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Abstract

Coffey, J.T., R.M. Goodman and P.G. Farrell, New approaches to reduced-complexity
decoding, Discrete Applied Mathematics 33 (1991) 43-60.

We examine new approaches to the problem of decoding general linear codes under the strategies
of full or bounded hard decoding and bounded soft decoding, The objective is to derive enhanced

new algorithms that take advantage of the major features of existing algorithms to reduce

decoding complexity. We derive a wide range of results on the complexity of many existing

algorithms. We suggest a new algorithm for cyclic codes, and show how it exploits all the main

features of the existing algorithms. Finally, we propose a new approach to the problem of

bounded soft decoding, and show that its asymptotic complexity is significantly lower than that

of any other currently known general algorithm. In addition, we give a characterization of the
weight distribution of the average linear code and thus show that the Gilbert-Varshamov bound

is tight for virtually all linear codes over any symbol field.

.., 1. Introduction

.J. Much attention has been paid to the important and difficult problem of finding

decoding algorithms for genera/linear codes [1-18]. These algorithms aim to pro-

vide efficient decoders for medium length (80-200) block codes, with the ability to

take account of reliability information from the channel. Such decoders can be used
in packet based systems or as inner decoders in concatenated coding schemes. In ad-

dition to the applications to communications, the analysis of general decoding
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algorithms has an application to public key cryptography, as it bears directly on the
security of a proposed public key cryptosystem based on the hardness of the

decoding problem.

The attention given to the problem has produced a variety of approaches. Almost
without exception, however, there has been no attempt to relate proposed new .,

algorithms to previous work in the field, and little attempt to provide rigorous and
complete results on the complexity of the algorithms. In this paper we aim to remedy

this omission in a number of ways. We provide accurate and complete analyses of

the complexities of many existing algorithms. We propose a decoding algorithm for

cyclic codes which exploits all the main features of current approaches, and suggest
an avenue for generalizing the procedure to all linear codes. Finally, we propose a

new algorithm applicable specifically to the (most important) case of bounded soft

decision decoding. We prove that this combined algorithm has a complexity

significantly less than that of any previously proposed algorithm.

In Section 2, we introduce some decoding terminology and discuss the practicality
and applications of these general algorithms. In Section 3, we give rigorous and

mostly complete analysis of the complexity of various current approaches. Many of
the results are new, such as the analysis of covering polynomials, virtually all the
extensions to the cases of bounded soft decoding and decoding over nonbinary sym-
bol fields, and the determination of the weight distribution of the average linear
code. Other results are formalizations of existing estimates. The analysis is
straightforward; the goal once again is to formalize and compare the results so that
combined algorithms can be formed. In Section 4, we propose an algorithm for

cyclic codes based on the process of continued division. We suggest an extension
(without asymptotic analysis of complexity, however) to general linear codes. In

Section 5, we propose a new algorithm for bounded soft decision decoding and show
that it has significantly lower complexity than any other known algorithm for vir-

tually all codes.

2. Background

First, we specify the terminology to be used throughout the paper in discussing
the decoding strategies. Bounded hard distance decoding involves decoding the
received word to the nearest codeword, provided the codeword is at distance no
greater than t. Complete hard decision decoding involves decoding every received
word to a nearest codeword. In bounded soft decoding, we assume that the receiver
specifies the received word as a collection of n real numbers rj. The soft distance "
between words c E C and r= (ro, ..., r n-J is defined to be }::O:Sj:sn-1 Icj- rjl. Chase

[8] shows that this is equivalent to maximum likelihood decoding over the additive

white Gaussian noise channel, although it is not necessarily optimal for general

channels. Decoding to the bounded soft distance is defined to be the decoding

algorithm whereby the received word is decoded to the nearest codeword, provided
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that the codeword is at soft distance no more than t. This strategy has a performance
close to that of maximum likelihood decoding [8].

The decoding problem has long been known to be difficult. The complete hard

decision decoding problem has been shown to be NP-complete [5], which "strongly
'- suggests, but does not rigorously imply that no polynomial time algorithm exists for

the procedure". Although such results do not exist for the bounded hard and
bounded soft decision problems, it is widely believed that there is no polynomial

time decoding algorithm for those cases either. As an exponential algorithm is usual-

ly taken to be impractical, it is necessary to give some justification for the investiga-

tion of such algorithms.

Our justification is one commonly used in such cases: we are interested in solving
relatively short instances of the problem - we aim to produce decoders for medium

length block codes (up to n = 200). The trivial algorithms of searching through all
codewords or through all syndromes have complexities 2 nR and 2 n(1 - R) respective-

ly, an impractical proposition unless the block length of the code is extremely short -
n ~ 30. However, an algorithm with complexity 2nR/m, while still exponential,

should in theory be practicable for codes m times as long. We demonstrate later that
it is possible to achieve at least m ~ 5 for bounded soft decoding and m ~ 9 for

bounded hard decision decoding, for rate 1/2 codes in each case; thus codes of much
higher lengths can in principle be decoded.

Furthermore, in coding we are concerned primarily with the decoder error prob-
ability, and this declines exponenti~lly with increasing block length. This suggests

that if the complexity rises at a slower rate than the error probability declines, then
decoding is a practical proposition. The situation is exactly the same as for Viterbi
decoding of convolutional codes. The algorithm is exponential in the constraint

length of the code, which limits the possible constraint lengths that can be used. On
the other hand, significant coding gains are achievable with the short constraint

length codes used.

Because we are working with exponential algorithms, it is more convenient to

measure complexity by the logarithm of the complexity. Given a decoding algorithm
of complexity M(C), we define the complexity coefficient F(R) to be

(1/n)logq(M(C», i.e.,M(C)=ifF(R).

These algorithms will also be applicable to the McEliece public key cryptosystem
[28]. For parameters n, k, and t, the cryptosystem has as private key a kxn

generator matrix G' for a t-error-correcting Goppa code, an n X n permutation

matrix P, and a k x k nonsingular matrix S. The public key is the k x n matrix

G=SG'P. The messages are binary words of length k. To encrypt a message m, we
, form c = mG + e, where e is a randomly chosen word of length n and weight at most

. t. To decode, we form c'=cp-l, apply the algebraic decoding algorithm for the

Goppa code to find m' such that d(m'G',c'):5t, and then we have m=m'S-I. To

crack the system given only the public key, we apparently have to use a procedure
capable of bounded hard distance decoding for any linear code; thus the security
of the cryptosystem depends on the complexity of these algorithms.
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3. Information set and progressive approaches

We examine a number of approaches of two distinct families. This is not an ex-
haustive survey of general decoding algorithms - for example, we omit any discus-

sion of threshold and majority logic decoding [25]. Instead, we concentrate on .'

determining the exact complexity of the various procedures for bounded hard or
soft decision and complete hard decision decoding.

We state, without proof, two results which will be useful later. The first is from

our [11]. The second is a recent result of Blinovskii [6]. We follow with an impor-
tant, and to our knowledge previously unproven result on {he weight distribution
of the average linear code.

(1) [11] For any fixed R and a satisfying O<a< 1, O<R< 1, and for all suffi-
ciently large values ofn, virtually all linear (n, LnRJ) codes over any symbol field
contain no LnRJ-tuple with fewer than LnR(I- a)J independent symbols.

(2) [6] The covering radius (! of virtually every linear code over any symbol field
satisfies (!=nH;I(I-R)+o(n), where Hq(x) = -xlogqx-(I-x) 10gq(I-x)+ 10gq(q-I)

is the q-ary entropy function.

Some of the results on complexity require a knowledge of the weight distribution
of the average linear code; computation of the complexity of bounded hard and soft
decision decoding algorithms require a knowledge of the average distance of linear
codes. The problem of the average distance of binary linear codes has been exam-
ined many times. Koshelev [21], Pierce [30] and Kozlov [22] have shown that the

Gilbert-Varshamov bound is exact for the average binary linear code. Our proof is
very much simpler and holds over all symbol fields. It is possible to give a simple
estimate of the number of codewords of a given weight in the average linear code:

we have (~) binary words of weight w. The code contains 2k of the 2n binary

words of length n. Thus a reasonable approximation is that there are (~)2-(n-k)
codewords of weight w in the average code. The following result formalizes this.

Theorem 3.1. For any R with O<R< 1 and any symbol field GF(q), the fraction
of linear (n, nR) codes over GF(q) satisfying

A(w) = Lqn[Hq(Wln}-(I-R}] +o(nl/2} J
for all w, 0< W:5n is at least I-q-a2yn+O(IOgn} for some constant a. The minimum

distance of virtually all linear (n, nR) codes over GF(q) thus satisfies d =

H;I(I-R)+o(n).

Proof. Assume that the k x n generator matrix is chosen at random from the .

uniform distribution (possibly resulting in a matrix with rank less than k). For a

given w, define X to be the random variable denoting the number of nonzero

codewords of weight w. There are if -1 combinations of the k rows if at least one

row must be taken. Let Xi, 1:5 i ~ qk -1 be a random variable taking the value 1 if

the ith combination gives a codeword of weight w, and taking the value 0 otherwise.
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I Then X= LiXi, so
k (~)(q -1)W

E(X)= ~EXi=(q -1)

() .

I q"

" Thus EX=q"[Hq(wln)-(l-R)]+O(IOgn). For the variance of X, we have a2(X)=

I E(X2)-E2(X)=E(X)+(ELi XJ(ELj*i X)-E2(X)<EX. Now from Chebyshev's

! . inequality, Pr(IX -,ul ~ t)~a2/t2, so

Pr(IX/,u -11 ~P) ~ a2/(,up)2< (,up2)-1.

Setting p = qayn gives the required result. Thus the fraction of codes which do not

satisfy the average weight condition for a given weight is vanishingly small. The

fraction of codes that do not satisfy the average weight condition for some w is at
most n times greater, and is hence also small. The probability that the generator

matrix is of rank k is lower bounded by the probability that a k x k matrix over

GF(q) is nonsingular, which is il;:-Ol (1- q-(k-i») [4]. This is lowest for q = 2, when

it converges to 0.288. The set of codes which do not have the average weight

distribution must therefore also be a vanishingly small fraction of the codes with

rank exactly k. 0

3.1. Information set algorithms

We use the term information set algorithm to denote algorithms that work by ex-

ploiting the redundancy of the code. In an (n, k) linear code, if we know k linearly

independent symbols from a codeword, we can reconstruct the codeword. Thus if

the received vector contains no errors in the k linearly independent symbols (the' 'in-

formation set"), we can reconstruct the codeword. If the received vector contains
no errors in the information set, any error pattern in the parity symbols can be cor-

rected. This is where the procedure gains its efficiency: one basic operation (re-

encoding) is sufficient to correct many error patterns. Of course, if there are errors
in the information set, but we know or guess the error values, the same principle

applies. We will exploit this fact in two decoding algorithms.

An interesting result is given by Mandelbaum [27].

Lemma (Mandelbaum). For any linear code C and any coset leader or joint coset

leader w ofC, there is at least one information set in C that is disjoint from w. Thus

. a pure information set algorithm is always sufficient to achieve complete minimum

distance decoding.

Proof. Suppose the complement of the support of w contains fewer than k indepen-

dent symbols. Then there is a nonzero codeword c with all these independent sym-

bols O. Then c must be 0 on all symbols not in the support of w, i.e., supp(c) ~

supp(w). Thereforew+ac has weight less than w for appropriate constant a, con-
tradicting the assumption that w is a coset leader. 0
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Despite the great interest in algorithms based on the information set idea [1-18],

no precise estimates of the decoding complexity have been available. We examine

two algorithms based on this approach: systematic coset search and the covering

polynomials algorithm. We have examined a third algorithm based on the approach

in [11]; we report the results here.

3.2. Systematic coset search

Systematic coset search, suggested by Montgomery et al. [29] and by Levitin [18],
involves taking one information set and searching through all possible patterns of
errors in that set. If we can guess the pattern of errors in the information set, we

can recover the error pattern from the re-encoding argument above. We have

Theorem 3.2. The complexity coefficient for complete hard decision decoding

using the systematic coset search algorithm is

min(R,RHq(H;I(l-R)/R».

This is always less than or equal to min(R, 1- R).
The complexity coefficient for bounded soft decision decoding is

min(R,RH2(Hil(1-R)/R».

The complexity coefficient for bounded hard decision decoding is

min(R,RHq(H;I(1-R)/2R».

Proof. The maximum number of errors that can occur in a correctable error pattern
is the covering radius e of the code. Thus in searching through all patterns of errors
in the information set, it is sufficient to search for all patterns of weight e or less.

Using Blinovskii's result, cited above, we have e=nH;I(l-R)+o(n) for virtually

all linear codes over GF(q). If this number is less than k, we achieve some reduction
in decoding complexity. We must search through ):;S(l (~)(q-1Y instead of qk

possible error patterns. Using ().~)(q -l»).n = exPq(nHq(A) + o(n», we have

(l/n)logq():;S(l (~)(q-1);)=RHq(H;I(1-R)/R) if e/k:5(q-1)/q. Note that by

the convexity of the entropy function, we have Hq(xy»xHq(y) if O<x,y< 1. Thus

RHq(H;I(l-R)/R)<R(l/R)Hq(H;I(l-R»= 1-R. .

In bounded soft decision decoding, the maximum hard weight error pattern has .
weight 2t=d-1. Using Theorem 3.1 and B1inovskii's result on covering radius,
2t ~ e, so bounded soft decision decoding has the same complexity coefficient as

complete hard decision decoding. A similar argument holds for the bounded hard

decision case, using Theorem 3.1 to show that t = nH;I(l- R)/2 for virtually all

linear codes over any symbol field. 0



New approaches to reduced-complexity decoding 49

0.5

0.45

0.4

... 0.35
5

~ 0.3

8

u

>. 0.25

.~

.9-
~ 0.2

0

u 0.15

0.1

Infonl1ation Sets

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rate

Fig. I. Comparison of complexity of various schemes.

The function for complete hard decoding (also obtained by Levitin) is plotted in

Fig. 1. The bounded hard and soft decision complexity coefficients are new.

3.3. Covering polynomials

Another method in the information set family is to take more than one informa-

tion set, and attempt to recover the pattern of errors in at least one of the informa-

tion sets. In each information set!, we search through candidate error patterns (the
covering polynomials) of up to an appropriate weight w. We correct these

postulated errors and use the re-encoding process. If there are in fact w or fewer
errors in one of the information sets, the re-encoding principle implies that the entire

error pattern will be found. The algorithm was first suggested for cyclic codes [20],

with the information sets taken to be the n sets of k consecutive symbols; we follow

this convention.

Before computing the complexity coefficient for the procedure, we consider the
: situation if a selected set of k bits is not an information set, i.e., if the column rank

of the corresponding k columns of the generator matrix is k - c for some positive

constant c. We can modify the algo..rithm to take account of this, at the cost of an

increase in complexity, as follows. We take k- c linearly independent columns from

I and c additional columns from outside I, so that the resulting set of k columns

is an information set I'. Now for each postulated error pattern in I, we postulate
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every possible error pattern in I' - I. If the postulated error pattern in I is the actual
error pattern, then because of the exhaustive search through 1'- I, we will find the
actual error pattern in I'. Re-encoding from this information set will then give the

error pattern. This procedure multiplies the complexity of the algorithm by if, so
it is practical only for small c.

Theorem 3.3. For virtually all linear (n, nR) codes over GF(q), the complexity coef- ,

ficient for complete hard decision decoding using the covering polynomial algorithm

is R(I- R). For bounded soft decision decoding, the complexity coefficient is also
R(I-R). For bounded hard decision decoding, the complexity coefficient is

RHq(H;1(I-R)/2).

Proof. From the first result quoted in Section 3, the fraction of codes with any set

of k symbols of rank less than k(l- a) tends to zero for any a> O. Thus we can take

as information sets the n sets of k (cyclically) consecutive symbols, find an informa-
tion set I' containing as many symbols of I as possible, and perform an exhaustive
search through I' - I; the result shows that the increase in complexity caused by

using this procedure will be subexponential.
We need the value of w, the maximum weight information set error pattern that

needs to be tried. There are no more than (! errors in any correctable pattern, and
the n information sets have on average (!(k/n) errors each. Thus there is at least one
information set with no more than (!(k/n) errors, and we can set w=(!R. The

number of patterns to be tried for each information set is then ~/sw (~)(q-l)/
= ~/SeR (nf)(q-l)/=exPq(nRHq«(!/n)+o(n». To find the overall complexity, we

multiply by n (the number of sets) and a subexponential term qo(n) to account for

the additional exhaustive searches. Using the fact that (! = nH;l (1- R) + o(n) for
virtually all codes, we have a complexity coefficient of R(I- R) overall. The com-

plexity coefficient is thus independent of the size of the symbol field. For bounded
soft decision decoding, the same result holds, because the maximum number of hard

errors, 2t, is the same for virtually all codes as the covering radius. For bounded

hard decision decoding, the value of w becomes tR=n(RH;1(I-R)/2+0(1», and

the complexity coefficient is RHq(H;1(I-R)/2). 0

The results for complete hard decision and bounded soft decision - identical for
q = 2 - are plotted in Fig. 1. Clearly, the algorithm represents a great improvement

over both the trivial exhaustive search algorithms and systematic coset search.
In generalized information set decoding, we seek to find a large enough number

of sets of k symbols so that at least one of the sets is error free. If a set is not an
information set, we apply the method used in covering polynomialscibove. Recent-
ly, we proved the following results: the details, too long to be given here, can be

found in [11].

Theorem 3.4. For virtually all linear (n, k) codes Cover GF(q), the complexity
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M(C) of complete minimum distance decoding using the generalized information
set decoding algorithm satisfies

.} (H-l(I-R» )-IOg2M(C)=H2(H;1(I-R»-(I-R)H2 q +0(1).

~ .. n l-R

Bounded distance decoding has, for virtually all codes, a complexity M(C)
~ satisfying

1c 1 (H- (I-R» )-log2M(C)=H2(H;1(I-R)/2)-(I-R)H2 --q ,- --, +0(1).

n 2(1 - R)

Bounded soft decision decoding has, for virtually all binary linear codes, a com-
plexity M(C) satisfying

1 [ (Hil(I-R» )]-log2M(C)=(I-R) I-H2 +0(1).

n (1 -R)

The functions for complete hard decoding and bounded soft decoding are iden-
tical for q = 2. They are plotted in Fig. 1. Clearly, they represent a huge improve-
ment over exhaustive search procedures for any fixed rate. For R = 1/2, generalized
information set decoding requires, for complete decoding, less than the fourth root
of the number of computations required by a search through all codewords, while
it requires less than the ninth root of the number of computations for bounded hard
decoding.

3.4. Progressive algorithms

The basis of this family of algorithms is the following simple observation: it is

easy in general to locate a word of fairly low weight in a coset. If we can do this,

the difference between the low weight word we have and the coset leader will be a

codeword of low weight. The average code has a weight distribution approximately

equal to a scaled binomial distribution, the low weight words represent the "tails"
of the distribution, and so there are relatively few low weight codewords. Our

strategy is thus to find a low weight word in the coset, add in turn all sufficiently
low weight codewords, and take the lowest weight sum as the coset leader. This is
an exhaustive search of a set containing relatively few codewords.

-, 3.4.1. Zero neighbors algorithm

One version of this is the recently proposed zero neighbors algorithm [23]. To

summarize this algorithm briefly, the set of codewords used is that required to pro-

.. vide a minimal cover of the zero domain frame, which is the set of n-tuples that are
not coset leaders, but are at distance 1 from a coset leader. Levitin and Hartmann
[23] show that an upper bound on the weight of a codeword in the minimal set is

about twice the covering radius. Thus an upper bound on the complexity is given

by the number of codewords of weight 2{! or less, where {! is the covering radius.
Thus
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Theorem 3.5. Complete hard decision decoding using the zero neighbors algorithm

has, for virtually all linear codes, a complexity of

if[Hq(2Hi1(I-R»-(I-R)+O(I)].

Bounded soft decision decoding has, for virtually all binary linear codes, a complex- .

ityof 2n[H2(2Hi1(I-R»-(I-R)+o(I)].

~

Proof. The complete hard decision result follows immediately from Theorem 3.1.
The bounded soft decision result follows from the fact that the hard decision coset

leader will, from Blinovskii's result quoted above, have weight no more than

(!=nH2-1(I-R)+0(n). The least soft weight error pattern cannot have more than

2t hard errors if it is within the bounded soft distance, and from Theorem 3.1, we
have 2t=nH;I(I-R)+0(n)~{! for virtually all binary linear codes. The~ the best

hard decision estimate of the error pattern and the best soft decision estimate differ

by a codeword of weight at most 2{!. Thus after using the zero neighbors algorithm

to find the best hard decision estimate, we can add all codewords of weight 2{! or
less to the estimate and find the best soft decision estimate. But the set of zero

neighbors is already assumed to contain all codewords of weight up to 2{!, so the

second part of the algorithm results in a doubling of complexity, making no dif-

ference to the form of the result. 0

The result for complete hard decision decoding was given in the original paper

by Levitin and Hartmann; the result on the complexity for bounded soft decoding

is new to this paper. The function is plotted in Fig. 1 for the binary case. The com-
plexity required is much less than that for exhaustive search (approximately the

square root of the number of codewords at rate 1/2), though considerably more

than that for generalized information set decoding.

3.4.2. Projecting set decoding

An algorithm with some points in common with the zero neighbors algorithm has

been suggested (for the soft decision case) by Hwang [19]. Again, we want to com-

pute a minimal set of codewords so that, given a word in the coset, we can add

codewords from the set repeatedly, accepting a sum if it results in a lower weight

word, and declaring that the word is a coset leader when no further weight reduction

occurs by adding any word of the set. The projecting set is a set of low weight .;

codewords: the set contains all codewords of weight 2d -lor less, and for binary

codes we need have no word of weight greater than n - k in the minimal set [19].
The second observation follows because any codeword of weight> n - k can be ex- .

pressed as the sum of two disjoint codewords. If the single codeword gave a weight
reduction when added to the received word, at least one of its constituent codewords

must do so also. Thus we use a subset of the number of codewords, and have a lower

complexity than a full search through the codewords. We have (once again a new

result)
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Theorem 3.6. The complexity coefficient f(R) for complete (maximum likelihood)
soft decision decoding using the projecting set algorithm satisfies, for virtually all
binary linear codes,

H2(2H2-1(I-R»-(I-R) =fL(R) ~f(R) ~fu(R) = max H2(I-R')-(I-R').

R'sR

:: The upper bound is higher than min(R, 1- R).

Proof. Every word of weight 2d - 1 or less is in the set, and from Theorem

3.1, d=nH2-1(I-R)+0(n). Thus, again from Theorem 3.1, LiS2d-1 A(i)~

2n[H2(2Hil(I-R»-(I-R)]. The upper bound follows directly from Theorem 3.1. If

R < 1/2, then Theorem 3.1 shows that an asymptotically insignificant proportion of
the codewords have weight greater than n - k, so the set includes almost every

codeword and fu(R)=R. If R> 1/2, we have a significant gain over a search

through all codewords, but the complexity function, H2 (1- R) - (1- R) is always

greater than 1 - R over this range, and thus the algorithm is inferior to the trellis

search proposed by Wolf [34], for which the complexity coefficient is 1- R. D

Thus the algorithm appears to have no value in the asymptotic sense, although

it does have the features that it is valid for complete soft decision decoding, and pro-
vides an upper bound on the weight of codewords to be included in the set of zero

neighbors.

4. Continued division algorithms

The basic procedure of continued division, defined below, was first suggested as
an approach to the decoding problem by Farrell [15] on empirical grounds. In this
paper, we provide original analysis of the effect of the procedure, and use it as an

integral part of a new decoding algorithm. We show that the proposed algorithm

is unique in that it exploits features of both information set decoding algorithms and
progressive algorithms. It also offers a way of reducing the space complexity of a
generalized algorithm at the expense of slightly increased time complexity; this
tradeoff is not available with the approaches of Section 3. We discuss the algorithm

for the case of cyclic codes; this clarifies the ideas and simplifies the analysis. We

show how the procedure may be generalized to linear codes.

The basic procedure is as follows. We have a received word r(x), and a dividing
.. codeword c(x). Dividing r(x) by c(x) will produce the remainder r(x) mod c(x). By

continued division, we mean the process of producing xir(x) mod c(x) for O~i~M

for some appropriate M. This corresponds to performing longhand division with a

large number of zeros appended to the right of r(x). Alternatively, we can view the

process as involving continued subtractions of cyclic shifts of c(x) that may "wrap
around" the end of the word. Table 1 gives an example of the procedure for the
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Table I. Continued division.

g(x) I 0 1 0 1 1 1 0 0 1 0 1

00000101011110001110001 co

101011100011

s(x) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1
1 10101110001 ~

1 0 0 0 0 0 0 0 0 0 0 00 0 1 1 ... 0 000 "0 0

Golay code. Starting with the syndrome S (x) = r(x) mod g(x), the ith remainder in

the process is xn-i(xir(x) mod c(x» mod (xn -1).

As a first step towards the analysis, we consider division by g(x). This is exactly
equivalent to error trapping [25], i.e., information set decoding in which the infor-

mation sets are the n sets of k consecutive bits (taken cyclically). This is sufficient

to detect all error patterns of burst length up to n-k: let r(x) = i(x)g(x) +xje(x),

with deg e(x) < n - k. Then the (n - j)th remainder in the continued division process

is xj (xne(x) mod g(x» mod(xn -1). But g(x) I xn -1 and deg g(x) > deg e(x), so

xne(x) mod g(x) = e(x), and the (n - j)th remainder is xje(x), the error pattern.

In dividing by a codeword d(x) = i(x)g(x) other than the generator, we distinguish
between the two cases d(x) I xn -1 and d(x) f xn -1. If d(x) I xn -1, then d(x) is
itself the generator of a cyclic code Cs of length n; this eases the analysis con-

siderably, and we concentrate on this case. Every codeword in Cs is of the form

a(x)d(x) = a(x)i(x)g(x) e C, so Cs is a subcode of C. Continued division by d(x)

thus corresponds to error trapping in the subcode. If the transmitted codeword

c(x) e C is also in Cs, then the received word can be written as r(x) =

b(x)d(x) + e(x). In this case, if the error pattern has burst length less than the redun-

dancy of the subcode, we achieve correction. The redundancy of the subcode is
deg d(x) = n - k+ deg i(x). This is higher than the redundancy of the code C, and
so many more error patterns can be trapped. In general, however, the transmitted

codeword does not belong to thesubcode. In this case, the received word is of the

form r(x) = c(x) + e(x) = cs(x) + es(x), where cs(x) is the nearest codeword of Cs to

r(x), and es(x) is in the same coset as e(x). We refer to es(x) as the subcode coset
leader. Three situations are possible when we begin division of r(x) by d (x): '"

(i) r(x) is a subcode coset leader;

(ii) r(x) is not a subcode coset leader, and all words of lower weight in the same

subcode coset have burst length >n-k+degi(x);

(iii) r(x) is not a subcode coset leader, and at least one word of lower weight in

the same coset has burst length ~n-k+degi(x).

In the first case, no reduction in weight is possible on division by d(x). In the second

case, we can only achieve weight reduction in the exceptional case that the received
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word is of the form x'a(x)d(x) + w(x), where wt(w(x» < wt(r(x» and

len w(x) < n - k + deg i (x) + I. In the third case, a word of lower weight in the coset

is found. This suggests the following algorithm.

Continued division algorithm

(1) Select Mcodewords Ci(X), O~i<M, with ci(x)lxn-1.
:. (2) Construct the table T of adjustment codewords (see below).

(3) Given received word r(x), perform continued division for two cycles by each

Ci(X).

(4) Let w(x) be the lowest weight word resulting from step (2). If

wt(w(x» < wt(r(x», let r(x) = w(x) and go to step (3); otherwise, go to step (5).

(5) For each codeword a(x) in T, compute a(x) + w(x).
(6) Take the lowest weight such word as the coset leader.

The basis for the algorithm is the assumption that case (ii) is rare, and that cases
(i) and (iii) dominate. Then if there is a word w(x) in the coset such that r(x) - w(x)

is contained in any of the subcodes, we find w(x) through the continued division

process. We eventually finish with a w(x) which is a coset leader in each of the sub-

codes. The table of "adjustment" codewords T consists of all those codewords that

are representable as the difference between a word that is a coset leader in all the
sub codes and its coset leader in the code C. As in the case of the zero neighbors
algorithm, only codewords of relatively low weight will be required. We will not,

however, have to store any such low weight codewords that are contained in any

one of the cyclic subcodes. We thus achieve a form of compression of the required
decoding codewords: if many zero neighbors lie in a single subcode, then instead
of having to store them all explicitly, we can store the generator of the sub code only.

To generalize the process to any linear code C, we select an information set of

C, and a subset of the information set. The set of codewords whose nonzero infor-
mation bits are confined to the subset of the information set define a subcode Cs

of the code. Given a received word r(x), we subtract the codeword in Cs which has

the same pattern in the subset as r(x). As in the case of cyclic codes, this is sufficient

to recover the error pattern if the transmitted codeword belongs to the subcode and
the error pattern is disjoint from the subset. Given any received word, a lower
weight word in the same coset will be found if the codeword equal to the difference

between the two words is in the subcode, and the lower weight word is disjoint from

the subset. We now draw a distinction between two types of errors: ones turned to

zeros (type I) and zeros turned to ones (type II). A necessary condition for decoding

. is that no type I errors are located in the information set: if a type I error is in the

subset, then the error pattern is not trapped even in the subcode, while if it is in the

remainder of the information set, the difference codeword cannot be in the subcode.

However, decoding is still possible even if type II errors are in the information set,

but not the subset. The asymptotic complexity of the procedure will be determined
by the manner of selection of the information sets and subsets. The above argument
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indicates that the best strategy is to select the information sets so that the ones of
the received word are more likely to be in an information set than the zeros. Thus

the type I errors are more likely to be confined to the parity check bits.

5. An improved combined algorithm for bounded soft decoding

~

Recall that in bounded soft decision decoding, we are concerned with getting the
nearest codeword provided that the soft distance is less than t. This means that the
total number of hard errors cannot be greater than 2t. The complexity coefficients
obtained in Section 3 above assumed that this many hard errors had been made.
However, if 2t hard errors have been made and the soft distance is still not greater
than t, then the received vector must have 2t components with soft value 1/2 (i.e.,
erasures) and n - 2t components that are 0 or 1. If we know that there are exactly
2t errors, then we know that all the erasures represent hard errors, for otherwise the
soft distance is greater than t. Thus the error pattern is easy to compute. If the

number of errors is much lower than 2t, the information set decoding algorithm will

perform well. If, on the other hand, the number of errors e is high (close to 2t) we

can perform a sequential search for the error pattern through the words with hard
weight e that are closest in the soft weight sense to the received word. To do this,
we order the received bits in increasing order of reliability, and define a partial

ordering on the e-tuples: let the word a = (ao, ..., an -I) have support {aI, ..., ae} and
define {hI, ...,be} similarly. Then a~b if and only if ai~bi for all i. A full order-

ing is given by the rule a>b if and only if ai<bi and aj=bj for j<i. Clearly, if

(soft) dist(r,a»t and a~b, then dist(r,b»t. Using this ordering, and beginning
with leon-e, we examine dist(r, a) for each a in turn. If dist(r, a) > t, we need not ex-
amine any b such that a~b.

The following is our proposed new strategy: at step j of the algorithm, we assume
that there are j hard errors. If j is less than some appropriate threshold, we try to

decode using information sets. If it is higher than the threshold, we try the lex-

icographic search outlined above. The overall complexity coefficient will be deter-

mined by the value of the threshold. To find the optimum setting, we determine an

upper bound on the number of operations in the lexicographic search as a function
of j, and find the point at which this equals the complexity of an information set
algorithm that seeks to decode j hard errors. ;:;

We have the following result:

Theorem 5.1. The combined algorithm of information set decoding and lex- .
icographic search achieves bounded soft distance decoding with, for virtually all
binary linear codes, a complexity coefficient of at most

H2(C;) -(1- R)H2(C;/(I- R»

where C; is the solution to the equation
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H2(f.)- (1-R)H2(f.1(1-R» =2(2T-f.) + (1-4T+2f.)H2((1~i-l~ ~)

where T=tln=H;I(1-R)/2.

We plot this function in Fig. 2. Clearly, it represents a significant improvement

on the information set decoding algorithm. As it is an upper bound, further im-

:; provement may be possible using this approach.

Proof. To prove the result, we bound the maximum distance two words can be

apart if they both need to be examined in the systematic search. Assume that we

compute the reliability of each received bit (the soft distance from the nearer of 0

and 1) and arrange the bits in increasing order of reliability. Take any two words

of weight j that are within soft distance t of the received word. Label the bits where

both words are one as £1' the bits where both are zero as C1, and the bits in which

they differ as D1 and D2 (where D1 is the set of locations which have a one in the
first word and a zero in the second, etc.). We have

L (l-aj)+ L (l-aj)+ L ai+ L aj<t

EI Dt ~ CI

and

L (l-aj)+ L aj+ L (l-aj)+ L ai<t.
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Fig. 2. Complexity for bounded hard and soft decoding.
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Summing these, we have

2 L (l-ai)+m+2 L ai<2t

El C1

where m is the distance between the two sequences. As 1- ai~ 1/2, we must have :-

m + lEI I <2t; now lEI I ~j -mI2, so m ~2(2t- j). Note that ifj is close to 2t, we

must have m close to zero. We need to find the maximum number of words of

weightj of distance no more than m apart. This amounts to trying to maximize the .

number of codewords in a constant weight anticode. We find an upper bound by

determining the maximum number of words of any weight that are all within

distance m of two words that are distance m apart. Without loss of generality, let

one of the words be the zero codeword. The second word then has weight m. We

seek the maximum number of words of weight m or less that are distance no more

than m from the second word. This is given by }:a }:b (,;)(nbm) with m - a+ b~m

and a+b~m. Thus a~b and the complexity is dominated by the term (m~2)(n,;;/';:).

Taking the logarithm of this and ~ividing by n gives a complexity coefficient of
mln + (1- mln)H2 (mln)/(2(1- mln»). Substituting m = 2(2t - j) yields the expres-

sion in the theorem. D

Clearly this is an upper bound, so we pose the obvious questions: what is the exact

solution, and what is the maximum number of codewords in a constant weight an-
ticode?

6. Conclusions

Our motivation is to synthesize some of the various approaches to the general

decoding problem and to derive accurate measures of complexity for such schemes.

We give accurate results for many schemes, covering the cases of full and bounded

hard decision decoding and bounded soft decision decoding, and show that a vast
improvement over brute force algorithms is possible from many different ap-

proaches. We propose a decoding algorithm for cyclic codes that takes advantage

of the main features of both types of algorithm studied, and suggest a generalization
to all linear codes. Finally, we propose an algorithm for the case of bounded soft

decision decoding that is significantly better than any algorithm currently known.
;t
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