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A Real-Time Neural System for Color Constancy
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Abstract—This paper presents a neural network approach to the
problem of color constancy. Various algorithms based on Land’s reti-
nex theory are discussed, with an eye on neurobiological parallels,
computational efficiency, and suitability for VLSI implementation. The
efficiency of one algorithm is improved by the application of resistive
grids and is tested in computer simulations; the simulations make clear
the strengths and weaknesses of the algorithm. A novel extension to
the algorithm is developed to address its weaknesses. An electronic sys-
tem based on the original algorithm was built, using subthreshold an-
alog CMOS VLSI resistive grids, that operates at video rates. The sys-
tem displays color constancy abilities and qualitatively mimics aspects
of human color perception.

I. INTRODUCTION

NYONE who has tried to take a picture of a friend or of a

vase of flowers under different lighting conditions has re-
alized that our present technology for capturing images is
flawed. While the color of skin or of a rose may look the same
to us at high noon or at sunset, a film or video camera just does
not see it that way. Color constancy is the ability of the human
visual system to judge, preattentively, the reflectance of objects
in the visual world under a range of different illuminants. Color
constancy is not perfect: if the illuminant is strongly saturated
(lacking in white), we make errors. However, for natural vari-
ations, such as changing daylight conditions caused by varying
cloud cover, we do rather well.

While the problem of color constancy has been recognized
for some time (Helmholtz commented on it [1]), the computa-
tional essence of the problem has been grappled with only re-
cently. In this paper, we present a system that addresses this
problem for video images. The idea for the system originated
in consideration of mammalian neurophysiology and human
psychophysics; its validity was tested in computer simulations
and it was implemented using analog VLSI. The electronic sys-
tem is the first real-time instantiation of Land’s retinex theory
of color constancy for video imaging.

In the following, we first describe the neurobiological and
computational aspects of the problem. Next we describe various
manifestations of Land’s retinex algorithm, improve on one of
them by applying resistive grids, and propose a novel one. Re-
sults of computer simulations of the improved Land algorithm
and the new algorithm are presented. Finally we describe an
electronic system which performs the improved algorithm at
video rates.
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II. NEUROBIOLOGICAL AND COMPUTATIONAL ISSUES IN
CoOLOR CONSTANCY

A. Neural Computation of Color

The only system which, at present, is capable of approxi-
mating color constancy in real time is the nervous system. As
such, all algorithms for color constancy should be judged in
comparison with the CNS. The following is a necessarily sim-
plified sketch of the neurobiology of color vision, a subject of
continuing extensive research.

We sense light with three classes of receptors, the cones (rod
vision is not considered here). The three classes of cones have
different spectral band-pass properties. They are called long,
medium, and short (from the spectral bands that they are sen-
sitive to), or colloquially, red, green, and blue. At the level of
retinal ganglion cells, the output cells of the retina, the image
has been transformed from three arrays of band-pass signals to
three arrays of combinations of those signals. One set of outputs
codes along the black-white axis of the color space, and the
other two code along the red-green and yellow-blue axes.

Cortical visual area V4, many synapses ‘‘upstream’’ from the
retina, receives inputs from lower visual areas that work with
color difference signals. In early investigations V4 was dubbed
the color area [2] because the cells could only be excited with
color. (This view is now modified, as it is known that V4 cells
can also respond to orientation and binocular disparity [3]. Here,
only the spectral properties of V4 cells are considered.) Cortical
neurons in this visual area are especially interesting since they
seem to be responsive to perceived color, rather than wave-
length; that is, they are ‘‘color constant’’ according Zeki’s in-
formal study [4], [S]. An example of his work is as follows.
With white illumination, he centered a cell’s receptive field on
one colored patch from a large field of many colored patches.
A given cell responded only to a red patch, for example—yel-
low or green patches produced no cell firing under white light.
Next he centered the cell receptive field on a yellow patch,
turned off the white light, and carefully constructed a new il-
luminant such that the spectrum of light coming from the yellow
patch was the same for this illuminant as the spectrum from the
red patch under the white illuminant. To a human observer, the
yellow patch still looked yellow, not red. Zeki found that the
V4 cell did not fire when presented with the yellow patch which
reflected red light, and so had discounted the illuminant. In con-
trast, he found that cells in the first visual area are sensitive to
wavelength alone and so responded like a photometer, firing
identically to a red patch under white light and a yellow patch
under red light.

Desimone and his colleagues [6] obtained results from V4
cells that are in a sense supportive of Zeki’s observations. In a
study of the ‘‘nonclassical’’ receptive fields of extrastriate vi-
sual neurons, they found that V4 cells respond to white, and to
many wavelengths, but have a maximal response at some wave-
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length ‘‘analogous to a broad-band color filter, such as a piece
of colored glass.’” They found that V4 cells are suppressed by
stimuli in a large (30° or greater) ‘‘silent surround’’; the
suppression is maximum at the wavelength most effective in
exciting the cell center, and falls off as the surround stimulus
wavelength is moved away from the most effective center stim-
ulus wavelength.

By comparing the color in the center of the receptive field
with the color in a large area outside of the center, V4 cells
judge relative color. This is the presumed basis for color con-
stancy. If the illuminant is red, for example, a reddish cast is
added to all parts of the scene. Though the cell center may see
red, its surround does as well, and so it will not respond. Thus
the cell discounts the illuminant and contributes to color con-
stancy.

B. The Computational Essence of Color Constancy

Under normal variations (e.g., noon versus sunset or clear
versus overcast sky), the spectrum of daylight varies somewhat.
The variation is limited enough that is can be represented with
three spectral basis functions [7]. A wide range of naturally oc-
curring object reflectances can also be described with only three
basis functions [8]. The light reaching a point on the retina,
i.e., the set of three cone quantum catches, is just the product
of the illuminant and the reflectance at a point in the world, to
a first approximation (this is refined below). Thus, six un-
knowns determine the light impinging on each point of the ret-
ina, and only three data values, the quantum catches of the three
cone classes, are available for further processing by the visual
system. Yet we seem to be able to discount the illuminant and
perceive the object reflectance [9]1-[14]. This is the computa-
tional problem of color constancy: How do we solve three equa-
tions in six unknowns?

Various models of color constancy exist in the literature [15]-
[23]). Several authors [9], [16]-[18] have shown that if the three
basis functions for reflectance, illumination, and cone absorp-
tion are different, a color constancy algorithm must solve a ten-
sor transformation from six unknowns to three knowns in order
to find the reflectance from the cone signals with varying illu-
mination. Each model makes assumptions to simplify the prob-
lem more or less. Here, we focus on Land’s models since,
through a powerful set of simplifying assumptions, he reduces
the computational complexity of the color constancy problem
tremendously [24], perhaps more than any other model.

III. LAND’s RETINEX THEORY

Land’s assumptions and various versions of color constancy
algorithms based on them are discussed in this section. For each
algorithm, the biological basis, computational complexity, and
suitability for VLSI implementation are noted.

A. Three Separate Lightnesses

One of Land’s basic premises is that color constancy can be
achieved by the computation of three separate designators or
lightness values at each point, in three separate systems called
retinexes. (Since he was not sure at first whether the computa-
tion took place in the retina or in the cortex, he coined the term
retinex.) Further, he emphasizes the ability of the nervous sys-
tem to perceive reflectance even though the illuminant is vary-
ing (albeit slowly) in space.

The three lightness signals are assumed to be independent;

Land does not state how this may occur, but Hurlbert and Pog-
gio offer a derivation [24]. With this assumption, the color con-
stancy tensor relation collapses to three independent equations.
Within each channel i, the lightness /; is the product of the il-
luminant m; and reflectance p;:

Li(x) = m(x) p;(x). (1)

The log is taken to form a sum:

I (x)

]

log Li(x) = log m;(x) + log p;(x)
m/(x) + pi(x). (2)

Once the two variables that make up the color signal are sepa-
rated, the second of the three main assumptions of retinex the-
ory is applied, namely, that the illumination is slowly varying
in space but the reflectance signal varies mostly at sharp edges.
Implementations of retinex theory work with this assumption
by removing the slowly varying component m’ (x) to produce
an image that depends only on reflectance p’ (x). Homomorphic
filtering algorithms also use the logarithm to separate the com-
ponents of the color signal in this way [25], [26]. The slowing
varying component (the illuminant) is then separated by low-
pass filtering via Fourier techniques. Retinex algorithms, in
contrast, perform all operations in the spatial domain. Three
implementations are presented.

B. Early Implementations

Land’s original scheme [19], [20] considers the color signal
at a point in one color plane of an image relative to a spatial
average signal computed along a set of paths from other points
in the image to the point in question. The starting point of a
particular path is chosen randomly, and the logarithms of the
ratio of color signals at transitions encountered along the path
are accumulated if the transition represents a reflectance change
versus a change in shading. A threshold operation is used to
make this distinction. This procedure is repeated for many paths
and the resulting values are averaged. The resulting average of
logs is the log of the lightness of the point divided by a measure
of the spatially averaged lightness. For an infinite number of
paths and no thresholding, this measure of the spatial average
is the geometric mean [27]. Land claims that he gets good re-
sults with 200 paths. Finally, the reported lightness is normal-
ized to the lightest point in the image for this color plane.

The division by the average lightness and subsequent nor-
malization imply the third main assumption of Land’s theory,
that the spatial average reflectance in each lightness channel is
constant for all images. The retinex algorithm, then, operates
under a gray world assumption. It is possible to defeat the al-
gorithm by placing a strongly colored patch in a very simple
scene so that the average reflectance is not gray [27].

This algorithm and variants of it can produce nice results (see,
for example McCann’s images in [28]). However, the proce-
dures are cumbersome and it is difficult to see how the nervous
system could carry them out. Further, the computational com-
plexity, though reduced by assuming three separate lightness
channels, is still daunting. For each point in the image, much
of the rest of the image must be traversed by one of the paths
to obtain the correct lightness. In other words, foran N X N
image, on the order of N* calculations are required. In a VLSI
implementation, each pixel would have to be connected with
many other pixels.

Homn [15], [22] utilizes the Laplacian operator to compare
lightness across edges. The Laplacian of the image is then
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thresholded, to remove the slowly varying illuminant. Finally,
the inverse Laplacian is performed. Analytically, this is done
by convolving with the Green’s function for the Laplacian,
(1/2x) log (r). In a resistive grid framework, the Laplacian is
inverted via a feedback network. In a digital implementation,
the Poisson equation is solved iteratively via Gauss-Siedel
elimination. Several variants of this implementation exist irn the
literature (e.g., [23] and [29]).

Marr [30] has proposed a scheme in which the nervous sys-
tem may carry out this implementation, and the resistive grid
framework is suitable for analog VLSI implementation since
only nearest-neighbor connections between pixels are required.
The undesirable spatial connectivity of the previous implemen-
tation is converted to the time domain. That is, the time re-
quired for the feedback network to settle is sufficient for infor-
mation to cross the entire image space through the nearest-
neighbor connections. To our knowledge, no one has attempted
to build chips based on this algorithm.

C. Recent Implementations

In 1986, Land published an alternative to the algorithm de-
scribed above [21]. This implementation involves computing an
average weighted by distance from the point in question, and
subtracting the log of this average from the log of the lightness
of the point in question. This idea came from Land after his
collaboration with Livingstone and Hubel [31] and Zeki [2] and
has a strongly biological flavor to it. That is, the operator he
uses looks like a cortical ‘‘nonclassical’’ receptive field, with a
narrow center and a huge surround [6], [32].

In practical terms, the algorithm corresponds to subtracting
from an image a blurred version of itself. The distance weight-
ing (type of blurring) Land proposes varies as 1/r?, so the op-
eration is a center minus surround operation, where the sur-
round is the center convolved with a 1 /r? kernel:

i)~ g (L) ® %) r20 )

Hurlbert arrived at the same sort of operation analytically [24]
with a Gaussian kernel:

L, y) = L(xy) = U(x y) ® ™77 (4)
where o is large enough that the kernel extends across most of
the image. Except for the different kernels, the only difference
between the two procedures is that Hurlbert’s involves taking
the log of the lightness of the surrounding points before rather
than after averaging. She claims that in practice there is little
difference between the two procedures {33].

This type of retinex algorithm, then, has a biological basis
and sound computational underpinnings. But the complexity is
too great. Since the required surround is so large, such a con-
volution across an N X N pixel image entails on the order of
N* operations. On a chip, this corresponds to explicit connec-
tions from each pixel to most if not all other pixels.

A similar operation can be carried out much more efficiently

Ry(x, y) = min(min(R), min(G), min(B))
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by switching from a convolution to a resistive grid calculation.
The operations are similar since the weighting of neighboring
points (Green’s function) in a resistive grid decreases in the
limit as the exponential of the distance from a given location
on a resistive grid. With this type of kernel, the operation in
each retinex (color channel) is

Li®,¥) = L6, y) = Li(x.y) ® e ™ (5)
where A is the length constant or extent of weighting in the grid
{34]. Since the calculation is purely local, the complexity is
reduced dramatically from 0(N4) to O(Nz). On a chip, a local
computation corresponds to connections only between nearest-
neighbor pixels. So, in this novel retinex implementation, since
a resistive grid is used to form the spatial average (i.e., to blur
the image for subtraction from the original), the complexity is
reduced to tractable levels, and the algorithm is appropriate for
implementation in analog VLSI.

IV. SIMULATION RESULTS

A. Simulations of the Retinex Algorithm

Tools for simulating Land’s most recent algorithm were de-
veloped and used to process both black and white images and
color images. First, Hurlbert’s results for one-dimensional black
and white images were confirmed. A large spatial sample was
obtained around each pixel by convolving with a filter whose
weights drop off exponentially as the distance from the center
pixel. This surround value was subtracted from the center pixel
value. As Hurlbert and Poggio report [33], this scheme handily
removes illumination gradients. Next, the simulation was ex-
tended to two dimensions with similar results and tremendous
increase in run time, owing to the O(N*) complexity of the
Gaussian convolution needed to form the spatial average for
subtraction. For 128 X 128 pixel black and white images, the
simulation took over an hour on a Sun 4 workstation.

Next, the same results were arrived at much more efficiently
by switching from a convolution to a resistive grid calculation.
The resistive grid simulation runs in a minute rather than an
hour, since the calculation is purely local. With resistive grid
code, color images were simulated next (Fig. 1(a) and (b)).

Specifically, in color simulations of the Land algorithm, 512
X 512 pixel images are subsampled to 128 X 128 resolution.
Our frame grabber captures 8 bits each of R, G, and B. Within
a color plane, the 8 bit pixel values are converted to floating
point numbers and the log is taken. These values are then treated
as input currents to a resistive grid; Kirchhoff’s current law is
used in local calculations to simulate the spread of the input
across the grid. Several iterations are usually required for the
voltages to settle down. (We stop the simulation when the dif-
ference in the node voltages across the grid between two itera-
tions is less than one tenth of 1% of the maximum pixel value.
About one hundred iterations are usually sufficient to meet this
criterion.) Next the settled net values are subtracted from the
log of the input values. Finally, the minimum of the corrected
values in the three planes is found and subtracted from all val-
ues in the three planes, and all values are scaled up so that the
maximum of all values in the three planes is set to the maximum
value of our frame buffer, 255:

Rou(x, y) = 255 -

max (max (R), max (G), max(B)) — min(min (R), min(G), min (B))’

(6)
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Fig. 1. (a) The Land algorithm. The three color camera outputs are
smoothed on three separate resistive grids, labeled R, G, and B. The
smoothed signal is subtracted from the camera output. (b) Resistive grid
for smoothing images. (c) Extended Land algorithm. The magnitude of the
local spatial derivative is smoothed for each color channel on the resistive
grids labeled dR, dG, and dB and used to modulate the strength of the
smoothed image before subtraction from the original. (d) The scheme for
computing edginess. The average of the magnitudes of the local derivatives
serves as the input to a resistive grid.

This last step is a form of gain control and is crucial; without
it, all colors would tend to gray since the subtraction of the
blurred image is a compressive operation. Note that it is the
only step that requires operations across the three color planes.
All prior steps proceed independently within each color plane.
We go to this trouble since there are some images in which there
is little or no information in a given channel. For example, in
forest scenes there is not much signal in the blue channel. Nor-
malizing independently in each channel for such a scene would
artificially expand the pixel values in the blue channel, causing
noise to be accentuated and generally changing the image color
globally in the wrong way.

Fig. 2 shows the results of simulations of the Land algorithm.
At top are three images obtained directly from the video cam-
era. For images (a) and (b) the color output controls of the
video camera were adjusted to match skin color and a color card
fairly well under ordinary fluorescent illumination. One image
(top left, (a)) was captured under this illuminant; it will be
called the (camera) corrected or fluorescent image. The fluores-
cent lights were then turned off, and the same subject was il-
luminated with incandescent light. A second image (middle top,
(b)) was captured without correcting the camera color settings
under this new illuminant; it will be called the uncorrected or
incandescent image. While colors in the scene looked a bit
shifted to the red to us in the room when the second image was
taken, they were not as bad as those captured by the camera—
the second image is unacceptable. The skin color is too red, the
background is lost in darkness, and the shadows are very deep.
Unfortunately, in these respects it resembles many amateur
video images taken indoors.

The middle row of images in Fig. 2 show the result of apply-
ing the retinex operation to the original images. The corrected

image (middle left, (d), corresponding to (a) above it) is some-
what improved in terms of contrast enhancement. Note, for ex-
ample, the highlights in the hair that are not visible in the orig-
inal. The color is less saturated (i.e. less pure, more washed
out, more gray) but hue is well preserved. The uncorrected im-
age is strikingly improved (center image, (€), corresponding to
(b)). Skin color is more muted, the shadows across the face are
softened, and detail is visible in the background. While color
correction is not perfect, it is significant. The contrast enhance-
ment inherent in this algorithm is at least as significant.

One drawback of this algorithm, however, is apparent in these
images, namely, color induction across edges. Close examina-
tion of image (e) of Fig. 2 reveals that the (black) border of
the CIE diagram poster has been tinged with red above and to
the right of the horseshoe-shaped diagram and tinged green be-
low the diagram. The discoloration decreases with distance from
the edge of the diagram. The unwanted color, overlaid on the
black border, is the complementary color of the area on the
other side of the edge: induced red abuts the green region on
the right and induced green abuts the red region on the bottom.
Red and green are complementary colors. From these facts one
may conclude that color induction across abrupt edges is inher-
ent in the algorithm. Consider, for example, a point in the black
border area just adjacent to the CIE diagram on the right side
of the poster. Its surround is strongly weighted green by the
nearby region of the color diagram. This (mainly green) sur-
round is subtracted from the black center to yield black plus
green’s complement, red. (Along with the red value, the blue
value is raised over the green channel in this region. So in this
sense, it could be said that green’s complement is red plus blue.
What we perceive, however, is mostly the complement to green,
which is more red than blue.) A black border point further from
the color edge is less induced to red since the green area is
further away, and thus weighted less in forming the surround.
Image (d) is similarly distorted but the distortion is less notice-
able by inspection. This effect is quantified below.

Color induction is not mentioned in any of the studies of
retinex theory except the most recent one by Land [21]. In this
paper, he notes induction in terms of Mach bands, a well-known
phenomenon in psychophysics. Fig. 5 of that paper shows how
“*spill-over’” of the surround is responsible for a relatively dark
region in the light region adjacent to a dark-light edge and a
complementary, relatively light region in the dark area near the
edge. Normally one hears only of Mach bands along the ach-
romatic (black-white) lightness axis. Whether color Mach bands
are visible is controversial. However, it suffices to say that we
do not perceive effects as strong as the effects produced by the
Land algorithm with video camera inputs; we do not see, for
example, a green halo surrounding a red ball placed against a
gray background.

Another limitation of the Land algorithm is revealed by the
images in the right column of Fig. 2. At top (image (c)) is the
output of a video camera shot of a still life in which a large
portion of the scene is composed of just one color. This is a
common situation; often half of an image is filled with sky or
foliage. The scene was deliberately captured under dim illu-
mination, to study the contrast enhancement capabilities of this
algorithm. At middle right (image (f)) is the result of retinex
processing. Although the shadows were softened considerably,
much of the image is gray, not green. This illustrates how the
gray world assumption can go wrong. Since we are subtracting
a blurred version of the image from the original image, in this
case we are subtracting green from green, leaving gray.
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Fig. 2. Results of simulations. At top are the original images. In the middle row are the results of retinex processing. At bottom
are the results after applying the extension to the retinex algorithm.

The upshot of all of this is that the Land model is too simple
in at least two ways. First, it embodies but a simplification of
a static aspect of visual processing that psychophysicists call
simultaneous contrast [14], [35]-[37]. (In this sense it could
also be called the Cornsweet model, the Jameson and Hurvich
model, or even the Mach model as all of these researchers have
pointed to simultaneous contrast as a mechanism for color con-
stancy.) Land’s model of simultaneous contrast is insufficient
in that it ignores edge information and thus suffers from induc-
tion across borders. While retinex proponents point to cortical
visual area V4 as being a site of surround suppression in color
processing, they do not cope with the fact that V4 cells respond
well to edges [3], [6]. Second, the model suffers from overre-
liance on the gray world assumption. As we shall see below,
edge information can also help with this problem.

B. An Extension to the Retinex Algorithm

A modification of the retinex algorithm was applied next to
the same color images (bottom row of Fig. 2). The magnitude
of the spatial derivative is smoothed on a second resistive grid,
to yield a measure of ‘‘edginess’’; this measure is used to weight
the surround before subtraction from the center (parts (c) and
(d) of Fig. 1). In other words, while for a retinex simulation
we have

output = center — surround (7)
Li(x ) = 1(x, y) = Li(x,y) ® ™ (8)

to ameliorate induction effects and lessen reliance on the gray
world assumption, we need to modify the surround weight from
point to point. In particular, if edginess is given a value close
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to 0 in homogeneous regions such as the black border of the
poster in the left images, and is given a value close to 1 in more
detailed regions such as the colored shirt, we have a better for-
mulation as follows:

output = center — surround - edginess. (9)

In this relation, the surround is effectively zeroed in smooth
areas before it is subtracted, so that induction is diminished—
more of the original color is retained.

Parts (c) and (d) of Fig. 1 show how edginess is computed
and used. The 512 X 512 image is again sampled at a low res-
olution. The magnitude of the first spatial derivative, labeled
[ @ — b |, is computed between points; the average of the ab-
solute value of the four local spatial derivatives are fed as a
current into each node of the grid. The output voltage of this
resistive grid is multiplied with the surround value read out from
the first resistive grid. This modified surround is then subtracted
from the camera output, to yield a color-corrected signal. Sig-
nifying the averaged magnitude of local spatial derivatives as
{al{(x, y)|, the mathematical expression for the resistive grid
smoothing of that quantity is the convolution of it with an ex-
ponential distance weighting function, so the complete expres-
sion for the extended algorithm is

Lo i, ¥) = U(x,y) = l(x,y) @ ™
Cloll(x,y) | ® e” ™ (10)

The bottom figures of Fig. 2 show images processed with this
extended retinex algorithm. The color induction is much less
noticeable upon inspection in the middle and left images, and
color is returned to the palm frond at bottom right. The ex-
tended algorithm effectively varies, point by point, the degree
of subtraction of the blurred version of the image from the orig-
inal. In detailed areas, edginess is high, so the subtraction is
carried out as for the original algorithm. In smooth areas, how-
ever, the degree of correction (weight of surround subtracted)
varies as the distance from the nearest edgy area. In smooth
areas, more of the original image ‘‘passes through,”” and so
there is less color correction. Color constancy will be worse for
such areas. For example, in Fig. 2(h) the skin tone is redder
than in Fig. 2(e). The extended algorithm, then, is a working
compromise between color constancy via strict application of
the gray world assumption and no color constancy at all.

Some of these results are quantified in Fig. 3. A horizontal
and a vertical line through the images in places that show in-
duction artifacts were selected (Fig. 3(a) and (b)). The green
intensity at each pixel in each line was subtracted from the red
intensity at the pixel to show the value of the red-green axis of
color at the pixel in the original images, in the images processed
with the retinex algorithm, and in the images processed with
the extended retinex algorithm. Concentrating on the black bor-
der area of the poster, note that for the original images (thick
lines) the pixel value is zero in these regions—red and green are
balanced in the achromatic, black region. A shift from zero here
results from induction. At the top of the poster border, red is
strongly induced in the retinex-processed image (dashed line at
pixels 10-30 of plots (e) and (f) of Fig. 3). It is induced by the
neighboring green area (pixels 30-50). The extended retinex
algorithm produces less induction (thin line). Similarly, green
is induced in a black region next to the reddish face area after
retinex processing in a region crossed by the horizontal line
(pixels 50-70 of plot (d)). The extended algorithm (thin line)

is not much better than the original retinex algorithm (dashed
line) in this instance.

Other resistive grid methods for color correction have been
explored in simulation. If at each point of input to a grid com-
puting the surround for subtraction, the input resistance is mod-
ulated by the local spatial derivative, a surround is formed that
consists of areas ‘‘filled in’” or interpolated between edgy re-
gions. Here the local spatial derivatives form an input confi-
dence [38], [39]. Mach bands are lessened in this algorithm in
comparison with the Land algorithm, but the degree of smooth-
ing required to form good surrounds varies from image to im-
age, so the algorithm is not as robust as the extension detailed
above. We have also tried varying the lateral resistances ac-
cording to local spatial derivatives, with disastrous results;
variation of the lateral resistances strongly disturbs current flow
in the grid, segmenting the image into discrete areas [40], [41].
As a result, subtraction of the grid outputs leads to patches of
gray in most smooth areas of the input image. In other words,
variation of the lateral resistance by local values is more appro-
priate for segmentation than for normalization. We have not
tried to vary the input or lateral resistances according to
smoothed edginess, though it may be more comparable to the
extended method discussed above.

These results are anecdotal and limited in nature, but they
show the strengths and weaknesses of Land’s algorithm and al-
low us to see ways to improve the algorithm. The extension
explored, modulation of the surround by a measure of edginess
calculated by smoothing the magnitude of the spatial derivative
on a second resistive grid, is easy to implement in VLSI.

V. VLSI IMPLEMENTATION OF THE RETINEX
ALGORITHM

From the simulation results, it appears that the Land algo-
rithm and simple extensions to it may be effective in color cor-
rection. We have implemented the Land algorithm in analog
CMOS VLSI. Fig. 1(a) shows the outline of a system of video
camera color correction based on Land’s algorithm. The three
color outputs of a video camera (labeled red, green, and blue
here) are fed onto three separate resistive grids built from
subthreshold analog CMOS VLSI. Each 48 by 47 node resistive
grid was built using 2 pm design rules and contains about 60 000
transistors.

Since a single chip can contain only a small grid (roughly 50
by 50), the 525 X 525 video image must be sampled at a low
resolution with appropriate video switching and sample-and-
hold circuitry. Perhaps the most novel aspect of this design is
in its sample-and-hold architecture. A horizontal line of NTSC
video is about 50 us in duration; 48 horizontal pixels must be
fed with the video input averaged onto a capacitor over 1 us.
However, the data must be held for input to the resistive grid
for the field duration, which is about 16 ms for NTSC video.
Thus the sample time and the hold time differ by over four or-
ders of magnitude. The crucial design feature of these chips is
that a two-stage sample-and-hold scheme is used. At the bottom
of the chip, 48 capacitors are charged up at the line rate. Fol-
lowers broadcast these voltages into the array, where the cur-
rently selected row of nodes reads the 48 values and integrates
them into a second sample-and-hold circuit. This second circuit
is a follower-connected transconductance amplifier, set to run
in the subthreshold range, feeding a capacitor. Five video lines
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Fig. 3. Quantification of simulation results. At top ((a) and (b)) are binary representations of the images in the left two columns
of Fig. 2. As in Fig. 2, the fluorescent-illuminated image is at left (a) and the incandescent-illuminated image is at right (b). A
horizontal and vertical line of pixels was selected through each image. in areas where the color induction effects of the color
correction algorithms are notable. At bottom ((c)-(f)) are plots of the red pixel value minus the green pixel value along the
selected lines for the original image (Fig. 2(a) and (b). thick line). the retinex-processed images (Fig. 2 (d) and (e), dashed
line), and the images processed with the extended Land algorithm (Fig. 2(g) and (h). thin line). See text for details.

are integrated by each of the 47 rows of the resistive grid in
each field of the video frame [42].

The circuit details within each pixel are similar to those of
the analog retina [34]. A current proportional to the node sam-
ple-and-hold capacitor voltage is injected into the grid with a
follower-connected transconductance amplifier run in the

subthreshold range. The grid consists of n-type transistors in-
terconnecting the input nodes; a ‘‘horizontal resistor’ bias cir-
cuit at each node sets the gate bias of the interconnect transis-
tors so that the resistance is linear regardless of the transistor
source voltage. These bias circuits are also set to run in the
subthreshold range. The output of each node is a follower-con-
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nected transconductance amplifier, run above threshold, which
produces a current proportional to the node voltage. This cur-
rent is sensed and transformed to a voltage by an off-chip cur-
rent sensing amplifier. Current steering identical to that used in
the analog retina directs one node output at a time to the sense
amp.

Fig. 4 shows the ability of the system to correct skin color
under a common variation in lighting. At top are the two orig-
inal images. At left is an image under fluorescent lights, with
the camera corrected for this illuminant; skin color looks nor-
mal. In the right image, the illuminant is incandescent light,
but the camera is still set up for fluorescent light; the skin color
is too red. At bottom are the outputs of the system after a
smoothed version of the image is subtracted. Though the image
at bottom right is more red than the one at bottom left, the color
difference is less between the bottom images than between the
top images. The system-corrected images are of a poorer quality
than the camera images, because of switching noise, cross-talk,
etc. The point is that the color is more constant for the pro-
cessed images than for the camera.'

Conventional methods are capable of this level of correction.
Many video cameras have an ambient light sensor attachment,
which is used to sense the illuminant; a global subtraction of
the global value corrects skin color as well as our system. In
fact, simply averaging the red, green, and blue signal over a
video frame and subtracting this average will work with richly
colored scenes such as these (i.e., with scenes for which the
gray world assumption is valid). The strength of this algorithm
and its value as a model of the biology lie in its use of a spatially
varying average for subtraction. This feature enables it to en-
hance contrast, soften shadows, and reproduce color shifts that
are observed by humans. Our electronic system is not very good
at shadow softening and contrast enhancement, for three rea-
sons. First, we are not taking the log of the video signal before
processing, so we are not taking advantage of as much of the
signal as we are in the simulations. Second, the noise in the
surrounds produced by nonidealities in the analog CMOS fab-
rication technology distorts the image in dark areas. Third, the
resolution of the surround is much lower than the resolution of
the original image (50 X 50 versus 512 X 512). However, we
are able to reproduce one aspect of human color perception with
this electronic system, an aspect that illustrates the spatially
varying nature of the color normalization: color darkening in
light regions of a scene and color lightening in dark regions, as
shown in Fig. 5.

Fig. 5 shows three set of images of color bars. At top are the
video camera outputs under fluorescent light, fluorescent and
blue light, and fluorescent and green light. The middle row of
images shows the corrected system output for identical lighting
conditions as the top three images. The bottom row of images
are the direct output of the resistive grids, with no smoothing.
The color constancy among images in the middle row is im-
pressive compared with the top and bottom rows. These images
also show the spatial aspect of the color correction. The red bars
in these images are cut from the same piece of paper. Note that
in the top row the red bar next to the white bar looks darker

'In preparing the final images for Fig. 4, the scene dependence of color
constancy was discovered. In order to obtain the level of constancy of Fig.
4(d), the subject had to be placed between a dark region and a bright re-
gion. By accident rather than design, this is how the subject was arranged
in parts (b), (e), and (h) of Fig. 2. This further weakness of the Land
algorithm may not have been discovered without a real-time system. For
further details, see [43].
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than the red bar next to the black bar. When the red bars are
examined in isolation the color is identical. This is easiest to
see by cutting two holes in a piece of paper so that one hole lies
over the top red bar, and the other hole lies over the bottom red
bar. In isolation the colors are identical, but the perception is
influenced by nearby colors; this is simultaneous contrast [14],
[35]-137]. In the color-corrected images of the second row, the
red bar in the light region appears darker than the red bar in the
dark region, even when viewed in isolation. This demonstrates
that the system is using local information to perform the cor-
rection; this is the first system to show these color effects with
video images.

The bottom row of Fig. 5 shows images of the same color
bars taken from the resistive grid outputs, under the same light-
ing conditions as the top two rows. (The smoothing is set to
zero here, to show the bars clearly; for correction, the image is
smoothed greatly, so that the resistive grid outputs are an un-
interesting blur.) As expected, the color varies as the lighting
is changed just as in the video camera images (top row). The
two-hole test described above reveals that the top and bottom
red bars in this row of images are identical in color.

In summary, our real-time system, which forms a blurred
version of the image on resistive grids for subtraction from the
original, demonstrates color constancy and simultaneous con-
trast effects. Other effects produced by Land’s retinex algo-
rithm, such as color Mach bands, have been observed with the
electronic system, but are not shown here.

VI. CONCLUSION

Land’s retinex theory is a model for our natural ability to see
color as roughly constant as the lighting varies widely. The neu-
robiology and psychophysics of color constancy support the
plausibility of his model; computational analysis of the problem
shows that his is an elegant solution. We have applied resistive
grid processing to his model, greatly reducing its complexity.
Through computer simulations we have explored the strengths
and weaknesses of the retinex theory; we have developed an
extension of it that lessens its weakness. Impressed with its
strengths, we have implemented the retinex algorithm using an-
alog VLSI. The system, based on three resistive grids, is ca-
pable of color correction and displays color shifts that qualita-
tively mimic those of human perception. The system operates
at video rates, and as such is the first of its kind. With further
development, systems such as this, designed to implement the
retinex algorithm and simple extensions to it, would be useful
in a variety of video applications.

Is this system a neural network? Even though there are no
weights, thresholds, energy surfaces, or the like in its architec-
ture and operation, we feel that it is. We were led to this prob-
lem after exploring the nonclassical receptive fields of cortical
cells that process visual motion [32]. We turned to psycho-
physics to understand the problem and to computational theory
to understand the models proposed to solve it. Finally, after
computer simulation, we had the confidence to build the sys-
tem. It is neural in the sense that it is a realization of the premier
model of how the brain accomplishes color constancy. In the
introduction, we pointed out that our present technology for
capturing images is flawed—it is too simple. By studying the
brain we have been able to build a system that does it better.
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Fig. 4. Skin color correction with an electronic implementation of the Land algorithm. At top are the camera outputs under (a)
fluorescent and (b) incandescent light. The camera was adjusted to report colors well under fluorescent light. The bottom images
show the output of the color correction system for (c) fluorescent and (d) incandescent illuminants. The skin tone in the bottom

images changes less for the two conditions than the camera images.

em. The top images are the video camera outputs, the middle images
from the three resistive grids with no smoothing. The
blue light is added in the middle column. and narrow-

Fig. 5. Color constancy results from the electronic syst
are the color-corrected outputs, and the bottom images are the outputs
color bars are lit with fluorescent light in the left column. Narrow-band
band green light is added in the right column.

245



246

Fox, F. Perez, and S. Shein for discussions about color con-
stancy; M. Mahowald, C. Mead, and M. Sivilotti, inventors of
the original silicon retina, for systems and VLSI discussions; J.
Harris, J. Luo, and C. Koch for discussions about resistive
grids; D. Lyon, M. Mahowald, and S. Ryckebush for discus-
sions about sample-and-hold circuitry; J. Lazzaro for discus-
sions on systems issues; and S. Chascsa, T. Horiuchi, and F.
Perez for assistance with photography. The authors express their
gratitude to DARPA for MOSIS fabrication services, and to
Hewlett Packard for computing support in the Mead Lab.

REFERENCES

[1] H. von Helmbholtz, Treatise on Physiological Optics, vol. 2, 3rd
ed., J.P.C. Southall, Ed. New York: Dover, 1962.

[2] S. M. Zeki, ‘‘The representation of colours in the cerebral cor-
tex,”’ Nature, vol. 284, p. 412, 1980.

[3] E. A. DeYoe and D. C. Van Essen, ‘*Concurrent processing

streams in monkey visual cortex,”’ Trends Neurosci., vol. 11, p.

219, 1988.

S. M. Zeki, **Colour coding in the cerebral cortex: The reaction

of cells in the monkey visual cortex to wavelengths and colours,"

Neurosci. vol. 9, 1983.

S. M. Zeki, **Colour coding in the cerebral cortex: The responses

of wavelength-selective and colour-coded cells in monkey visual

cortex to changes in wavelength composition,”” Neurosci.. vol.

9, 1983.

R. Desimone, S. J. Schein, J. Moran, and L. G. Ungerleider,

*‘Contour, color, and shape analysis beyond the striate cortex,’’

Vision Res., vol. 25, p. 441, 1985.

D. B. Judd, D. L. MacAdam, and G. Wysecki, **Spectral distri-

bution of typical daylight as a function of color temperature,” J.

Opt. Soc. Amer., 1031, 1964.

L. T. Maloney, ‘‘Evaluation of linear models of surface spectral

reflectance with small numbers of parameters,”” J. Opt. Soc.

Amer., A3, p. 1673, 1986.

[9]1 M. D’Zmura and P. Lennie, ‘‘Mechanisms of color constancy,”’
J. Opt. Soc. Amer., vol. A3, p. 1662, 1986.

[10] K. T. Blackwell and G. Buchsbaum, ‘‘Quantitative studies of
color constancy,’” J. Opt. Soc. Amer. vol. A5, p. 1772, 1988.

[11] L. Arend and A. Reeves, ‘‘Simultaneous color constancy,”” J.

{12]

14]

151

(6]

[7]

[8]

Opt. Soc. Amer., vol. A3, p. 1743, 1986.

J. A. Worthey, ‘‘Limitations of color constancy,”’ J. Opi. Soc.

Amer., vol. A2, p. 1014, 1985.

D. Ingle, “*The goldfish as a retinex animal,”* Science, vol. 227.

p- 651, 1985.

T. N. Comsweet, Visual Perception.

Press, 1970.

B. K. P. Horn, Robot Vision. New York: McGraw-Hill, 1985.

G. Buchsbaum, “*A spatial processor model for colour percep-

tion,”” J. Franklin Inst., vol. 310, no. 1, 1980.

L. T. Maloney, ‘‘Computational approaches to color con-

stancy,”” Ph.D. thesis, Stanford University, 1984.

L. T. Maloney and B. A. Wandell, *“Color constancy: A method

for recovering surface spectral reflectance,’” J. Opt. Soc. Amer.

vol. A3, p. 29, 1986.

[19] E. H. Land and J. J. McCann, “*Lightness and retinex theory,"’
J. Opt. Soc. Amer., vol. 61, p. 1, 1971.

[20] E. H. Land, ‘‘Recent advances in retinex theory and some im-
plications for cortical computations: color vision and the natural
image,” Proc. Nat. Acad. Sci. U.S., vol. 80, p. 5163, 1983.

[21] E. H. Land, ‘‘An alternative technique for the computation of the
designator in the retinex theory of color vision,"” Proc. Nat. Acad.
Sci. U.S. vol. 83, p. 3078, 1986.

122] B. K. P. Horn, **Determining lightness from an image,”" Com-
put. Graph. Image Proc., vol. 3, p. 277, 1974.

[23] B. Funt and M. Drew, “‘Color constancy computations in near-
Mondrian scenes using a finite-dimensional linear model,”* Proc.
{EEE Conf. Comp. Vis. Patt. Rec., June 1988.

[24] A. Hurlbert, ‘‘Formal connections between lightness algo-
rithms,”” J. Opt. Soc. Amer., vol. A3, p. 1684, 1986.

[25] A. V. Oppenheim, R. W. Shafer, and T. G. Stockham, Jr., **Non-

[13]
[14} New York: Academic

[15]
[16]

[171
(18]

[26]

1271
[28]
[29]

IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 2.

[30]

131

[32

33
[34
135

[36

1371

138

139

{40

141

{42

[43

1

1

]

1
1

1

1

]

]

NO. 2. MARCH 1991

linear filtering of multiplied and convolved signals,”* Proc. IEEE,
p. 1264, 1968.

O. D. Faugeras, ‘‘Digital color image processing within the
framework of a human visual model,"” JEEE Trans. Acoust.,
Speech, Signal Process., vol. ASSP-27, p. 380, 1979.

D. H. Brainard and B. A. Wandell, **Analysis of the retinex the-
ory of color vision,”” J. Opt. Soc. Amer., vol. 3A, p. 1611, 1986.
M. La Brecque, ‘‘Retinex: Physics and the theory of color vi-
sion,”” Computers in Physics, Nov/Dec 1988.

A. Blake, ‘‘Boundary conditions for lightness computation in
mondrian world,”” Comp. Vis. Graph. Image Proc., vol. 32,
1985.

D. Marr, **The computation of lightness by the primate retina,”’
Vision Res., vol. 14, p. 1377, 1974.

M. S. Livingstone and D. H. Hubel, *‘Anatomy and physiology
of a color system in primate primary visual cortex,’’ J. Neu-
rosci., vol. 4, p. 309, 1984.

J. Allman, F. Miezin, and E. McGuinness, *‘Direction- and ve-
locity-specific responses from beyond the classical receptive field
in the middle temporal visual arca (MT),"" Perception, vol. 14,
p. 105, 1985.

A. Hurlbert and T. Poggio, ‘‘Learning a color algorithm from
examples,”” MIT Al Memo 909, 1987.

C. A. Mead, Analog VLSI and Neural Systems. Reading, MA:
Addison-Wesley, 1989.

L. M. Hurvich, Color Vision.
sociates, 1981.

O. Creutzfeldt, B. Lange-Malecki, and K. Wortmann, ‘‘Dark-
ness induction, retinex, and cooperative mechanisms in vision,"’
Exp. Brain Res., vol. 67, p. 270, 1987.

P. Lennie and M. D'Zmura. **Mechanisms of color vision.> CRC
Crit. Rev. Neurobiol., vol. 3, p. 333, 1988.

S. Grossberg and E. Mingolla, *‘Neural dynamics of form per-
ception: Boundary completion, illusory figures, and neon color
spreading,”” Psych. Rev., vol. 92, 1985.

J. Hutchinson, C. Koch, J. Luo, and C. Mead, *‘Computing mo-
tion using analog and binary resistive networks,”’ IEEE Com-
puter, vol. 21, 1988.

P. Perona and J. Malik, ‘*Scale-space and edge detection using
anisotropic diffusion,”” IEEE Trans. Pattern Anal. Mach. Intell..
vol. 12, 1990.

J. Harris, C. Koch, and J. Luo, **A two-dimensional analog VLSI
circuit for detecting discontinuities in early vision,”* Science, vol.
248, 8 June 1990.

A. Moore and R. Goodman. *‘Image smoothing at video rates
with analog VLSL,”" in Proc. IEEE Conf. Syst., Man, Cybern.,
Nov. 1990.

A. Moore, G. Fox, J. Allman, and R. Goodman. ‘A VLSI neural
network for color constancy."" in Advances in Neural Information
Processing 3. D. S. Touretzky and R. Lippman, Eds. San
Mateo, CA: Morgan Kauffmann, 1991 (in press).

Sunderland, MA: Sindauer As-

Andrew Moore ($°90) was born in Spring-
field, IL, and attended the University of Illinois
at Urbana. He received his B.S. in electrical
engineering, with honors, in 1983. He worked
in computer graphics, bioelectromagnetics, and
medical imaging before entering the doctoral
program in Computation and Neural Systems at
the California Institute of Technology, in 1987.
At Caltech, he has realized a long-held goal of
combining engineering with neuroscience.



MOORE et al.: REAL-TIME NEURAL SYSTEM FOR COLOR CONSTANCY

John Allman received the Ph.D. degree from
the University of Chicago in 1970 and then did
postdoctoral research in the Laboratory of Neu-
rophysiology at the University of Wisconsin.
He joined the Division of Biology at the Cali-
fornia Institute of Technology in 1974, where
he is currently the Hixon Professor of Psycho-
biology. Together with his colleagues, he has
discovered, through microelectrode record-
ings, a series of topographically organized
maps of the visual field in the cercbral cortex
of primates that collectively comprise about half of the cerebral cortex.
In these maps, information from small regions of the visual field is
constantly compared with the entire visual field—color constancy
mechanisms are a special example of this phenomenon.

247

Rodney M. Goodman (M’85) was born in
London, England, on February 22, 1947. He
received the B.Sc. degree in electrical engi-
neering from Leeds University, Yorkshire,
U.K. in 1968 and the Ph.D. in electronics from
the University of Kent at Canterbury, U.K., in
1975.

In 1985 he joined the faculty of the Depart-
ment of Electrical Engineering at the California
Institute of Technology as Associate Professor.
His research interests are in error control cod-
ing, cryptography, neural networks, and expert systems. He is cur-
rently a consuitant on these topics for the Jet Propulsion Laboratory
and Pacific Bell.

Dr. Goodman is a Chartered Electrical Engineer of the I.E.E. in the
U.K.




