56|78 in-3n-2n-1 n
Block #3 Block #4
1/2/3/4 5678 n-3n-2n-1 n
Memory Memory
Block #5 Block #6
— R
Memory Memory
Block #7 Block #8
#W

Fig. 2. Coding across multiple rows. This figure shows an example with
eight blocks in a chip, \" cells per row, 1" = N/4 codewords of size 8 x +
with possible phased bursts of b = 4. Any one row in a block can be in error,
and the code can correct this error.

- g=3—

ztsa‘rss 8 71\'43‘15‘7;50'\2;55‘57
a0| 2 es[a7, 9 72144]1679 51 23'86 5]
s9'31:3 ss*aal10‘73‘45[17‘50‘:5234 &7
"a8j60[32| 4 67.39/11]74 4518 8153 |23
2689(61/331 5 68,40 12/75 147,19 52 [S4

l Horizontal Parities

{ Vertical Parities

. Parity on Parities

55,27|90]62(34 6 69411376 48]20 &)

Fig. 3. Array codeword. Example is shown for n) = 7. nz = 13, and

s = 3. Readout order as numbered.

dimensional Gilbert codes in 1971 [7]. Burton and Weldon also
studied bounds on burst length [8]. Generalization of-the Gilbert code
to form burst error correcting array codes, along with the study of the
special case for s = 1, was done by Farrell and Hopkins in 1982 [9].
In 1986, Blaum, et al. showed that for h = n; — 1. ny > 2n1 — 3is
required [10]. Zhang and Wolf generalized the bound to find b for any
ny, ny, and s in 1988 [11]. Further work by Blaum has shown that
b = n, is attainable for s = —1 and s = —2 [12], [13]; these results
were generalized and codes with efficiencies approaching unity were
found by Zhang [14] and Sivarajan, McEliece, and van Tilborg [15].

Previous work concentrated mainly on general bursts, where burst
starting location is not restricted. Under the limitation that all bursts
occur only within one of many preselected blocks, array codes can
be made extremely powerful and efficient without much difficulty,
resulting in short codewords with long burst correcting powers.
Phased burst error-correcting array codes are constructed, as are
general burst error-correcting array codes, from two-dimensional
arrays of cells with row and column simple parity checks and
diagonally cyclic readout order. Note that the parity on parities (check
on checks, in the rightmost bottom corner) can be considered to be
both a vertical and a horizontal parity check. Errors are now restricted
to occur only in a single diagonal; therefore, the readout parameter
s [11], which denotes how many columns to skip before reading the
next diagonal, is irrelevant here. Previous work on general burst error-
correcting array codes made mention of s: The length of a correctable
burst depends on s [11], [12]. For phased bursts, s can be any value
so long as s and n» are mutually prime (which ensures that the entire
array is filled).

Various properties of single phased burst error correcting array
codes will be explored in this work. Section Il contains the en-
coding and two possible decoding algorithms. Section III contains
theorems on the allowed codeword sizes for phased burst correction.
In Sections IV and V, optimal codeword sizes for this code are
discussed. Section IV will cover array codes for the correction of
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approximate errors, those errors in g-ary codes in which the erroneous
value is restricted to be no more than A away from the true value.
The Appendix contains proofs of all theorems.

II. ENCODING AND DECODING STRATEGIES

Encoding information bits entails taking the parities of the rows
and the columns as needed. For ¢-ary codes, these parities are taken
modulo ¢, and is therefore an easy and fast operation. This can be
implemented quickly and in parallel using XOR gates for ¢ = 2 or
their nonbinary equivalent, addition modulo ¢, for ¢ > 2.

For decoding, the parities are first recomputed from the received
codeword; from these the positions with parity violations (and in the
case of nonbinary fields, the amount of the violation) are known.
Consider the parity on parities to be both a horizontal as well as a
vertical parity value. Becasue bursts are restricted to one diagonal,
the hoizontal parities give the burst pattern. The vertical parities,
given the burst pattern, provide information on the burst position.
The horizontal parities are “stuffed” with no — n; zeros so that both
the horizontal and vertical parities are of length ny. The vertical and
horizontal parities can be represented as

V=[vo v v l‘n2—1]
and
H = [ho ]’l.l

ha--o Aol

respectively. The problem now is finding the error position; that is,
finding a value of e such that 0 < e < ny and

V(e+2)mod ny U(e4ng—1)mod nz]

= [ho h1 b2 hpy—l.

[ve mod na V(e+1)mod na

Once the error location is known, error correction is accomplished
by XORing this erroneous row with the horizontal parities. (For g-ary
applications, the horizontal parities are subtracted modulo n, from
the erroneous row.)

A. Cyclic Convolution

One method for finding the error position e is cyclic convolution.
This algorithm can be parallelized for extremely fast implementation.
By cyclically convolving the two parity sets V' and H, the error
position can be found: The error location e occurs where the
convolution yields a maximum. In both the binary and nonbinary
case, this amounts to finding the number of cyclic shifts of the
horizontal parities needed to match the pattern given by the vertical
parities. The decoding algorithm can be implemented in parallel with
ny convolution circuits, thus quickly yielding the position of the
burst in two steps: First, calculate the cyclic convolutions in parallel;
second, find the maximum value. This, however, requires a large
amount of circuitry or computing nodes (r5 computations). Serially
implemented, this algorithm requires n3 multiplications, n3 — n»
additions, and n, comparisons. In parallel, using n3 computing
nodes, the algorithm requires the time for one multiplication, log,n>
additions, and log,n. comparisons in sequence.

B. Shiloach’s Algorithm

One other method for finding e is using Shiloach’s Algorithm
[16], [17]. This is a serial implementation which requires, at most,
3(nz — 1) comparisons. Shiloach’s Algorithm is much faster and
requires less circuitry than a serially implemented cyclic convolution
algorithm, but it is still slower than a parallel implementation of the
cyclic convolution algorithm and cannot be effectively parallelized.

An outline of Shiloach’s algorithm follows. For two vectors A and
B of length n defined as

an—l]»
ba-1],

A=la a1 a2
B = [bg by bo

two integers ¢, j < n can be found such that

{ai modn  Q(i+1)mod n  A(i4+2) mod n A(i4+n—1) mod n]

= [b) mod » bi41) modn  D(j42) mod n b(j+n-1) mod n]'

The algorithm returns £ = 0 if no such match exists and & = n if
there is a valid match.

i =0
71=0;
k=0
WHILE (i<n AND j<n AND k< n)
{ (a(i+k) mod n = b4k modn) k=k+1;
ELSEIF  (Q(i4k) mod n < D4k modn) { i=i+k+1;
k=0 }
ELSE { j=j+k+1
k=0 }

Implemented serially, this algorithm requires at most 3(ns — 1)
comparisions and 3(ny, — 1) additions.

III. ALLOWED CODEWORD SIZES

We have shown in [18] that such codes can always correct one
phased burst of length ni, the length of the vertical dimension, if
ng > 2ny, where ny is the length of the horizontal dimension, and
that such codes can never correct one phased burst of length n; if
ne < ny. Furthermore, we have proven that such codes can correct
one phased burst along a diagonal for n, < na < 2n; with cyclic
readout order, if and only if

ng #

where & > 1 and 3 > 1. From these results, we have found
codewords of short length and high rate which can correct single
phased bursts. The theorem concentrated on filtering out those values
of ns not allowed for a given value of n;. Here another approach is
used to obtain an equivalent result; this theorem regarding codeword
sizes yields the largest possible n, for a given ny.

(0%

+1 (m1 = f), o)

e}

Theorem 1: An array code with diagonal cyclic readout order can
correct a single phased burst along a diagonal, if and only if

s snz(l_l_), @

R
where « is the smallest prime divisor of na.
Proof: See Appendix. O

Neumann presented a result very similar to (2) in [5] as the
maximum general burst length correctable by an array. Specifically,
the claim was made that given an array of size n, X ng, the maximum
burst length correctable in a Gilbert code is

b=min|:n1(1—i>, nz(l—i)jlv ©)]
K1 K2

where k; is the smallest prime divisor of n; and k2 is the smallest
prime divisor of n,. This was shown to be incorrect by Bahl and
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TABLE 1
ALLOWED CODEWORD SIZES FOR 11 < 2 < 20y

n Allowed na.no < 2n) ny Allowed no. iy < 2ny

2 3 22 23,29,31,33,35,37,39,41,43

3 5 23 29,31,35,37,39,41,43.45

4 5,7 24 29,31,35,37,39,41,43,45,47

5 7,9 25 29,31,35,37,39,41,43.45.47,49

6 79,11 26 29,31,35,37,39,41,43,45,47,49,51

7 11,13 27 29,31,35,37,41,43,45,47,49,51,53

8 11,13,15 28 29,31,35,37.41,43,45.47.49,51.53,55

9 11,13,15,17 29 31,37,41.43.45,47,49,51,53,55,57

10 11,13,15,17,19 30 31,37,41.43,45,47,49,51.53,55,57.59

11 13,17,19,21 31 37.41,43,47,49,51,53.55,57,59,61

12 13,17,19,21,23 32 37.41,43,47,49,51.53.55,57,59,61,63

13 17,19,21,23,25 33 37,41,43,47,49.51,53.55,57,59,61.63,65

14 17,19,21,23,25,27 34 37,41,43,47.49,51,53,55.57,59.61,63,65,67

15 17,19,23,25,27,29 35 37.41,43,47,49,53,55,57.59,61,63,65,67.69

16 17,19,23,25,27,29,31 36 37.41,43,47.49,53,55,57.59,61.63,65.67.69.71

17 19,23,25,27,29,31,33 37 41,43,47,49,53,55,57,59.61,63.65.67,69.71.73
18 19,23,25,27,29,31,33,35 38 41,43,47,49,53,55,57,59,61,03.65.67,69.71,73,75
19 23,25,29,31,33,35,37 39 41,43,47,49,53,55,59,61,63.65.67.69,71.73,75.77
20 23,25,29,31,33,35,37,39 40 41,43,47,49,53‘55,59,6].63,65,67,694,71,73.75.77,79
21 23,29,31,33,35,37,39,41 41 43.47,49,53,55,59.61,63,65,67,69,71,73,75.77,79,81

Optimal codes are in bold type, for which the smallest n» is prime.

Chien [6]. For phased bursts, Neumann’s results are not applicable;
therefore, this is a new result.

Theorem 1 is equivalent to the result of [18}. Since an array code
is phased burst correcting, if and only if (1) holds, solving for 1,
yields

Q
— 4+ .
ni # n2 a1 +
as a necessary and sufficient condition equivalent to (1). Since 3 > 1,
the right side of (4) can increase without limit; therefore, (4) is
equivalent to

where a > 1 and 3 > 1. 4

a
a+1’

Since the right side of (5) must be an integer, o + 1 must be a
factor of n2. The right side is small when a +1 is small; therefore,
the right side is smallest when a + 1 is the smallest factor of na,
which is equivalent to the smallest prime factor of n», which was
defined earlier as . Substitution of x for a + 1 in (5) results in (2);
therefore, (1) and (2) are equivalent.

Special cases of Theorem 1 present properties of allowable 12 for
any ni. The first two were mentioned in {18] but were not obvious
from (1).

Corollary 1: If ny > 2n, then the burst error-correcting array
code can always correct a phased burst of errors of length n1.

ny < na2

where a > 1. S)

Proof: See Appendix. 0O

Corollary 2: If ni > n2 the burst error-correcting array code
cannot correct a phased burst of errors of length 1y

Proof: See Appendix. O

Corollary 3: For any ni, the set allowed values of n, for the
single phased burst error-correcting code includes all prime numbers
greater than ni.

Proof: See Appendix. O

IV. MEETING THE SINGLETON BOUND

Burst error-correcting codes are measured in optimality by ef-
ficiency rather than by rate. However, single phased burst error-

correcting codes can be considered not as being burst error-correcting,
since these phased bursts are effectively symbols taken in a serial bit
stream, but as being single error-correcting codes. Therefore, the rate
is the measure of optimality.

Linear error-correcting codes can reach but not exceed the Single-
ton bound, which states that to correct + errors, a code must have at
least 2t parity symbols:

20 < — k.

The code is capable of correcting a single phased burst, so t = 1.
When n is prime, using Corollary 3.

no >y + L

Take no = 1141, so that the array size which is as square as possible.
This should provide a codeword with as high rate as possible [19].
Then, taking each symbol to be a group of bits n; long,

linlzu} {(nl—l)(nz—l)i\
w—bk=|—\|—-|—————
ny n

(] - [ulrm —m —nz+1:\

|

n
o+ {m+ 1) -1

n

=ny —ny+

=2

Therefore, single phased burst array codes can be optimal in the sense
that they reach the Singleton bound; this occurs when ny is prime
and n, = n2» — 1. This was known previously [20] and is confirmed
as a special case of Theorem 1.

Table 1 lists some allowed codeword sizes for single phased burst
error-correcting array codes; optimal codeword sizes are in bold face
type. Additionally, note that the smallest n- allowed for a given ny is
the smallest prime number larger than ni. This claim will be shown
to be true for all n, < 107 in the next section; to prove the claim
true for all no is an unsolved number theory problem.

V. OpTIMAL CODEWORD SIZES

Table I hints at the claim made here, that for any n, the smallest
allowed 1 is the smallest prime number which is still greater than n;.
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Though this claim cannot be proven outright, it can be given strong
supporting evidence. In this section, a theorem which, coupled with
examination of all prime numbers less than 107, proves the claim for
all ny < 107, will be presented. Since practical block lengths are
much smaller than 107, the claim is proven for all practical values
of np and nj.

The claim that the smallest no for any given n; is the smallest
prime number greater than n; will be supported in two steps. First, a
theorem will be proven showing that if the difference between the two
dimensions ne — 1, is less than the square root of the larger number,
the original claim is true. In the worst case, this difference between the
two dimensions will be the difference between two consecutive prime
numbers. Second, this theorem will be applied to all prime numbers
below 107; the claim will be shown to hold true for these numbers.
These two will help show that in the finite range 0 < n» < 107
the claim is true, and that the claim in general relies on an unsolved
problem in number theory.

Theorem 2: The smallest allowed n2 for a given value of ny is the
smallest prime number larger than ny if

np —ny < \/n—z (6)

Proof: See Appendix. O

Since the worst case (largest) difference between n1 and na occurs
when both n; and no are primes, all prime numbers below 107
were checked:; this revealed that (6) holds for all pairs of consecutive
primes except the pair 113 and 127. Here, ny — n1 < 14 is possible
while \/nz = V127 = 11.27. Because Theorem 2 covers only
cases where ny — n1 < +/ma, na2 is covered only in the range
113 < ny < 124. Thus, the cases na = 125 and no = 126 were
checked manually using (2),

np < n2 (1 - —1->
K

When ny = 125, n, < 100 is required, and when n2 = 126, n; < 63
is required for the code to be phased burst correcting. Since n; = 113,
these two are not valid codewords. Therefore, even in the special case
where (6) fails, the claim holds true for all prime numbers less than
107. Since most codewords are smaller than 107, the analysis thus
far is usually sufficient for practical codeword sizes.

Theorem 2 suggests that if all consecutive primes p,, and py41 are
separated by a distance dn = pn+1 — P which is less than \/pn+1,
then the claim regarding phased burst array code sizes, namely, that
the smallest n» allowed is the smallest prime number greater than
ni, is true. This is an unsolved problem in number theory. The best
results obtained so far are close but insufficient [21],

11 1
di=0(ph).  where 8 = 5 — oo0 & 05474,
p where 50~ 384 547
However, since the theorem has been proven for all 73 less than 107,
this claim can be assumed true for all practical purposes: Almost all
applications have codeword sizes of less than 107,

VI. CORRECTING APPROXIMATE ERRORS

In some analog memory and communications applications, the
codeword contains g-ary symbols, that is, more than one bit of
information is stored in a single memory cell (16-level RAMs [2], for
example) or more than one bit is sent per use of the channel through
the use of many discrete analog values to represent these g-ary
symbols (amplitude and phase modulation in high-speed modems, for
example). If these codewords are subject to errors which only change
the received/retrieved symbol slightly from the transmitted/stored

symbol, the information which remains in these cells can be used
to help correct errors. For example, in multi-level memories, as
mentioned in Section II-A, if there are timing errors in reading or
writing the row of cells, the contents of that entire row will possibly
be close to but in error from the true value. This information can be
used to help correct the codeword.

Another example is in PSK (phase shift keying) modulation. Here,
the symbols are a ring of size ¢, and the most common errors will
be those closest to the correct value. Drifting from the correct sync
value will cause errors which are close to the correct value. This
condition can be corrected the next time the signal is synchronized,
and synchronization is typically done either continuously or at
regular intervals. The second case, used more often for high-speed
applications, can result in time intervals with incorrect sync which are
corrected by the next interval, resulting in bursts which are phased.
FSK (frequency shift keying) has a similar problem in that the correct
frequency may be mistaken for one close to that frequency; therefore,
a code which is tailored to correct these most common errors with
as high rate as possible will be useful.

In this section, an approach using the remnant information in
corrupted symbols to correct these errors—and therefore use less
redundant symbols in the encoding—will be explored. This type of
error will be referred to as approximate errors, or those with erroneous
values which are always approximately equal to the actual values.
(This situation can be considered to be one with a skewed error
distribution, since the errors are restricted to a certain class. Bitwise
errors of this type and codes to handle them were studied in [22};
here a different approach is used.) If the actual value stored in a
given symbol were & and if the symbol were in error, the resulting
received/retrieved symbol will be between r — A and x + A, where
A < q/2 and g is the number of values cach symbol can take. The
symbols can be considered to be a ring of size g or can be terminated
at the mimimum and maximum.

A. Parity Values for Approximate Errors

The errors addressed in this section have magnitudes within A of
the correct values. Since the errors are of limited severity, the parities
need not be taken modulo ¢, as they were before. To correct errors
of magnitude A, it is necessary to take parities modulo 2A +1 to be
able to distinguish between the 2A + 1 values which the error can
take. (This includes one value for zero, the no error case.) However,
it is not necessary to take two orthogonal sets of parities modulo
2A + 1. The two sets of parities in the phased burst error correcting
array code contribute in a distinct manner, with the horizontal set
of parities determining error pattern and vertical parities determining
error position with the help of the horizontal parities. The horizontal
parities, therefore, must be taken modulo 2A+1 to uniquely represent
the error pattern. Determining error position, however, can be done
by knowing only the existence or nonexistence of an error at each
horizontal and vertical parity position. This can be accomplished by
taking the parity modulo A + 1, to distinguish between the A levels
(including the no error case) of error possible.

Therefore, it is sufficient to record only the parities taken modulo
A +1 for the vertical parities to determine error location and modulo
2A +1 for the hoizontal parities to determine error value. The vertical
parities, because there are more of them, are taken with A+1 so that
less space is taken with them. The parity on parities is taken modulo
2A + 1 so that it may be used as a horizontal parity value.

[nitially only the approximate error correcting case will be ex-
plored; later, parity cell compression will also be included in the
analysis. The encoding format is the same as before, but with the
parities taken with differing modulo sums. Decoding is also as before,
with the following exceptions: First, the parities which were taken
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modulo 2A + 1 need to be recomputed for modulo A 4 1. These
parities are then used to locate the error burst in the manner described
above. Second, the burst is then corrected using the modulo 2A + 1
parities.

Error correction is accomplished as follows. The magnitude of the
error is limited, |e| < A. Define & = 2\ + 1. The horizontal parities
were originally computed so that for each row /,

wa—1
1:2 i+

=0

mod & = 0.

where ¢;; represents the contents of the jth cell in row /, and 1, is the
horizontal parity of row /. Suppose an error of ¢ occurs in cell ¢;x.
If r,; is the received (and possibly erroneous) version of ¢;;, then

na—1
[Z ri, + hi

;=0

mod & = e mod &

Since values of ¢ < () are mapped onto the region A + 1 to 2A, the
following correction rules apply:

cip = Yik — =,
! ik — =+ 6
Thus, correction of approximate errors is possible with vertical

parities taken modulo A + 1 and horizontal parities taken modulo
2N + 1

if0<:< A
if A<z < 2A.

B. Parity Cell Compression

Parity cell compression for phased burst error correcting array
codes is achieved as follows. The vertical parities are taken modulo
A 41, and the horizontal parities, modulo 4. Since only a few bits of
information are needed to record both sets of parities, there is some
unused capacity for storing information in these parity symbols. These
can be taken advantage of by storing more than one parity value in
each symbol. There are two ways this can be accomplished: The
parities can be compressed and represented as a column of length
ny — 1, in which case this acts like another column added to the
array of information symbols (without any parities), or they can be
represented as a row of length 1, — 1, in which case this acts like
another row added to the array of information symbols.

In both cases, the parity on parities values is unused and is therefore
not coded. Effectively, the code becomes a linear sum code [23]. This
code can still correct a single phased burst using the information that
the parity on parities is immune to error, a condition that occurs
because the parity on parities is always assumed to be zero.

Note that this parity compression, therefore, is equivalent to
removing a row or a column of parity values from the code and
placing them in other cells. The error correction capacity of the
code should remain unchanged; therefore, the code must be capable
of correcting errors along any single diagonal, though the error
magnitude must be within A for all values. This implies that the
remaining column or row of parities can contain an error as well.
However, because there is more than one parity value recorded
into each symbol, the valucs must be coded in such a way that
the additional parity values stored there are not affected, since
these additional values record parity from rows or columns which
differ from the location at which they are stored. Therefore, the
requirements for parity compression are: Vertical parities are taken
modulo A + 1; horizontal parities are taken moludo 2A + 1; parities
must be stored into n; — 1 or n, — 1 symbols; parity on parities is
unneeded; and those additional parity values stored in a symbol must
remain unaffected by errors within magnitude \.

The original parity value can be stored without coding since if it
is erroneous, it can be corrected. This error can alter the value of the
entire symbol by up to £A. However, if a simple means of storing
two parity values in the same symbol is used, a carry or borrow error
can occur. That is, by storing the two parity values as

P = poriginal + (A + 1)padditional -

the two values can be found by

Padditional = | 7|+
Doriginal = P mod(A +1).

However, if an error occurs in P, a carry or a borrow may occur and
alter the values stored, causing an error to propagate into the value
for padditional:

<5 s[5 <[5

A+1 T LlA41] T A4l

The effect of a carry, borrow, or neither alters the resulting calculated
Padditienal by +1, =1, or 0, respectively.

Thus, a buffer is needed between poriginal and padditional that is
large enough to distinguish between the carry, borrow, or neither carry
nor borrow cases. The two cases, either having horizontal parities
included into existing vertical parities or having vertical parities
included into existing horizontal parities, will be addressed separately.
The strategy for both are similar.

For horizontal parities included into existing vertical parities,
consider the following. A horizontal parity value (p2 = h;) is
included into an existing vertical parity value (p; = v;) by

P =pi+p.
where - is some constant. Let (9 = ~p». Assume p» is known.
QLPLQ+A

It is obvious that 5 > A. Now let an error of up to A in magnitude
occur in P.

Q4+e<P+e<Q+e+ Al
which, in the worst case (maximum range the values can span), is
Q-A<P+e<Q+A+A. @]

To be uniquely able to distinguish between the case where a carry,
a borrow, or neither occurs, there must be an unambiguous mapping
given the worst case occurs. From (7), the maximum range which
P+ e can span given ps is
3= 1=(Q+22)—(Q - A).
w=3A41. ()]
Therefore, to include a horizontal parity into an existing vertical
parity,
P=1uv;+(3A 4 1)h,. )
Fig. 4 outlines this analysis.
Decomposing these two parities into their original forms in the

presence of errors is straightforward. The vertical parity in this case

should reflect the error imposed upon the column.
p1 = [P mod(3A + 1)] mod(A 4+ 1). (10)

The horizontal parity should remain unaffected by errors. Using.

p2 = P div(3A +1).
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H

-

Q+(3A+1) <1 —
Q+(3A+1)-A R
Qa2

QA -
Q‘MA_}RBWBO'P Range of P given p,
Q=p,3as1) §- given p, with errors <A

s B
aa+ip2a §

Q-(3a+1)+A

Q-(3A+1)

Fig. 4. Including horizontal parities into existing vertical parities. Range of
possible values for P given p2 is shown, along with range possible with errors
of magnitude < A. To avoid overlap, v = 3A+ 1.

where (a div b) is the closest integer to a /b, can still be in error due
to a possible carry: In general, P+e < Q+2A. If P +e is larger
than Q + /2, a carry error can occur. Since

3A+1
2

Q+2A>Q+ :Q+%,

an error can result.
Therefore, an offset u must be used:

3A+1 3A+1
L+ Q—A>Q- 2+ and p+Q+2A<Q+ ;’ :
which becomes
A+1 A-1
u>——T and u<——2—.
Therefore, if u is even, then
Al
p2 = {P - '2—] le(3A + 1) (11)
If p is odd, then
A+1
2= [P - —;r—]div(SA 1) (12)

Equation (12) assures that, using the usual technique for rounding off
fractional values (i.e., 1.4 — 1 and 1.5 — 2), p2 is found without
error:

A+1] . 3A+1
and
A+1 A+1
[Q+2A~—;—]=Q+3 2+ -1

For vertical parities included into axisting horizontal parities, the
strategy is very similar. A vertical parity value (p2 = vj) is included
into an existing horizontal parity value (p1 = h:) by

P = p1 + p2,
where v is some constant. Let Q@ = yp2. Assume p2 is known.
Q<P<Q+$6
or, equivalently,
Q< P<LQ+2A.
Now let an error of up to A in magnitude occur in P.

Q+e<P+e<Q+e+24,

»

-

Qo(AAM)j -
Q+{4a+1)-A
Q+A3

Qw28

1 | Rango of P |, Range of P given
Gt }q’:’mmp' i bl
Q=pant) §-

[~V

Q-(@a+1)+38

Q-(@a+1)+28 -
Q-(4s+i)+A -

Q-(4as)) I
a
|}
a
Fig. 5. Including vertical parities into existing horizontal parities. Range of

possible values for P given p is shown, along with range possible with errors
of magnitude < A. To avoid overlap, v = 4A + 1.

which, in the worst case (maximum range the values can span), is
(13

Equation (13) is similar to (7); the former differs from the latter
only by a constant A on the right far side. To be uniquely able
to distinguish between the case where a carry, a borrow, or neither
occurs, there must be an unambiguous mapping given the worst case
occurs. From (13), the maximum range which P + e can span given
p2 18

Q-A<P+e<Q+A+2A.

Q-A+7y-1=Q+34,

v =4A+1, (14)

which is similar in form to (8). Therefore, to include a horizontal
parity into an existing vertical parity,

P = h; + (48 + 1)v;. (15)

Fig. 5 outlines this analysis.
Decomposing these two parities into their original forms in the
presence of errors is done as before. The horizontal parity in this

case should reflect the error imposed upon the row.
p1 = [P mod(4A + 1)] mod(2A + 1). (16)

The vertical parity should remain unaffected by errors; again, an
offset p must be used:

4A +1 4A +1
p+Q-A>Q- St and w+Q+38<Q+ g
which becomes
>-A+ 1 d < -A- 1
u 7 o i 5"
Therefore, 4 = A and
p2 = [P — Al div(4A +1). 17)

C. Actual Compression Technique

When this codeword is actually implemented, it may not be effi-
cient to attempt integer division and remainder (modulo) calculations.
High-speed applications require the code to have as few operations
as possible for encoding the decoding, and division operations are
time intensive. Therefore, placing parity values into bit fields within
the parity symbol may be advantageous: In this format, examining
the bit fields is sufficient to obtain the necessary parity values.
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PARITY SYMBOL

“Horizantal  Buffer _ Vertical
Parity Field Parity Feld

=1bit

Fig. 6. Parity cell compression into bit fields, with horizontal parity included
into vertical parity symbol. One parity symbo} is shown, with parity values
encoded into bits. Blank space of two bits is safety buffer to avoid carry-over
errors into horizontal parity field.

The best choice for A is 2™ — 1; the vertical parities are taken
modulo 2" and the horizontal parities are taken modulo 2"*1 The
range of the horizontal parities is larger than necessary, but gl
is used since it allows easy derivation of the modulo A + 1 parity
value for determining error location: The m least significant bits of
the horizontal parity value provide this parity information.

To store more than one parity value into each symbol of redun-
dancy, the strategy used in the previous subsection are applied. If
horizontal parities are being stored in vertical parity symbols, then
the minimum ~ is 32 + 1; this translates into at least m + 2 bits, or
a buffer of two blank unused bits between the vertical and horizontal
parity value bit fields. (See Fig. 6.) These bit fields serve as flags as
to when a carry or a borrow had occurred. Correction for carries and
borrows are as follows:

buffer bitfield = 00 :
buffer bitfield = 01 :
buffer bitfield = 10 :
buffer bitfield = 11 :

no adjustments needed

no adjustments needed

this case will never occur

add 1 to horizontal parity field.

If vertical parities are being stored in horizontal parity symbols,
then the minimum -~ is 4A 4 1; this translates into at least m + 2
bits, or a buffer of one blank unused bit between the horizontal and
vertical parity value bit ficlds. (See Fig. 7). This one extra bit with
additional information obtained from the value in the horizontal parity
bit field provides carry or borrow information. Because the horizontal
parity is between 0 and 2™+1 _1, inclusive, an error can only increase
this value to 2! 4+ 2™ — 2, which is represented by a carry of 1
and a residue of 2" — 2. Likewise, an error can only decreasc this
value to — A, which is represented by a borrow of 1 and a residue of
2™ 4 1. Therefore, if a carry occurs and the residue is greater than
orequal to 2" +1,0r A+ 2, then a borrow has occurred; if a carry
occurs and the residue is less than or equal to 2™ — 2, or A-—1,
then a carry has occurred. Therefore, when the buffer is nonzero, if
the most significant bit of the horizontal bit ficld is 1, then a borrow
has occurred; otherwise, a carry has occurred.

buffer bitfield = 0 : no adjustments necded
buffer bitfield = 1 and MSB of horizontal parity field

0 : no adjustments nceded

buffer bitfield = 1 and MSB of horizontal parity ficld

=1 :add 1 to vertical parity field

Note that for parity values which are inserted into existing parity
symbols, there is no need for contiguous bit fields to be usecd.
Therefore, these inserted parity values may be placed in any order to
fit them in the available space. However, even if noncontiguous bit
field packing is used, the magnitude of approximate errors correctable
using this implementation is less than that possible by using the
algorithm outlined in the previous subsection. The tradeoff made

PARITY SYMBOL

— PR
Vertical Buffer  Horizontal
Parity Field Parity Feld

=1bit

Fig. 7. Parity cell compression into bit fields, with vertical parity included
into horizontal parity symbol. One parity symbol is shown, with parity values
encoded into bits. Blank space of one bit is safety buffer to avoid carry-over
errors into vertical parity field.

[N R S S
Fig. 8. Parity cell compression. Codeword on left is the standard 10 x 11
phased burst correcting array code; codeword on right is the 9 x 11 phased
burst correcting array code correcting approximate errors of A < T with
parity cell compression. Parity values are compressed into fewer symbols.

here is ease in encoding and decoding in favor of optimality of
parity symbol usage. Thus, the horizontal and vertical parities are
recorded in fewer symbols but in a manner which allows easy
detcrmination of parity values without integer division or remainder
(modulo) calculations, resulting in an easily encodable and decodable
code which has very high rate and can correct a phased burst of
approximate errors.

D. Example

Consider two codewords, both capable of correcting a single
phased burst of length 9 and approximate errors of size A = 7
from symbols of size ¢ = 512. The first is the standard phased
burst array codeword of dimensions 1, = 9, ny = 11; the second,
the codeword with parity compression derived from the standard
codeword of dimensions n, = 10, 12 = 11. The latter is effectively a
9% 11 codeword with 90 information symbols capable of correcting a
burst of length 9 and of size A = 7. The first has a rate of 0.81, with
80 information symbols, and is capable of correcting a single phased
burst of length 9 and of any error magnitude. The second has a rate
of 0.91 with 90 information symbols and is capable of correcting a
single phased burst of length 9 so long as the error magnitude of
cach symbol does not exceed 7. (Sec Fig. 8).

Vertical parity values arc placed in each horizontal parity symbol
using every possible space; therefore, the 4 least significant bits are
used to store the horizontal parities, while the most significant 4 bits
are used to store the vertical parity values. The fifth most significant
bit, in between the two bit fields, is used as a buffer. The vertical
parity values are stored across the parity symbols such that four bits
each from nine symbols arc used to storc ten threc bit numbers.
One possible arrangement is shown in Fig. 9; a total of six bits
remain unused. (Notc that a more optimal utilization of available
parity symbol space would have resulted in A = 8, but at greatly
increased computational complexity.)

VII. CONCLUSION

Various aspects of the single phased burst error-correcting array
code have been explored. The general solution for valid codeword
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B-iot

Fig. 9. Parity symbols shown bitwise. Each parity symbol is composed of
9 bits (for a total of 512 possible values per symbol). Bit mapping for each
parity value is shown.

sizes to correct phased bursts of length n; was presented. The
code can have dimensions such that the Singleton bound is met
with equality and are therefore optimal. The minimum size for no,
given n, was shown to be the next highest prime larger than n,
for ny < 107; it is an unsolved number theory problem to prove
this true for all », and ny. Two decoding algorithms were covered.
Also, encoding and decoding strategies for approximate errors were
presented, with means of compressing parities to further increase the
rate of these codes.

APPENDIX

Theorem 1: An array code with diagonal cyclic readout order can
correct a single phased burst along a diagonal, if and only if

n1 < ng (1 - -}q—), )

where & is the smallest prime divisor of ns.

Proof: Consider the parity values to be represented by poly-
nomials. The horizontal parity values ha, hy, ha, -+, hn,—1 can be
represented by

and the vertical parity values vg, vy, va, -+
by

, Un,—1 Can be represented

ng—1

v(z) = Z vzt

1=0

Since the error pattern appears in the horizontal parities, an error in
the eth diagonal will result in

v(z) = z°h(z) (mod z"% — 1).

The proof will be by contradiction. Given that (2) holds true,
assume that erroneous decoding occurs. Erroneous decoding can
occur if there exists another value d, which yields the same vertical
syndrome. That is, for the code to not work,

z°h(z) = 2h(z)  (mod 2™ —1), (18)
where d # e. Rearranging (18) yields
(xk - l)h(x) =0 (modz"™ —1), (19)

where £ = (e — d) mod nq, k # 0, as the condition for the code
to not work.
Theorem 2.3 in [24] states that, for positive n and m,

ged(t® ~ 1,¢™ — 1) = ¢&edtvm) _ g,

Apply this theorem to (19): Call gcd(k, n2) = +. Then, by factoring
out the common term, the condition for the code to not work

becomes
_ "2 -1
h(z)=0 (mod =1 ),

where v # 0. Note that since v|na, then v < na2/k, where & is the
smallest prime divisor of n,. Therefore,

" -1 1
(Z22)on(-2)

which then requires
deg(h(z)) > na (1 - %)

But since

deg(h(z)) <mi —1 (20)

and from (2)
deg(h(z)) <n1—1< no (1 - %) -1,

there is a contradiction, so erroneous decoding cannot occur when
(2) holds.

The converse is also proven by contradiction. Given that erroneous
decoding cannot occur, assume that (2) is not true. Consider the case

where
1
ni 2712(1— —) +1
K

the converse of (2). Then from (20) the condition for erroneous
decoding can be met, and the error pattern

2" —1
h(=) = (m)
yields the same parity pattern for errors h(z) and 2" h(z). Erroneous

decoding can then occur, so when erroneous decoding does not occur,
(2) must hold. O

Corollary 1: If ny > 2ni, then the burst error-correcting array
code can always correct a phased burst of errors of length n;.

Proof: Consider the result of Theorem 1. To be phased burst
correcting, an array must have the dimensions dictated by (2)

1
n §n2<1——),
K

where x is the smallest prime divisor of ny. The smallest possible
value for k is k = 2; therefore, the worst case for all possible values
of ny will require that

1
n1 STLQ(I— 5)

no Z 2”1. D

Thus,

Corollary 2: 1If n; > ns the burst error-correcting array code
cannot correct a phased burst of errors of length n;.

Proof: Consider the result of Theorem 1. To be phased burst
correcting, an array must have the dimensions dictated by (2)

1
n Sn2(1—;)7
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n < na (l - —1—)
no

is required. This simplifies to
ng > ny + 1.

Thus, the smaliest that no is allowed to be is n; + 1, and if np
is smaller than that, the array code cannot correct phased bursts of
length ny. O

Corollary 3: For any n, the set of allowed values of ny for the
single phased burst error correcting code includes all prime numbers
Proof: From (2),

greater than nj.
1
ny < 712(1 — —)
KR

If no is prime, then because » = n», (2) becomes n; < ny—1. Thus,
all prime numbers greater than n, are acceptable values of no. O

Theorem 2: The smallest allowed n» for a given value of n; is the
smallest prime number larger than n; so long as ne — n> < /na.

Proof: From Corollary 2, n> > ny; from Corollary 1, ny < 2ny
is the region of interest. Therefore, the region of interest is n; <
ny < 2ny, because if ny < n; the code is guaranteed not to work,
and if ny > 2n, the code is guaranteed to work. Also, from Corollary
3, all primes ny in the range n, < ny < 2n; generate acceptable
codewords.

Choose n3 , to be the smallest prime number greater than n, and
n2. to be the composite (nonprime) numbers greater than n; and
less than ns ,. If (2) is to be satisfied,

1
ni S 712,C<1 bt —).
Ke

where k. is the smallest prime factor of ny .. The smallest prime
factor of any composite number is less than the square root of that
number; therefore, for an acceptable no .—where (21) holds—to
exist,

1)

1
ny < 772‘(-(1 = >
V2o
<nge—+/M2c.

For any ny . such that ny < no. < no,, if (22) is true, then
ny .. is a valid codeword dimension. Since the opposite is desired,
that is, that there are no valid composite (nonprime) ny . in the
range n; < nz. < ngp, and since (21) is a direct consequence
of Theorem 1, which gives a necessary and sufficient condition for
acceptable values of n; and ns,

ny > Ngc— /N2,

which can be rearranged to obtain

(22)

(23)

nge —n1 < \/Nac

as the condition required for no ns less than the smallest prime
number larger than n; to be an acceptable codeword size. Since the
largest that ns . can be is np , — 1, (23) becomes

(ngp —1)—ny < y/na, — 1.

which implies

nep —m < \/na2p. O
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