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In this paper we propose a network architecture that combines a rule-
based approach with that of the neural network paradigm. Our pri-

mary motivation for this is to ensure that the knowledge embodied in

the network is explicitly encoded in the form of understandable rules.
This enables the network's decision to be understood, and provides an
audit trail of how that decision was arrived at. We utilize an informa-

tion theoretic approach to learning a model of the domain knowledge
from examples. This model takes the form of a set of probabilistic

conjunctive rules between discrete input evidence variables and out-
put class variables. These n,tles are then mapped onto the weights and
nodes of a feedforward neural network resulting in a directly specified
architecture. The network acts as parallel Bayesian classifier, but more
importantly, can also output posterior probability estimates of the class
variables. Empirical tests on a number of data sets show that the rule-
based classifier performs comparably with standard neural network
classifiers, while possessing unique advantages in terms of knowledge
representation and probability estimation.

1 Introduction " ,

The rule-based knowledge representation paradigm is well established
as a powerful model for higher level cognitive processes (Newell and
Simon 1972; Chomsky 1957), whereas the connectionist paradigm seems

very well suited to modeling lower level perceptual processes. In partic-
ular, rule-based expert systems have proven to be a successful software
methodology for automating complex decision-making tasks. Primary

advantages of this approach include the facility for explicit knowledge rep-
resentation in the form of rules and objects, and the ability of a rule-based
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system's reasoning to be understood by humans. However, current rule-
based systems are fundamentally restricted in speed of execution, and
hence in their applicability to real-time systems, because of the serial
computations performed in present inference processing schemes. In ad-
dition, current rule-based systems are brittle in their ability to deal with
the uncertainties inherent in real-world information and lack any abil-
ity to generalize to novel problems. Neural network paradigms, on the
other hand, are typically quite adept at modeling problems that occur
in pattern recognition, visual perception, and control applications. This
ability is due (at least in part) to their inherent robustness in the pres-
ence of noise, the lack of which plagues the implementation of rule-based
systems in practice. In addition, neural networks are inherently parallel,
and special-purpose parallel neural network hardware implementations
promise quantum leaps in processing speeds, suitable for real-time sys-
tems. However, neural networks, as presently implemented, are poor
at explaining their reasoning in human understandable terms because

they embed domain knowledge in the implicit form of weights and hid-
den nodes. The network is thus very much of a "black-box" solution,
whose structure and reasoning are relatively inaccessible to higher level
reasoning or control processes, such as the human user. In many areas of
expertise such as medical, legal, or life-critical domains, it is an absolute
requirement that an autonomous reasoning agent be able to explain its
decisions to a higher level authority such as a judge. We are therefore

led to ask whether it is possible to amalgamate the rule-based and con-
nectionist approaches into a hybrid scheme, combining the better aspects
of both, while eliminating the drawbacks peculiar to each in the process.
A natural common ground on which to combine these approaches is that

of probability. We show that by referencing both rule-based systems and

neural networks to the common normative frame of probability, a novel
and practical architecture emerges. .

In this paper we propose a hybrid rule-based connectionist approach
that overcomes many of the problems outlined above. Our ultimate goal
is the automatic learning of rule-based expert systems that can perform
inference in parallel when implemented on neural network architectures.
For the purposes of this paper, however, we concentrate on the prob-
lem of classification and posterior probability estimation, implemented

on rule-based feedforward neural nets. We show how probabilistic rules
can be used as a natural method for describing the high-order correlation
information in discrete (or categorical) data, and how the hidden units

of a feedforward net can easily implement such rules. Furthermore, we
show how information theory and minimum description length theory

can be used to learn only the most important of these rules, thus di-
rectly specifying the network architecture in terms of hidden units and
connectivity. Finally, we show that output probabilities may be esti-

mated using a parallel Bayesian approach, which is a natural extension
of a first-order Bayes classifier. The architecture proposed in this paper is
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therefore novel for a number of reasons. First, it avoids iterative network
training processes (such as backpropagation) by directly specifying net-
work weights in terms of probability estimates derived from the example
data. Second, the hidden nodes of the network are automatically learned
from the data without having to specify the number of such nodes. This
approach leads to the advantage that network parameters are directly in-
terpretable in terms of rules with associated weights of evidence between
the nodes. Third, given that it is usually necessary to assume some form
of conditional independence among the input variables in order to render
the probability estimation problem tractable, the proposed classification
scheme is novel in that it uses data-dependent conditional independence
assumptions only to the extent justified by the data.

Networks that learn from example form the basis of many current con-
nectionist paradigms. The success of the backpropagation (Rumelhart et
al. 1986) and related algorithms is that, given a specific architecture in
terms of input, hidden, and output nodes, the connection weights be-
tween these nodes needed to model the high-order correlations in the
example data can be easily learned. Learning the network architecture
itself, and generating true output probability estimates is a considerably
more difficult task for current neural network paradigms. It is inter-

esting to note that Uttley (1959), conceived of a network in which all
higher order input-output correlations were stored. This network stored
a number of probabilities exponential in the number of input variables,

but contained the information necessary for calculating the conditional
probability of any set of output variables, given any other set of input
variables. In principle, this provided a method of calculating output
probabilities at the expense of exponentially many of what we would

now call hidden units, many of which were redundant in the sense of

not contributing to the output information. Networks whose architec-

tures include high-order connections chosen randomly were of course
among the very early neural network models (Rosenblatt 1962; Alek-

sander 1971). At the other extreme, in a previous paper we showed

how simple first-order correlations could be used to successfully pre-

dict output probabilities (Goodman et al. 1989), provided the data were
well specified by such low-order information. Between these extremes
lie approaches that make subjective prior judgments about conditional
independence to decide which higher order conjunctive probabilities to
store, such as the Bayesian networks described by Pearl (1988), Lansner
and Ekeberg (1989), and Kononenko (1989).

This paper develops in the following way. Eirst, we outline our rule-

based network architecture. Second, we describe our methodology for

learning a set of probabilistic production rules from example data, using

an information theoretic approach. Third, We show how these rules are

then mapped onto the nodes and links of a feedforward neural network
in such a manner that the network computes posterior class probabilities
using a Bayesian formalism. We conclude with a comparative evaluation
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of the approach using five data sets, including medical diagnosis and
protein structure prediction.

2 A Rule-Based Classifier Architecture i.,;

We consider the problem of building a classifier that relates a set of K dis-

crete feature variables (or attributes) comprising the set Y = {Y I, . . . , Y K}

to a discrete class variable X. Each attribute variable takes values in the

alphabet {yl,... ,yr'}, 1 .::; I .::; K, where ml is the cardinality of the lth

attribute alphabet. The class variable X takes discrete values from the set

{Xl,'" ,Xm}, where m is the cardinality of the class. We also assume that

we are given an initial labeled training set of N examples where each

example is of the form {YI = ~,..., YK = Yi, X = Xi}. The supervised

learning problem we set ourselves is to learn a classifier that when pre-
sented with future unseen attribute vectors (which may be either partial
or complete) will estimate the posterior probability of each class. We may
then wish to output either these probabilities, or the class variable with

the highest probability as the decision made by the classifier. Note that

we are particularly interested in real data sets in which the classification
is often nondeterministic or noisy, that is, there exists class overlap and

hence a fundamental ambiguity in the mapping from Y to X. In this

case there is no perfect classifier for the problem and the performance of
the classifier as measured by its error rate will be nonzero, and bounded

below by the optimal Bayes error rate p~.

The rule-based architecture we propose takes the form of a three-layer
feedforward network as shown in Figure 1.
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FigQre 1: Architecture of the rule-based classifier.
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The input nodes correspond to each possible attribute-value pair in
the input attribute space. The hidden layer consists of a set of IRj con-

junction detector nodes (or AND gates), one for each rule in the set of

rules R. These hidden nodes detect the conjunction of one or more input

attribute-value pairs of the form {Y 1 = Y'i, . . . , Y, = Yf}. When a conjunc-

tion is detected the rule fires and the node outputs a 1. When the node is
not firing it outputs a O. The output layer consists of one nodeior each
output class. The action of a rule firing contributes an activation from

the hidden rule node into one or more output class nodes. The contri-

bution into the ith output node from rule rj is given by the link weight
Wij, and represents the weight of evidence for the conclusion, given the
occurrence of the left-hand side conjunction of attribute values. Each

rule node together with its output link can therefore be considered to be
implementing an lth-order conjunctive rule of the form

IF {Y 1 = Y':, . . . , Y, = yf} THEN X = Xi with STRENGTH Wij

The rule has a conjunction of input attribute-value pairs on its left-hand
side (LHS), and a particular class attribute-value pair on its right-hand
side (RHS). The weights Wij can be positive or negative depending on
whether the rule supports the truth or falsity of the RHS conclusion.

Each output node accumulates the inputs feeding into it from the rules

that have fired and outputs a quantity that is a function of the particular
activation function and threshold used in the node. Our design problem
is then to implement a set of rules and associated weights, together with
a suitable set of output activation functions and thresholds, such that
the output of each class node is an estimate of the corresponding class
probability.

3 Learning Rules Using Information Theory ; """cO",' ,,!... "":

We now consider how to learn the set of rules R from the given training
data such that the classifier will operate in the desired manner. Clearly

we do not want to implement all possible conjunctive rules, as the size

of the hidden layer will be exponential in the size of the input attributes.

Rather we require a sufficiently good set of rules that allows the network

to both load the training data and to generalize to new data while having
a performance that approaches the optimum Bayes risk. Alternatively,
given a fixed resource constraint in terms of IRI allowed hidden units,

we should implement the best IR! rules, according to some "goodness"
criterion.

Let us rephrase the previously defined rule in terms of a probabilistic
production rule of the form:

If Sj then Xi with probability p
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where p is the conditional probability P(Xi I Sj), and Sj represents the
particular conjunction of attribute-value pairs found in the LHS of the

rule.

We wish to have a measure of the utility or goodness of such a rule.
In a Hebbian sense such a rule might be considered good if the occur-

rence of the LHS conjunction of variables is strongly correlated with the
RHS. Alternatively, such a rule might be considered good if the transition

probability P is near unity. For example, a rule with p = 1 indicates a

deterministic rule in which the occurrence of Sj implies X = Xi with cer-

tainty. However, we will take an information theoretic approach to this

problem, and consider that the goodness of such a rule can be measured

by the average bits of information that the occurrence of the LHS Sj gives

about the RHS X = Xi. We have introduced such a measure, called the

I-measure (Goodman and Smyth 1989), which can be defined as

[ ( P(xo, So) ) ( (1 - p(xol So)

)]I(X;sj)=p(Sj) p(x; I Sj) .log -;;W +(1-P(Xi I Sj)) .log (l-=p(~

This measure possesses a variety of desirable properties as a rule in-

formation measure, not the least of which is the fact that it is unique as a

nonnegative measure of the information that Sj gives about X (Blachman

1968). As can be seen the I-measure is the product of two terms. The

first is p(Sj), the probability that the LHS will occur. This term can be
viewed as a preference for generality or simplicity in our rules; that is,

the left-hand side must occur relatively often for a rule to be deemed

useful. The other term is the cross-entropy of X and X given Sj' and as
such is well-founded measure of the goodness of fit between our a pos-

teriori belief about X and our a priori belief (Shore and Johnson 1980).

Hence, maximizing the product of the two terms, I(X;sj), is equivalent to

simultaneously maximizing both the simplicity of the hypothesis Sj and

the goodness of fit between Sj and a perfect predictor of X. The simplicity
of Sj directly corresponds to the number of attribute-value conjunctions

in the rule LHS, that is, the rule order. Low-order rules have less LHS
conditions, and thus a higher p(Sj). There is a natural trade-off involved

here because, typically, one can easily find high-order rules (less prob-

able Sjs) that are accurate predictors, but one has a preference for more

general low-order rules (more probable Sjs). The I-measure thus provides
a unique method of not only ranking the goodness of a set of rules, but

also being able to tell if a more specialized rule (one with more LHS con-

ditions) is better or worse than a more general rule. This basic trade-off

between accuracy and generality (or goodness of fit and simplicity) is a

fundamental principle underlying various general theories of inductive

inference (Angluin and Smith 1984; Rissanen 1989).

We use the I-measure in a search algorithm (Smyth and Goodman

1992) to search the space of all possible rules relating the LHS attributes

Y to the RHS class X and produce a ranked candidate set S of the ISI

most informative rules that classify X. The search proceeds in a depth

Co'

'"

-
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first manner starting with a particular LHS conjunction and progressively
specializes the rule until bounds indicate that a higher measure cannot
be achieved by specializing further. The search is potentially exponential
but in practice is highly constrained by small sample estimators and in-
formation theoretic bounds that heavily penalize searching higher order
rules (empirical results demonstrating this effect are given in Smyth and
Goodman 1992). In addition, higher order rules that have lower infor-
mation content than a corresponding lower order (more general) rule can
be omitted from the final rule list. From this large candidate set of rules

S we next produce the final set of rules R, which will be implemented

in the classifier.

4 Rule Pruning Using a Minimum Description Length Model

We have already described how we find an initially large candidate set
of rules S that models the data. It is well known, both empirically and
from theory, that there is a trade-off between the complexity of the model
and the quality of generalization performance. A model that is too sim-
ple will not have the representational power to capture the regularities
of the environment, whereas a model that is too complicated may well
overfit the training data and generalize poorly. When we speak here

of generalization we are referring to the system's mean performance in
terms of classification accuracy (or a similar function) evaluated over

some infinitely large independent test data set. The notion of Occam's
razor has been used to promote model parsimony: choose the simplest
model that perfectly explains the data. Unfortunately this presupposes

that there exists a model under consideration that can explain the data

perfectly in this manner. In practical problems this is unlikely to be the
case, since there is often an ambiguity in the mapping from attribute
space to the class labels. In this stochastic setting a more general version
of Occam's razor has been introduced (Rissanen 1984, 1987) under the
title of minimum description length (MDL). The MDL principle is sim-
ple to state: choose the model that results in the least description length,
where the description length is calculated by first sending a message de-
scribing the model [the complexity term L(M)], followed by a message
encoding the data given the model [the goodness-of-fit term L(D 1M)].
Thus we minimize:

L(M) + L(D 1M)

MDL can be viewed as entirely equivalent to a Bayes maximum a pos-
teriori (MAP) principle (where one chooses the model that maximizes
the joint probability of the data and the model) by virtue of the fact that
the description lengths are directly related to prior probabilities. We will

refer primarily to the description length framework as it is somewhat

more intuitive.
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In the context of applying MDL to the problem at hand we seek a

pruned rule set R ~ S, which possesses near-minimal description length

among all possible subsets-finding the optimal solution is clearly in-
tractable in the general case. For a more general discussion of search
in MDL contexts see Smyth (1991). The algorithm we propose is a sim-

ple greedy procedure that, starting from an initially empty set of rules,

continues to add the next-best rule to the current set, and terminates at
a local minimum of the description length function. In more detail the
algorithm is described as follows:

4.1 MDL Rule Pruning Algorithm.

1. Let R = { }.

2. Find the rule rES such that when R Uris evaluated on the train-

ing data as a classifier the sum of the goodness of fit and the com-

plexity of r is minimized.

3. Remove rule r from S.

4. If the description length of R Uris greater than the description

length of R then stop.

5. Else let R = R U r and return to step 2.

At this point in the discussion we can treat the classifier itself as a

"black box" that simply takes a rule set R, a set of unlabeled test data,

and produces probability estimates of the class labels. We will describe

this "black box" in detail in the next section. Let us first look at the other

part of the algorithm, which we have not defined in detail, namely the

calculation of description length.
Suppose we have N training samples. For the ith sample, 1 :::; i :::;

N, let xtrue(i) be an index to the true class, i.e., the training label. Let

p[xtrue(i)] be the classifier's estimate of this class given the ith attribute
vector. Hence, the length in bits to describe the data given the model
(the classifier) is

N 1

L(DIM)=}=:log,
[ ( '

)];=1 P Xtrue I

The complexity term, the length in bits to describe the classifier itself,
may be arrived at by a number of arguments. In principle we need to

send a message describing for each rule its left-hand side component, its
right-hand side component, and an estimate of the transition probability
of the rule. One of the key factors in proper application of MDL is the

precision with which these probabilities are stated. It is a well known
general result that very often the optimal precision for model parameters
is proportional to V:N, or about (1/2) logN bits per parameter. In practice
this term dominates as N becomes large over the specification of the

rule components. Since these specification terms also depend on the~
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particular coding scheme (or the prior bias in Bayesian terminology), we

choose to ignore these terms in the optimization or search and propose

that the complexity be simply proportional to the (1/2) logN precision
terms. This penalty scheme has been widely used in practice by other

authors (Rissanen and Wax 1988; Tenorio and Lee 1990, et al.). Hence,

for rule set R the complexity is assessed as

L(M) = ~ log N

As we shall discuss later in the section on empirical results, this sim-
ple pruning algorithm is very effective at discovering parsimonious rule
sets that account for the data. Heuristically, for multivalued class prob-
lems, we can understand the behavior of the algorithm as initially trying
to account for each class by a single accurate rule for each, and then inte-
grating rules that cover regions of the attribute space with high accuracy.

In particular, as we shall discuss in the next section, by evaluating the

performance of the classifier on each candidate rule, we can match the
rule set to the nature of the classifier (conditional independence in this

case).
If IRI is the number of rules in the final rule set then it is straight-

forward to show that the complexity of the pruning algorithm approxi-

mately scales as NISIIRI2. Typically IRI « ISI, the number of rules in

the initial rule set. It is difficult to bound IRI accurately (since it depends

on the complexity of the particular classification problem), however, em-

pirical results suggest that it often grows sublinearly with N, perhaps as

slowly as logN.

5 Derivation of the Classification Equations ...

In this section we describe how the network uses the learned rule set

to estimate the class probabilities, given a particular set of evidential
attribute-values. As before we have m classes Xl,' .. , Xm and a rule set R.

As discussed earlier each rule rj E R specifies a particular lth-order left-

hand side attribute conjunction Sj, a class Xi, and the transition probability
P(Xi I 5j), where we recall that 5j denotes a particular conjunction of input
attribute-value terms.

For a particular input vector {Y1,"', YK}, a certain subset of rules
F ~ R is said to "fire," i.e., F is the set of rules whose left-hand sides

logically evaluate to true, or, in neural terms, the set of hidden nodes
that are activated. The problem is simple: given only knowledge of

P(Xi I 5j), 1 ~ j ~ IFI, how can we estimate P(Xi 151,. . ., 51:F1)? In principle
there are strong arguments for using a maximum entropy solution, i.e.,
viewing the P(Xi I 5j) and the particular input vector {Y1,'" ,YK} as a set
of constraints and maximizing the entropy of the joint distribution sub-
ject to these constraints (Cheeseman 1983; Miller and Goodman 1990).
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However, the direct solution of this nonlinear optimization problem is

unattractive from an implementation viewpoint, being both computation-

ally intensive and unnatural to integrate into a system based on explicit

knowledge representation.
A better approach in this context is to make a particular simplifying

assumption, resulting in a maximum entropy solution that can be di-
rectly expressed in closed form (in terms of the component rules). This
key assumption is that the left-hand side conjunctions are conditionally

independent given the class, i.e., for any pair of rules rj and rk E R, which

refer to the same class Xi, we have

P(Sj!Sk I x;} = p(Sj I Xi)P(Sk I Xi) (5.1)

As described in the previous section, the rule set R is formed from a large

candidate set of rules in a manner such that rules that obey this condi-
tional independence assumption are included and those which violate
the assumption are not. Hence, we find a classifier that uses conditional

independence only insofar as it can be justified by the training data-this
is considerably more robust than making a priori assumptions about in-
dependence without any knowledge of the data. Assuming conditional
independence of attributes given the class is well motivated, as discussed
by Pearl (1988).

By Bayes' rule we have that

( . 1 ) - p(s1".",sIFII x;}p(x;}
P X, S1,... ,SIFI -

( )pS1'."'SIFI

IF!

( Inj=1 P Sj X;)
= P(Xi)

p(s1"..,sIFI)

[by the conditional independence
assumption in (5.1)]

nlFI ( .) IFI ( I )= j=1 P sJ P(Xi) n P Xi Sj
p(S1,'..,SIFI) j=1 p(x;}

(by Bayes' rule)

Let us define the weights Wij as

..- 1 ~~w'J - og

( )P Xi
a bias term for each class as

ti = IOgp(Xi)

and an (as yet) undetermined constant

IFI ( )C - 1 nj=1 P Sj- og
P(S1,...,SjFI)
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Hence, we get that

IFI

IOgp(XiISt"",SIFI)=C+ti+LWij (5.2)

j=1

Equation 5.2 allows us to estimate the log posterior probability for
each output class. From this, the actual probability can be computed,

or a classification decision can be made by simply choosing the largest
estimate as the output class. Equation 5.2 admits a direct and intuitive
interpretation of the operation of the classifier. First, we can ignore the

unknown constant C because it can be eliminated by the constraint that

the sum of the posterior estimates must equal I, as shown in the next
section. Thus, in the absence of any rules firing (IFI = 0) the estimate for
each class is given by the bias value ti, namely the log of the prior prob-
ability of the class Xi. Given a set of rules that fires, each rule contributes
a "weight of evidence" into its corresponding output class. This weight
of evidence Wij has a direct interpretation as the evidential support for
the class provided by the rule-a positive weight implies that the class
is true, while a negative weight implies it is false. The Wij thus provide

the user with a direct explanation of how the classification decision was
arrived at. Each class estimate is then computed by accumulating the

"weights of evidence" incident on each class from the rules that fire,
which can be done in a parallel manner.

We can relate our weights of evidence to those proposed by Good

(1950) and Minsky and Selfridge (1961), namely, our Wij are what Good

termed "relative weights of evidence" for the case of multivalued classes.
This weights of evidence classifier (which is relatively well known and
has appeared in various guises in recent decades) is an intuitively elegant
implementation of a linear reasoning scheme, as pros and cons for a
particular hypothesis (or class) are tabulated in an additive manner.

6 Neural Architecture
"",/;;,)"",1, ~:i';U:"";;'"

The classification procedure given by equation 5.2 can now be mapped
onto the three-layer feedforward network architecture shown in Figure 2.
The input layer contains one node for each input attribute value. The

hidden layer contains one node for each rule. These nodes are effectively
AND gates that output a 1 if the left-hand side of the rule is satisfied,

and a 0 otherwise. The third layer contains a node for each value of the
class attribute. Each second-layer node representing rule i is connected
to a third-layer node j via the multiplicative weight of evidence Wij' Also

feeding into and summed by each third-layer node is the bias value ti.

The sum of activations into this node given by

IFI

O"i = t; + L W;j
j=1
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Figure 2: Neural network architecture.

is then exponentiated to produce the node output: .

a; = e"i = e-c . p(Xj I 51, . . . ,51.?'"!)

The output of the exponentiators is then fed into a normalization layer

that constrains each output to satisfy:

O. - --~

I-~m

0 ,

L..k=1 k

This effectively removes the constant C from each input 0'; = e-c .

p(x; I 51",., 51.?'"1) producing the output probability estimate 0; = p(x; I
51,..' ,51.?'"1) as desired. If required, a winner-take-all stage can be added

to decide on the the most likely class.

It is interesting to note that for the special case of a binary class vari-

able, m = 2, the resulting circuit may be considerably simplified to that
shown in Figure 3. In this case the output is a single node that accumu-

lates the weights of evidence for one class value and again5t the other.

The rule weights incident on the output are then

.-

1 E~
WI] - og

( I )P X2 Sj
and the bias is the log-odds of X,

tl =log~

P(X2)

The exponentiation and normalization steps are combined by noting that

for this binary case

0'1 1

01 = =

0'1 + 0'2 1 + c("t-172)
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Figure 3: Binary class architecture.

resulting in the output node having the well-known sigmoid activation

function. If a classification decision is required, the sigmoid is simply re-

placed with a hard-limiting node which switches at zero input activation

to output 1 for class Xl = true and 0 for class Xl = false.
Without getting into details, it is important to note that the above

neural architecture is well suited to VLSI implementation. In particular,
the weights for the first layer are binary, and the hidden units are sim-

ply AND gates. Analog weight storage is required only for the second
layer weights, and there are typically many fewer of these than there

are first layer weights. Also, exponentiation can easily be performed in

VLSI by using Mas transistors in their subthreshold region (Chiueh and
Goodman 1990), and the final normalization stages can be performed by

variants of the winner-take-all circuit (Lazzaro et al. 1990).

7 Empirical Results ' r

We now compare the performance of the proposed classifier with that

of two other classifiers, namely a backpropagation-trained neural net-

work and a first-order Bayes model. It is important to point out that the

primary goal of these experiments was to see if our rule-based classifier

yielded comparable performance (in terms of classification accuracy) when

compared to standard alternative approaches, rather than demonstrably

superior performance. It is well known that most well-founded classifier

algorithms will come reasonably close to the optimal Bayes classifica-

tion rate on most reasonable problems (Weiss and Kapouleas 1989; Lee
and Lippmann 1990). Hence the goal of the empirical evaluation is to
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test whether the rule-based classifier can achieve similar near-optimal
performance over a number of different problems.

From this point onward we will refer to the first-order Bayes clas-

sifier model as the "first-order classifier," and to the backpropagation
trained feedforward neural network as the "neural network." A first-

order classifier is a special case of our rule-based network, where the
network architecture consists of no hidden units, i.e., the model consists
of all possible first-order rules with the weights defined exactly as for
the rule-based network as described earlier. This model is also known
as a "naive Bayes" model (Kononenko 1989) and amounts to assuming

that the joint distribution of the class and the attributes can be factored

into first-order terms. We chose this model for comparison purposes

both because of its simplicity and the fact that it often provides better

classification performance than one has any right to expect.

The particular neural network design algorithm that we used was the

conjugate-gradient scheme of Barnard and Cole (1989). Each network has

three layers, the first layer containing a single node for each attribute, and

the third layer containing a node for each class. The size of the hidden

unit layer was typically chosen to be roughly twice the number of input
nodes. One of the current problems with neural network techniques is

the arbitrary choices that must be made in terms of architecture selection.

If one chooses too few hidden units, the network may have too limited

a hypothesis space to learn the required concepts, while with too many
it may overfit on the training data. Typically, howeve4 for the data
sets considered here, we found only minor variations in classification

accuracy as long as the number of hidden units was of the same order

as the number of input units.
We evaluated the performance of the algorithms on five data sets.

Two of the data sets are synthetic (LED digits, and a Boolean function),
while the other three are real-world data sets (congressional voting, med-
ical diagnosis, and protein secondary structure). The first data set is the
well-known LED digits classification problem with 10% noise added. Es-

sentially this consists of a seven-segment LED, where the seven segments

correspond to seven binary features, and the digits "0" though "9" rep-
resent 10 classes. The 10% noise consists of reversing the segments from
their true value with a probability of 0.1. This renders the classifica-
tion problem somewhat nontriviaL since the optimal Bayes classification

accuracy can be shown to be about 74% (as opposed to 100% for the

noiseless case). We generated a database of size 1000 (with 10 equally

likely classes) to use for evaluation. The second data set consists of 435

voting records from a session of the 1984 United States Congress; The at-

tributes correspond to 16 different issues on which the politicians voted,

such as aid to the Nicaraguan contras and budget cuts. The class variable

is party affiliation, i.e., Democrat or Republican. Recognition accuracy

up to 95% is known to be achievable on this data set using only a single
attribute, the physician-tee-freeze attribute. Hence, as suggested by Bun-
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Table 1: Compar:ative Performance Results on Three Data Sets.

,'!! 1",
Mean percentage accuracy:f: SO Mean rule

Data set Trivial First-order Neural Rule-Based Complexity:f: SO

LED digits 10.0 74.1:f: 5.3 72.2 :f: 4.96 73.1:f: 5.03 40 :f: 1.27

Voting 61.4 87.44:f: 9.66 87.68:f: 7.06 88.18:f: 4.41 2.2:f: 0.40

Boolean 64.7 66.66:f: 5.41 89.99:f: 2.33 89.06:f: 2.44 11.7:f: 0.48

tine (1991) and others, the problem is made more interesting by removing
this attribute. On the modified data set, Buntine reports accuracies up

to 89% using a variety of decision tree techniques. The third data set is
artificially generated with size 640, where there are 6 binary attributes,

y 1, . . . , Y 6 and the class is the Boolean function

X=OR[XOR(Y1,Y2), AND(Y3,Y4), AND(Ys,Y6)]

To introduce noise, the class variable X has a 10% random chance of

being reversed from its true state. Hence the optimal recognition rate

on this problem is 90%. The fourth data set is a real database of breast
cancer diagnosis data collected at the University of Wisconsin Hospitals

between January 1989 and July 1990. We will describe this data set in
more detail later since the performance of the classifiers was evaluated in
an incremental manner as if they had been run as the data were collected

(in chronological order). The fifth data set is a protein secondary structure

problem, also described in more detail later.

For the first three data sets we use the standard evaluation technique

of V-fold cross-validation where V was chosen to be 10. This means that

the LED, voting, and Boolean function data sets were divided into disjoint

test sets of size 100, 43, and 64, respectively. The neural network was a

three-layer feedforward network with sigmoid activation functions, and
25, 20, and 8 hidden units for the LED, voting, and Boolean function

problems, respectively. Both the mean and standard deviation of the
resulting CV estimates are reported in Table 1. In addition we tabulate
the mean complexity of the rule-based classifier for each data set, in

terms of the mean (over the different training sets) number of weights

connected to the output layer (the number of rules in the classifier). One

column of the table corresponds to the mean accuracy obtainable for each
data set simply by the trivial strategy of always predicting the most likely

class label.

Performance on the data is roughly equivalent between the classifiers

except for the first-order model on the Boolean function data-one of the

motivations for including this data set was to demonstrate the limitations
of the first-order model in capturing such high-order concepts. Hence,

we can conclude that the rule-based model achieves roughly comparable

classification accuracy to the more usual backpropagation model.
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The fourth data set considered is the aforementioned medical diagno-

sis database. A common technique in breast cancer diagnosis is to obtain

a fine needle aspirate (FNA) from a patient under examination. Wolberg

and Mangasarian (1990) describe the domain in some detail. The FNA

sample is evaluated under a microscope by a physician who makes a

diagnosis. All patients evaluated as malignant, and some of those la-

beled as benign, later undergo biopsy, which confirms or disconfirms the

original diagnosis-the other patients diagnosed as benign undergo later
reexamination to provide a true measurement of their condition. Since

biopsy is roughly eight times as costly as the FNA technique, it is im-

portant that unnecessary biopsies be kept to a minimum. In addition,

Wolberg and Mangasarian report that physicians encounter borderline

cases making diagnosis difficult. The approach taken by Wolberg and

Mangasarian was to collect training data in the form of nine subjectively

evaluated characteristics of the FNA sample for each patient. These fea-

tures describe general characteristics of the FNA sample as seen under a

microscope, such as uniformity of cell size, marginal adhesion, and mi-

toses. Ground truth in the form of class labels (benign or malignant) was

obtained at a later stage by a biopsy or reexamination. A classifier was

then designed that takes the physician's description of the FNA sample

and produces a diagnosis. In Wolberg and Mangasarian (1990) a suc-

cessfullinear programming technique is introduced for determining the

parameters of a neural network classifier for this diagnosis problem.

For our evaluation purposes we used the same database that consists

of 535 patient records. As described above there are 9 attributes, each of

which takes on a discrete value between 1 and 10. We chose to evaluate

classifier performance by training the performance of each classifier on

the first k x 50 samples (where 1 ~ k ~ 10) and testing on the remainder.
This gives an idea of the performance as a function of training sample

size and is also closer to the manner in which a classifier would be used
in practice since the database of patient records is in chronological order.

The results are shown in Figure 4. Clearly beyond about 150 training

samples, all of the classifiers perform equally well. The excellent perfor-

mance of the first-order classifier, and the fact that near 100% accuracy

can be attained, leads one to suspect that the problem is not a difficult

one in terms of classifier design. The relatively poor performance of the

rule-based classifier for small sample sizes deserves some comment. In

effect the MDL nature of the classifier design algorithm ensures that the

model is conservative in its use of parameters when there are few data

available. In contrast, both the first-order model and the neural network

had a fixed, relatively complex, architecture independent of the amount

of training data-the neural network used a single hidden layer with 12

hidden units throughout. In theory, for small sample sizes, both of these

networks are too complex to be plausible models in a statistical sense.
This phenomenon has been observed elsewhere by Cybenko (1990) and

Smyth (1991). Nonetheless, in practice, overcomplex models can outper-
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Figure 4: Medical database-performance.

form the more theoretically correct, simpler, models on a particular data

set. In particular we note that the performance of our rule-based classi-

fier when used with the more complex (in terms of more rules) unpruned

rule set also performs comparably to the other techniques.

Classification accuracy alone is not, however, the only figure of merit

of interest. We are particularly interested in the ability of our scheme

to provide an estimate of the classifier's confidence in its decision, by

using the output probability estimates provided along with the classifi-

cation decision. For the rule-based and first-order Bayes networks these

probabilities are produced directly. For the !>ackpropagation network we
normalize the output activation to produc~ a probability estimate. Fig-

ure 5 shows the mean binary entropy computed using these probabilities,

for each classifier's decisions on the medical database, as a function of

sample size. Entropy provides a measure of the classifier's uncertainty

in its decision, and ranges from 0 (comp\etely certain) to 1 bit (max-

imally uncertain). In practice this uncert~inty estimate can provide a

useful confidence indicator to a higher level decision maker. Two cases

are shown for each classifier. One case corresponds to the uncertainty
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Figure 5: Medical database-classifier uncertainty.

when the classifier's decision was correct, and the other corresponds to

the uncertainty when the decision was incorrect. Ideally we would like

a classifier to have a low uncertainty (near 0) when it makes a correct

decision, and a high uncertainty (near 1) when it makes an incorrect de-

cision. Consider first the three curves that indicate incorrect decisions.

From Figure 5 we see that the rule-based system performs well in this
regard, being near maximal uncertainty when it makes a wrong decision

over the entire range of sample sizes. The neural network does not per-

form as well. It begins with a reasonable degree of uncertainty and then

becomes more definite (in its mistakes) as the training size increases. The

first-order Bayes classifier is initially quite definite in its mistaken conclu-

sions, but begins to become more reasonable as the sample size increases.
This effect is likely due to the fact that its model becomes more accurate
as more data become available (in terms of probability estimates). Also
shown are the uncertainty curves for the correct decision. The rule-based

and backpropagation networks are comparably low as desired, with the
first-order Bayes classifier being even more confident in its decisions.

In Table 2 we list the the actual rules obtained when the algorithm

was trained on the first 400 samples of the data set. This set of 11 rules
is the final set obtained by the MOL portion of the algorithm after the



Rule-Based Neural Networks 799

Table 2: Medical- Database-Rules.

\ ~-

'-Measure Rule Strength Wij

0.297 IF cell size uniformity 1 THEN DBa 5.9

AND mitoses 1
0.289 IF bare nuclei 1 THEN DB 6.2

AND normal nucleoli 1
0.271 IF epithelial cell size 2 THEN DB 8.0

AND bare nuclei 1
0.231 IF bare nuclei 10 THEN DMb -4.4

0.145 IF clump thickness 10 THEN DM -5.7

0.111 IF cell size uniformity 10 THEN DM -5.3

0.103 IF normal nucleoli 10 THEN DM -5.2

0.085 IF marginal adhesion 10 THEN DM -4.2

0.057 IF cell size uniformity 5 THEN DM -4.5

0.056 IF epithelial cell size 10 THEN DM -3.8

0.045 IF bland chromatin 8 THEN DM -4.2

aDiagnosis benign.
bDiagnosis malignant.

rule search procedure had initially found a candidate set of 500 rules.
The rules are ranked in order of decreasing average information content.
The rules that confirm the benign condition (positive weights) are some-

what more informative than those that conclude the malignant condition

(negative weights), primarily because the malignant rules have a lower
prior probability of occurrence, i.e., the left-hand side conditions are less
likely.

Figure 6 shows a diagram of the network that results when the rules
are implemented on a neural architecture. Note that there are really only
three genuine hidden units ( the AND gates) corresponding to the three

second-order rules. The first-order rules do not need a hidden unit and

effectively correspond to a single weighted link between the input and

output layers.
The final data set was chosen to test the rule-based approach on a

large database. One of the original successes of the neural network clas-

sifier model on a large-scale problem was the secondary structure protein

prediction problem, as described by Qian and Sejnowski (1988). The ob-

jective of this prediction task is to predict the secondary structure of
globular proteins from a knowledge of their sequence of amino acids

(the primary structure). The secondary structure is comprised of small

groups of residues that join together into recognizable local shapes. The

secondary structure is classified into one of three types: "helix," "sheet,"
and "coil," denoted by "h," "e," and "-," respectively. For our experi-
ment we used the same training and testing data as used in Qian and
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Figure 6: Medical database-network.

Sejnowski's paper, which consil'ts of 18,105 training residues and 3520

testing residues. Each "example" in the database consists of a window

of 13 contiguous amino acids, six preceding and six following a particu-

lar central amino acid. A total of 20 different amino acid fractions appear
in the data, each one denoted by an alphabetic character (A, C, 0, ...

etc). The objective is to classifY the central amino acid into one of the

three secondary classes.

Prior to Qian and Sejnowski's work, the best results obtained on the

protein data set were in the mid-50% accuracy range. The work of Qian

and Sejnowski showed that accuracies in the low 60% range were ob-

tainable using neural network techniques: 62.7% for a single network,

and 64.3% when correlations between adjacent elements in the sequence

were taken into account using a secondary cascaded network. Subse-

quent studies by other authors using network models achieved similar

accuracies. Indeed Stolorz et at. (1991) recently showed that a first-order

Bayes classifier can achieve 61.1% accuracy using a window size of 17,

indicating that there is limited predictive information in the attributes

beyond first-order.
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Table 3: Protein Database-Rules.

I-Measure e Strength Wij

0.016 IF primary+.1 P THEN secondary - 0.467

0.01.1 IF primary+.1 P THEN secondary h -.1.542

0.0.10 IF primary+O P THEN secondary - 0.394

0.009 IF primary+O G THEN secondary - 0.296

0.007 IF primary+2 P THEN secondary - 0.340

0.006 IF primary+O V THEN secondary e 0.309

0.006 IF primary+2 P THEN secondary h -0.837

0.006 IF primary+O G THEN secondary h -0.428

0.006 IF primary-.1 P THEN secondary - 0.3.13

0.006 IF primary+O V THEN secondary - -0.348

0.005 IF primary+O I THEN secondary e 0.360

0.004 IF primary+O L THEN secondary - -0.285

0.004 IF primary+.1 V THEN secondary e 0.237

0.004 IF primary-.1 G THEN secondary - 0.2.12

0.004 IF primary+O P THEN secondary e -.1.26.1

0.004 IF primary+3 P THEN secondary h -0.594

0.004 IF primary+.1 L TH~ secondary - -0.265

0.004 IF primary+O I THEN secondary - -0.374

0.004 IF primary+O A THEN secondary h 0.594

0.004 IF primary-.1 2 THEN secondary h -0.273

We ran our algorithm to find the best first-order model, i.e., using

only first-order rules on a window size of .13. The final model contained

194 rules and correctly predicted 61.7% of the test samples. In Table 3 we

list the 20 most informative rules from the final pruned network model.

It is interesting to note that the best rules tend to involve the central

amino acid (primary+O) and the ones nearby at positions primary+ 1,

primary-I, etc., rather than those farther away from the center. The

rules also tend to be grouped into triplets of rules with the same left-

hand side. These rules tend to be a positive rule for the most probable

class (-, with a prior of 0.545), and two negative rules for the other two
classes.

Again, we note that the point of this experiment was not necessar-

ily to obtain better results than have been previously reported but to

demonstrate that results comparable to other "black-box" techniques can

be obtained on a large-scale discrete prediction problem, while achieving

useful explainability due to the explicit rule-based model.

The experimental results confirm that the rule-based classifier is very

competitive in terms of classification accuracy when compared with alter-

native approaches. The results (particularly those for the cancer diagnosis

problem) also clearly demonstrate the unique ability of this approach to

produce a hybrid rule-based neural network, wherein units and weights~
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possess a clear semantic interpretation to the external observer. In do-
mains such as medical diagnosis such a feature makes the likelihood of
user acceptance much higher than would be the case with a "black box"

algorithm.

8 Conclusions ri!i:",~;",j,!j;Cc:' ,) E""~W;c'i

A novel hybrid rule-based connectionist classifier architecture has been
proposed. The architecture of the classifier is directly derived from the
example data by an efficient information-theoretic search technique. The
classification performance of the hybrid scheme on discrete data has been
shown to be comparable with that of conventional neural network clas-
sifiers, and the resulting network exhibits an explicit knowledge repre-
sentation in the form of human-readable rules.
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