
An Arithmetic-Stack Processor

for High Level Language Execution

Rodney M Goodman

Department of Electrical Engineering (116-81)

California Institute of Technology

Pasadena, CA, USA 91125

TeL (818)-356-3677

E-mail: rogo@csvax.calteckedu

Anthony! McAuleyt

Bell Communications Research (MRE-2M258)

445 South Street

Morristown, NJ; USA 07960-1910

TeL (201)-829-4698

E-mail: mcauley@falme.bellcore.com

Abstract

We describe a 32-bit Arithmetic-Stack Processor, the ASP chip, designed to be a simple,

flexible, yet powerful building block for a high level language computer.

The ASP is a 3 micron CMOS chip which runs high level programs at 25Mips, employing Forth
as its machine code. It is less sophisticated than a RISC or CISC microprocessor, but when

combined with the right hardware and compiler, will run procedural language programs more

efficiently. The ASP is similar to a bit-slice or building block CPU, though it has a very different
architecture. It therefore requires extra hardware to build a complete system, and so it would be

mainly used where speed is critical. However, compared with current bit-slice or building block

computers, the hardware and software design are greatly simplified.

1. Introduction

The system designer, trying to solve a particular problem, would use knowledge of algorithm

complexities to find the 'best' algorithm and then translate this into a High Level Language

(HLL). When performance is critical however, a standard general purpose computer may be too

inefficient. In this case the designer can either try to write part of the code in machine language

or try to fmd a computer that can run the HLL program faster. It is with the latter problem that

this paper is concerned.

A computer engineer trying to help this system designer is faced with a myriad of choices.

The easier and cheaper solution is to use one of the standard microprocessors, such as the

Motorola 68020. But if this does not meet the speed requirements, the engineer must accept the

harder and more expensive task of designing from more basic elements: such as the Advanced

Micro Devices 29300 building block elements, standard chips, or design an applications specific

computer chip.

t This work was funded by the Caltech Microsystems Group, and is covered by a Caltech patent. Dr. McAuley was
involved in this work while employed at Caltech.

Journal of Forth Application and Research Volume 5, Number 4

469

470 The Journal of Forth Application and Research Volume 5 Number 4

Our primary motivation was to build the basic hardware that would simplify the design of a
wide variety of language directed architectures. The designer would follow an applications driven
approach starting with a specific language and then writing the program. Only then would the
designer need to be concerned with profiling the program to optimize the compiler and decide
whether any hardware modification is desirable.

It is important to note from the start that the chip we designed is far below the sophistication
and complexity of 32-bit microprocessors. It is just a naked stack processor. Our primary goal
was to build a piece of hardware that would allow system designers to build a variety of HLL
computers, customized to their needs, quickly and efficiently.

There is a well documented [1] conceptual gap between the users of computers, who typically
think in terms of a High Level Language, and the computer hardware which is programmed in

machine code. The design of a HLL computer to bridge this 'semantic gap' is certainly appealing.
It would allow programmers to be more effective, since it is easier to see how the program actually

runs in hardware. A HLL computer would also facilitate easier software debugging, greater
reliability and an opportunity to customize the hardware to the problem [1].

In this paper we restrict ourselves to describing the flexibility and power of the ASP. The
following sections introduce the ASP architecture, and a detailed specification sheet on the ASP
chip is included as an Appendix for the use of potential users.

It is clear there must be some trade-off between simplicity, flexibility and power when

designing a computer system. In section 2 we very briefly review three broad approaches to this

problem. In section 3 we describe the virtual stack machine, which is the basis of our approach.

Sections 4, 5 and 6 outline the ASP chip hardware, defering much of the detail to the Appendix
for simplicity. Section 6 introduces the microcode, again the detail is given in the Appendix. In
section 8 we outline how to use the ASp' with the aid of additional hardware and software, to
build a machine dedicated to Forth. Section 8 introduces the idea of using the ASP to implement
other high level languages such as 'C'. Using the ASP to implement languages other than Forth
will be the subject of future papers.

2. Three Classes of Computers

In this section we briefly review three classes of computer architecture: the RISC, the CISC

and the BISC (our own acronym). Though the dividing line is somewhat fuzzy, this charac-

terization enables us to differentiate our approach from existing methods. This section does not
cover any new ground, so those familiar with these three classes can skip this section.

Recently, the most popular approach has been the Reduced Instruction Set Computer
(RISC). This name covers a broad spectrum of architectures, but all have a small number of
simple instructions tailored towards the most used primitives of a HLL, each executing in a single
clock c.ycle [1,2].

One approach to RISC architecture is to have a large number of registers and a fast
instruction pipeline. The instructions, though directed towards a HLL, are normally of fairly low

level. An example of this approach is the U C Berkeley RISC II machine [1]. A second approach

to RISC is to have virtually no internal registers, making context switching much faster. The
Novix NC4000 [4] is an example of this approach, which has just 40 primitives.

Our second broad classification is the Q)mplex Instruction Set Computer (CISC) [1].
CISC's try to migrate many of the HLL constructs directly into the primitive machine instruction.
The microcode, equivalent to a RISC instruction, is hidden in the on-chip sequencer. This allows
a reduction in the number of instructions needed to perform a particular task, at the cost of some
flexibility. A good example of a CISC is the Motorola 68020 [1].

_111111

An Arithmetic-Stack Processor for High Level Language Execution 471

Our final classification is the Building Block style computer (BISC). Th~e provide very
flexible building blocks, such as an ALU, sequencer, and multiplier, for high performance

applications. Despite the programming problems associated with low level, complex

microinstructions, they remain popular because they can out-perform standard microprocessors.
A good example of a BISC is the Advanced Micro Devices 29300 family [5]. We also include in
this class computers built from standard TrL or custom/semi-custom chips (see also pages 5-9
of reference [3]).

Even though RISC and CISC architectur~ continue to improve, and indeed be combined,

they are often too inefficient for high performance applications. While the throughput achievable
with the BISC approach is potentially much better, it is expensive and takes even experienced
designers a long time to complete. What is required is a combination of this power and flexibility,
together with simplicity in both hardware and software.

3. The Virtual Stack Machine
When a HLL is compiled to run on a microprocessor, there is normally an intermediate

language between the source code (e.g. 'C') and the machine language (e.g. 68020 machine code).
This internal language is most efficient [7] when it is based on a Reverse Polish machine, that is,
on a virtual stack machine. In this case the operators occur in the same order in which they are
employed, so they are quicker and easier to run.

The basic building blocks of a 'typical' virtual stack machine are: an Arithmetic/Logic Unit
(ALU), an arithmetic stack, a return stack, an instruction fetch unit (IFU), a microcode-sequen-
cer and some data and instruction memory.

The function of the ALU and arithmetic stack are the execution of the language primitives.
The function of the lFU and return stack are to get the address of the next instruction and perform
the stack frame management of the subroutine calls. The exact function and interaction between

the ALU and lFU blocks will depend on the language being implemented. But, we can make two

important obselVations at this stage. First, the ALU and lFU though functionally very different,

actually require similar hardware. Secondly, they can operate fairly independently, for example,
the lFU could work concurrently or even asynchronously with the ALU, except when the two
need to communicate.

It is now possible to put all of the above onto a single chip, but with limitations on the size

of stack and a general lack of flexibility. In order to fulfill our goal of flexibility, we have mapped

only the critical, 'lowest common denominator,' hardware elements onto a fast custom VLSI

chip. This approach, described in section 7, gives greater freedom for applications driven
solutions.

The chip is designed to act as the core hardware needed to implement both the ALU and

lFU. Because their common functions are an Arithmetic Unit and a Stack Manipulator we have

dubbed our device the Arithmetic Stack Processor, or ASP.

4. 11ze Arithmetic Stack Processor
The 32 bit ASP can be logically split into a Central Processing Unit (CPU) and a Stack Pointer

Unit (SPU). These represent our choice of the two key elements to running an HLL. Figure 1

shows a block diagram of the ASP, while Figure 2 d~cribes the function of the external pins.
The ASP is a flexible, high speed 32 bit microprogrammable device. It has the potential to

perform 227 different operations. Of course many of these are not meaningful. However, as the
microcode directly controls the hardware, and the user has direct access to this it is easy to find
primitives which can be used to optimize different applications. Microcode is loaded via pins

M26-MO, with the A31-AO bus acting as the port for external data transfers. The external 'stack

RAM' is read or written via D31-DO, with the address supplied on pins 123-1..0. The addition of

472 The Journal of Forth Application and Research Volume 5 Number 4

external RAM thus transforms the ASP into a true stack processor. The operation and manage-

ment of this RAM is invisible to the rest of the system.

F1-FO A31-FO VDD VSS CLK

c

C'

M19

-M26

D31-DO F3-F2 L23-LO M26-MO

Figure 1. ASP Functional Block Diagram.

Simplicity, flexibility and power are the three keys to the ASP. The simplicity is in the
architecture which consists of just a few registers, multiplexers, and adders directly driven by
microcode. The flexibility is in its ability to perform potentially 227 different microinstructions.
The power of the ASP comes from both the high level of the microinstructions, which are higher
than standard microprocessor machine code, and the speed at which it can execute them.

There is one level of pipelining on the chip, used in order to minimize the speed requirement
of external RAM. The SPU calculates the address one cycle before the CPU needs to read or
write the corresponding data. Th achieve this, the microcode goes directly into the SPU, allowing
it to add the contents from one of its stack pointers to any offset required, and latch the result
onto the L-bus latch. The M-latch (see Figure 1) delays the microcode one clock cycle before it
reaches the CPU, allowing it to read or write from the external RAM with the address already
waiting on the L-bus.

Signal Description
M26 - MO Microcode input bus
A31 - AO Bidirectional, tristate system bus (Inverted signals)
D31 - DO Bidirectional, tristate stack RAM data bus (Inverted signals)

L23 - LO Stack RAM address bus
F3 Stack undetilow

F2 Stack cwetilow

F1 ALU numeric overflow

FO ALU zero detect

CLK System clock input

VDD(2) Power input,S volts
VSS(2) Power input, 0 Volts (GND)

Figure 2. ASP Pin Description.

An Arithmetic-Stack Processor for High Level Language Execution 473

Figures 3 and 4 shows a simplified block diagram of the SPU and CPU. Most blocks actually
have a separate pathway to the other blocks, though for simplicity this is just labeled as a routing
network.

A-bus FO F1

D-bus J-bus E-bus

Figure 3. The Central Processing Unit (CPU).

The CPU, shown in Figure 3, consists of an ALU, the top two stack registers (DT and DN),

a transparent latch (TS), two one bit flag registers (DV and DZ), tri-state buffers (the triangles),

and multiplexers (shown as a routing network). The ALU is very powerful and fleXlole, and

contains many unusual capabilities to enable most internal language primitives to run in one
clock cycle (see section 6). The flags F1 and FO tell the external sequencer whether the ALU

result was zero or if an arithmetic overflow has occurred. The ALU would normally take its

operands from DT, DN, but can also take them from the SPU, the D-bus (via TS) or the A-bus.

Its operation is controlled by the 19 bits of the microcode in the M-latch.

J-bus E-bus

F3 F2 L-bus

Figure 4. The Stack Pointer Unit (SPU).

474 The Journal of Forth Application and Research Volume 5 Number 4

The SPU, shown in Figure 4, has two stack pointer registers (DP & DQ), stack limit registers

(TT & TB), buffers (DL & DJ), flag registers (DT and DB), adders (AL and AK), comparators

(underflow and overflow detectors), and multiplexers (shown as a routing network). Its operation

is controlled by eight microcode lines (m26-m19). The main function of the SPU is to generate

the new stack address allowing the external RAM to simulate a stack. Normally (although there

is in fact much flexibility) the SPU would take DP as the base address and add to it some bits of

the microcode using AL. At the same time the SPU updates Dp, which is normally equal to the

old DP plus some microcode bits added together by AK. F3 and F2 indicate whether the address

has overflowed or underflowed the limits set in Tr and TB respectively.

5. The Custom CMOS Chip Design

The ASP was fabricated in 3-micron, double level metal CMOS, with less than 25,000
transistors on a 6.8-mm2 chip, and packaged in a 124 pin grid array. By using custom design, as
opposed to gate arrays, we were able to get the most out of the silicon. Yet, because of the
simplicity of the architecture, it could be designed, laid out and fully tested in under a year. In
this section and the next we give a brief description of the chip, the data sheet in the appendix
gives more detail.

The ASP is fully static, so that it requires no minimum clock frequency or refresh, and
consumes less than a Watt at 12.5 MHz. It has a single external clock line, and all data changes

on the falling edge. The pins can read or write from either CMOS or 1TL devices and drive up

to 20pR

Figure 5 shows a photograph of a working ASP chip. It was designed on a SUN 3/160c,

running the HILO-3TM simulator and MAGIC layout editor. Testing was done with a VME

hardware set-up, with the chip connected through ports to the host VME computer. The test

program on the host was written in Forth, and allowed microcode to be sent to the chip, and

input and output data to be manipulated. This software based testing philosophy is very fast and
flexible.

For speed, the three adders and two comparators in the ASP were designed with a full
Carry-Look-Ahead. The number of transistors on the ASP could be reduced to below 20,000 by
replacing these designs by simpler Manchester Carry Chains [9]. Other simplifications could
reduce the transistor count to around 10,000 transistors, without significant performance
degradation, making it an ideal candidate for GaAs. However, some re-design to exploit GaAs's

strengths and weaknesses would be required [6], such as putting some form of on-chip cache

'stack RAM' to compensate for the relatively slow off-chip speed.

6. TIle Microcode
Most internal language instructions can be concocted by setting some combination of the 27

microcode lines to 0 and 1. For example in one clock cycle the ASP can:
a) Duplicate any of the top three elements from the stack.

b) Drop any of the top three elements from the stack.

c) Compare two numbers, leaving an all-ones or zero flag on top of the stack to say if they
were larger, smaller, or equal.

d) Add, Subtract or do any logical operation on the top two elements of the stack.

In two clock cycles (two separate microinstructions) the ASP can:
a) Do a double precision add, with 64 bit operands.

b) Copy an item from anywhere on the stack to the top of stack.

An Arithmetic-Stack Processor for High Level Language Execution 475

Figure 5. Photograph of the ASP Chip in 3 micron CMOS.

The microcode does not stick rigidly to any internal language, though it was optimized for

procedural languages such as Forth and C. The microcode suitable for a Forth set of primitives

is covered in detail in the Appendix.
All the 227 possible instructions execute in a single clock cycle, giving a simulated perfor-

mance of 25Mips in 3 micron CMOS, with a 25MHz clock. Because of testing limitations, the

ASP has so far only been run at 12.5 MHz. But note, these are stack based HLL instructions, not

just machine code operations.

Z A Forth Machine

This section will briefly describe a Forth machine, built around two ASP chips. A simple such
architecture is shown in Figure 6. This is in fact very similar to the virtual machine described in
section 3, the ASP-X and RAM-X together do the arithmetic execution, whileASP-Tand RAM-T
perform the stack frame manipulation.

476 The Journal of Forth Application and Research Volume 5 Number 4

SYSTEM MEMORY

DATA ADD~

D

-T

(stack) EXECl1rER lliREADER (stack)

A

UENCER

Figure 6. A Simple Virtual Stack Machine.

Fonh represents a suitable internal language for compiling other procedural languages, as
well as being a HLL in its own right. Fonh is built from 'words,' each defined in terms of other

words, and so on, until a primitive word definition is encountered. One of the reasons for Fonh's
popularity is that it can be completely defined with less than 30 primitive instructions. In our
case these Fonh primitives are just defined in terms of the microcode required for the two ASP
chips. For performance reasons we found 100 primitives a good number, though the choice

depends on the application and can easily be changed.
When Forth executes, it does so by threading through its defined 'words.' The instruction

pointer contains the address of the next word. If it is a primitive, the code simply tells the
sequencer which microcode to feed to the two ASP chips. When a non-primitive is encountered

the code tells the sequencer to load a new address into the instruction pointer, saving the old one

on the return stack; or to load the instruction pointer with the top of the return stack Thus each
'word' steps through its instructions by successively pointing to the next word in memory, until
a non-primitive instruction is encountered. The current address is then saved on the return stack
and the new word can begin stepping through its own instructions. This goes on until one 'word'
finishes and exits back up to its calling 'word.' This hierarchical threading, as this calling and
exiting is termed, is the responsibility of ASP- T (see Figure 6). The saved addresses are stored in

RAM-T and the in-line stepping is done by the program pointer.

The process is best illustrated by a small example. At the top of Figure 7 the memory used

for defining four words (TEST1, ADDC, @ and a variable) are represented. Below this are six
diagrams used to represent the state of the executor and threader as we thread through the

memory, in order to execute the word TEST!. Using Figure 6 as a reference, AL and IP represent

the contents of the Address Latch and Program Counter, 'p1-p2' and 'r1-r2' represent the two
stack elements stored on chip in the ASP-X and ASP-T respectively, while p3-p4 and r3-r4
represent the next two RAM locations from the current L-busaddress in theRAM-XandRAM-T

respectively.

One very important fact that emerges from this example is that threading takes at most one

clock cycle. The ASP can therefore execute direct threaded code with an efficiency approaching
that of in-line code. EXITs can take no time just by adding a bit field to the primitives to tell the
ASP-T to do an EXIT, while ASP-X concurrently executes the primitive. In fact even threading
can normally be done in 'no time' if the sequencer can pipeline its primitives.

An Arithmetic-Stack Processor for High Level Language Execution 477

The hardware shown in Figure 6 represents a minimal high performance system. However,
the flexibility of the ASP provides for easy extensions. For example, the basic two stack pointer
system in the ASP allows the executer to maintain say a floating point stack separate from the
integer stack. The threader can also perform complex pointer manipulations and arithmetic with
the two stack pointers. Addition of extra hardware such as a fast multiplier or floating point
device is easy, and turns the ASP into a very powerful element. Multiple such ASP chips can be
used in an architecture to achieve very high performance. On the software side it is possible to

use multiple ASPs to run optimized subsets of the language concurrently. The ASP thus allows
the compiler and/or external hardware to be tailored towards any particular language - thus
producing a virtual machine for the language.

TESTl ADDC . @ AR HEADER HEADER HEADER HEADER

4000 OVER 4100 4300 4200 OUTL 4300 562

4004 ADDC 4104. 4204 IN

4008 ROT 4108 + 4~ EXIT

4112 EXIT

System Memory (Containing Forth Words)

AL IP AL IP AL IP

A A A

p1 8 r1 4008 p1 4300 rl 4008 pI 4300 r1 4108

p2 5 r2 3916 p2 8 r2 3916 p2 8 r2 4008

D-bus D-bus D-bus D-bus D-bus D-bus

p3 8 r3 p3 5 r3 p3 5 r3 3916

p4 r4 p4 8 r4 p4 8 r4

EXECtJrER nIRFADER EXECUI'ER nIRFADER EXECUI'ER rnRFADER

AL IP AL IP AL IP

A A

pI 8 rl 4108 pI 562 rl 4108 pI 570 rl 4008

p2 5 r2 4008 p2 8 r2 4008 p2 5 r2 3916

D-bus D-bus D-bus D-bus D-bus D-bus

p3 8 r3 3916 p3 5 r3 3916 p3 8 r3

p4 r4 p4 8 r4 p4 r4

EXECtJrER nIRFADER EXECtJrER nIRFADER EXECtJrER nIRFADER

Figure 7. Effects on P & R Stacks while Executing a Forth Program.

478 The Journal of Forth Application and Research Volume 5 Number 4

8. Other Languages
In this section we give a flavor of how languages other than Forth could be implemented

with the ASP. These ideas will be fully developed in subsequent papers.
Consider how the ASP architecture shown in Figure 6 can be used to run the C language [8].

Given the following C statement: IF (a = = 0) b = c + d . The equivalent internal language

primitives for this in Reverse Polish might be:

a FETCH 8= IF c FETCH d FETCH + b STORE THEN

The two statements perform the same task. A compiler would have little trouble going from

the C to the internal language. Then, as shown in the last section we can very efficiently run the

resulting internal language program. Clearly there is room for improvement, even in this simple
illustration. For example, the program would be quicker if the variables were stored on the stack
instead of FETCHed and STOREd.

It must be made clear, however, that the C-machine is not just a microprocessor with a
C-compiler stuck on. In order to maximize efficiency we must employ a different set of primitives.
The choice of primitives will depend on which parts of the language are required to run most
efficiently, but the ASP is flexible enough to already have those primitives.

It is possible to write an optimized compiler for any language (for example Lisp, SmallThlk
or a DSP language). However, as we move away from a procedural language, it is no longer
sufficient to change the primitives. The ASP architecture itself will begin to limit the perfor-
mance. The reasons for this are complex and more work is needed in this area to see what
hardware changes are necessary.

Our approach to this problem will be the same as for the ASP chip design: applications
driven. Mapping down from the language to hardware using a profile of typical program

primitives. Thke for example a DSP program. The compiler could be changed to allow the second

stack pointer to step through coefficients, without changing the main stack pointer. Additional
architecture specifically for a DSP-machine might include hardware for doing very fast
convolution.

9. Conclusions
The ASP has some elements of standard microprocessors, but without their inflexible

architecture or relatively slow HLL execution. It is similar to BISC computers, without their
complexity. It's design philosophy closely resembles the RISC machines, yet it has the potential
to execute 227 different microintructions, and has few internal registers. The latter makes context
switches (for multiuser and multitasking application) much easier.

The basic ASP microcode instructions are at a higher level than any microprocessor machine
code. In fact they blur the hardware and software interface, allowing better use of computer
system resources. Each microcode instruction runs in one clock cycle, which is 25MHz in 3 micron
CMOS.

The ASP is a very flexible building block which can be tailored to the implementation of
special purpose or standard high level languages such as furth and C. In this paper we have

outlined the basic ASP chip architecture. In subsequent papers we will explore in detail the design

and operation of Forth, C, and special purpose computers built out of ASP chips. We encourage

experimenters to use ASP chips in their designs, and will provide sample chips for their use.

An Arithmetic-Stack Processor for High Level Language Execution 479

10. References
[1] A Silbey, v: Milutinovic & v: Mendoza-Grado. '~ Survey of Advanced Microprocessors

and HLL Computer Architectures." Computer, August 1986, pp. 72-85.

[2] R. Weiss. "RISC Processors: The New Wave in Computer Systems," Computer Design,
May 15, 1987, pp. 53-73.

[3] M. Starling. The Journal of Forth Applications and Research - Special on Forth Machines,

Vol.2, No.1, 1984.

[4] J. Golden, C. Moore & L. Brodie. "Fast Processor Chip lakes its Instructions Directly
from Forth." Electronic Design, March 21, 1985, pp. 127-135.

[5] P. Chu & B.J. New. "Microprogrammable Chips Blend Thp Performance with 32-bit
Structure." Electronic Design, November 15, 1984.

[6] v: Milutinovic, D. Pura, w: Helbig & J. Linn. "Architecture/Compiler Synergism in GaAs

Computer Systems." IEEE Computer, May 1987, pp. 72-93.

[7] P.J. Brown. Writing Interactive Compilers and Interpreters, Wiley, 1979.

[8] A Kelley & I. Pohl.A Book on C, Benjamin/Cummings, Menlo Park, Ca. , 1984.

[9] K. Hwang. Computer Arithmetic: Principles, Architecture and Design, Wiley, New York
1979.

D7: Goodman received a B.Sc. in EE from Leeds University in Yorkshire, UK in 1968 and a Ph.D.

in EE from the University of Kent in Canterbury in 1975. He joined the faculty of the Department of

Electrical Engineering at the California Institute of Technology as an associate professor in 1985.
His research has spanned cryptography, neural nets and expert systems. He founded two companies

in the UK: Electronic Automation Ltd. which specializes in robotic vision and Advanced Processor

Design Ltd. who are developing high speed Forth architectures. D7: Goodman's cu"ent research is
directed at neural network VLSI architectures and autonomous real time expert systems.

Dt: McCauley received his B.Sc and Ph.D. degrees in Computer Engineering in 1981 and 1985

from the University of Hul~ England. From 1985 until 1987 he was a research fellow at the Califomiil

Institute of Technology working on computer architecture, coding and logic design. Since 1987 he has
been with Bellcore researching high speed switching and high performance protocols. His cu"ent

interests include fault tolerance, Forth machines and VLSI architecture.

480 The Journal of Forth Application and Research Volume 5 Number 4

ASP - ALU Stack Processor

AppendixA. PrelimuzaryData Sheet Verl.O

Distinctive Features

. 32 bit ALU
. 32 bit multiplexed system address and data bus.

. 27 independent, non-coded microcode lines.

. 32 bit stack RAM data bus.
. 24 bit stack address bus.

. 124 pin grid array package.

. 80 ns instruction cycle (with a 12.5 MHz clock).

. Low power, fully static CMOS technology.
. Microcode is a high level language, eliminating the need for assembly language.

1. General Description

The ASP is a flexible, high speed 32 bit microprogrammable device. It can perform 227

different operations affecting it's stack contents, such as: manipulation, comparison, logic,

arithmetic and external memory operations. Microcode is loaded via pins M26-MO, with system
access via A31-AO. The 'stack RAM' is read or written via D31-DO, with the addr~s supplied

on pins L23-LO. All data chang~ on the falling CLK edge.
Figure 1 shows a simplified functional block diagram of the ASp, with its two major

sub-blocks. The CPU contains an ALU the top two stack registers. The SPU has two stack

pointers and two adders; allowing the external 'stack RAM' to simulate two stacks.

F1-FO A31-FO VDD VSS CLK

STACK c

POINTER c'

UNIT (SPU) M19

-M26

D31-DO F3-F2 L23-LO M26-MO

Figure 1. ASP Functional Block Diagram.

An Arithmetic-Stack Processor for High Level Language Execution 481

The M latch delays the external microcode (M) by one clock cycle, before it reaches the CPU.

This pipeline allows the stack address to be calculated and waiting, when the CPU operation

begins.

Signal Description
M26 - MO Microcode input bus
A31-AO Bidirectional, tristate system bus (Inverted signals)

D31 - DO Bidirectional, tristate stack RAM data bus (Inverted signals)
L23 - LO Stack RAM address bus

F3 Stack underllow

F2 Stack overllow

F1 ALU numeric overflow

FO ALU zero detect

CLK System clock input

VDD(2) Power input,S volts
VSS(2) Power input, 0 Volts (GND) .

'Dible 1. Pin Description.

ASP is designed to form the main computational element(s) in a general purpose computer
system. In particular, the architecture has been optimized to run stack oriented primitives. But,
as the virtual machine for most procedural languages, such as c, are stack based, the ASP is a

true high level language (lll..L) processor. HLL programs can run on the ASP system without

the normal performance degredation associated with a HLL computer implementation.

2. External Interface
The ASP is packaged in an 124 pin grid array. Thble 1 descrbes the function of each pin,

while appendix spec-A shows the relationship between these signal names and their pin

positions (Thble 2).

1.200" 0.055". . .
ALU NOS ALU A/D/EA 0 0 0 0 0 0 0 0 0 0 0 0 0 FUNcrl INPUT INPUT BUS

BOO 0 0 0 0 0 0 0 0 0 0 0 2 bits 2 bits 2 bits 3 bits

Cooooooooooooo R F X A

DoooocriW 0000

E 0 0 0 0 0 0 CPU FIELD, PF (19 BITS)
F 000 1000 0.100"

Gooo 000

H 0 0 0 0 0 0 POINT ADDR. REG.

J 0 0 0 0.065 dia 0 0 0 INPlJr OFFSET LOAD.

K 0 0 0 0"' 0 0 0 0 2 bits 3 bits 3 bits

Looooooooooooo H L P

M 0000000000000

N 0 0 0 0 0 0 0 0 0 0 0 0 0 SPU FIELD, SF (8 BITS)
1 2 3 4 5 6 7 8 9 1011 12 13

Figure 2. Pin Connections (pins Down) Figure 3. Instruction Format.

482 The Journal of Forth Application and Research Volume 5 Number 4

Select ME-out Select MF-out
015 014 X 013 011. F

0 0 E 0 0 Y

0 1 J 0 1 G

1 0 S 1 0 S

lIT lIT

'Ihble 2. Multiplexer 'ftuth 'Ihbles.

3. Instruction Format

The microcode (m26-mO) can be logically split into two parts: the CPU Field (CF) and
the SPU Field (SF). Each field can be further subdivided into a total of 7 subfields shown in

Figure 3.

4. CPU Architecture

Figure 4 shows a simplified block diagram of the Central Processor Unit (CPU). It consists
of the Arithmetic and Logic Unit (ALU), a parallel multiplier (MLY) (optional), the 'Ibp Of

Stack (fOS) and Next On Stack (NOS) registers (DT and DN), multiplexers and buffers.

Thble 2 describes the operation of the two multiplexers MF and ME.

4.1 Multiplier.

MLY is a parallel multiplier, employing a modified Booth's algorithm. It's two 32 bit

operands come from TOS and NOS.
The least significant 32 bits of the product (0) is fed into the mutiplexer MF and, iful3-u12

are set correctly, into NOS. The most significant 32 bits of the result are output in carry save

format, together with a carry (CM), as K and L: ie., as two 32 bit numbers. These two numbers

(and cm) are combined in the ALU and stored in TOS.

Thus, the MLY and ALU can multiply NOS by TOS and store the 64 bit result in the same
two registers.

The time taken for a multiply is lOOns, which is longer than a single clock cycle at 2OMHz.

Therefore, with a fast clock, the operands must remain in TOS and NOS for one clock cycle

before the multiplication proper can begin.

(not implemented in version 1.0 chips)

Select Left Select Right

Lines Operand Lines Operand

010 09 08 LO 07 06 RO

0 0 0 Y Y = Input. 0 0 X X = Input bus 1.

0 0 1 0 Y' = Inverted input. X' = Inverted x.

0 1 0 K K = Multiply input. 0 1 0 L = Input bus 2.

0 1 1 Y' LO = Output. RO = Output.

1 0 0 2 ulO-u8=microcode. 1 0 L u7-u6 = microcode

1 0 1 4

1 1 0 -2 1 1 X'

1 1 1 -4

'Ihble 3. 'ftuth 'Ihble /Left Operand 'Ihble 4. 'ftuth 'Ihble /Right Operand

An Arithmetic-Stack Processor for High Level Language Execution 483

F1 FO A31 - AO CLK R31 - RO CLK

u17
u11

u1S NO

uO

u1

u2

u17

uO-u11
u3
u4
uS

CM

u12

u13

u14
11-u6

u1S

6
7

u16
E23-EO uS

u9
J23-JO u10

D J E R31-RO Y31-YO L31-LO X31-XO

Figure 4. CPU Block Diagram. Figure 5. ALU Block Diagram.

4.2 The Arithmetic And Logic Unit.

The Arithmetic and Logic Unit (ALU) calculates a 32 bit result (R) from its X and Y (or K
and L) operands, under control of twelve microcode lines (ull-uO). It performs most typical
ALU operations, such as addition, subtraction, shifting and gateing. But, in addition, it can do
other powerful operations: such as add a wide variety of constants, or output a truth value (all
1 's or all O's) dependent on the result of the current operation.

484 The Journal of Forth Application and Research Volume 5 Number 4

Select Lines Output Select Lines Output of MUXs

uZ 01 110 RO u3 ML MM

0 0 0 SU 0 0 SU32

0 0 1 SL 1 MS LS

0 1 0 SU32
0 1 1 ZO uS u4 CI

1 0 0 NR 0 0 0

1 0 1 ND 0 1 1

1 1 0 XN 1 0 CM

1 1 1 SR 1 1 MS

(8) (b)

'Thble 5. ALU Selection Thbles.

There are four sub fields in the ALU microcode (Tables 3, 4, 5a and 5b), each corresponds

to a major subsection of the ALU architecture shown in Figure 5. The first two subfields (selected

by ulD-u6) determine the left (LO) and right (RO) operands entering the rest of the ALU.

The left (LO) and right (RO) operands are the outputs of the two multiplexers MY and MX

respectively. For LO, bits ulD-u8 are used to select between eight possible values, as shown in

Figure 3. While for RO, u7-u6 are used to select between four inputs, as shown in 'Thble 4.

The 32 bit outputs from the multiplexers, LO and RO, are blocked up to 33 bits by the TWOS

logic box. Ifull =0 it will sign extend the msbs (RO32=RO3l & LO32=LO3l). Ifull=l, it will
either force both the 33rd bits to be zero (RO32=LO32=0), or if a number is being subtracted
(determined by ulD-u6) set one of the 33rd bits equal to 1. Thus, ull selects between twos

complement (0) and unsigned (1) notation for all arithmetic operations.

LO and RO are combined using 32 XOR, NAND and NOR gates. The output of the first

two (XO and ND) are used, together with the carry in (CI), in the Carry Look-ahead Adder

(CLA). The carry (CA) out of the CLA is combined with XO to produce the arithmetic sum, SU

(the sign bit, SU32 is also a function ofull-u6).

The carry into the CLA, CI, is either: MS, CM (overflow from multiplier), 0 or 1 depending

on the values ofu5 and u4, as shown in 'Thble 5b. Setting CI equal to 1, allows odd valued constants

to be added. fur example, ifulD-u8 is 'Ill', u7-u6 is '00' and uS-u4 is '01'; the sum, SU, would

be X-3 (X-4 + CI): see 'Thbles 3, 4 and 5b.
During shift operations ML and MM provide the Isb or msb, respectively. 'Thble 5b shows

how the two values are chosen, using u3: where MS is the carry (SU32) and LS is the Isb (SUO)

from the previous clock cycle.

The final output of the ALU, R3l-RO, is

determined by u2-uO: as shown in 'Thble 5a. R Select Lines Output

is either a logical combination of LO3l-LOO u2O 019 H

and RO3l-ROO (XO, ND, NR), an arith- 0 0 D

metic combination of the same (SU), a shifted
version of SU (SR or SL, with the extra bit OlE

from MM or ML), or all R bits are forced 1 0 Q

equal to ZO or SU32. The latter indicates SU 1 1 P

is a negative number (for unsigned arithmetic,

this is only true for a subtraction). 'Thble 6. 1ruth 'Thble for MH of SPU.

An Arithmetic-Stack Processor for High Level Language Fxecution 485

J23-JO E23-EO CLK The OVFbox determines if a numeric over-

flow (NO) has occured. It is only set for SU and

SL operations (see Thble 5). fur such opera-

tions:

!full = 1- NO = SU32xor SU3l.

u19 !full = 0 - NO = SU32.
u2O

The NO and ZO flags are latched and are
available off chip as PI and PO.

5. SPU Architecture

Figure 6 shows a simplified block diagram
21 of the Stack Pointer Unit (SPU). It consists of
22 two: stack pointer registers (DP & DQ), stack

limit registers (If & TB), adders (AP & AQ),

comparitors (AT & AB) and multiplexers (MH

& ML). It's operation is controlled by eight bits

H23-HO of the microcode (u26-u19), as described in

24 Thbles 6,7a and Th.
~ The value on the E-bus, because of the

microcode pipeline, is one from the previous
SPU instruction. Data written onto the J-bus
(from H) is buffered by DJ, so synchronicity is
maintained.

The value on the H bus is determined by the

4:1 multiplexer MH: controlled by u20 and u19

031-00 F2 F3 L23-LO as shown in Thble 6. The value H is used as the

base value for the stack RAM address (L) and
Figure 6. SPU Block Diagram. the pointer registers input (K). The actual values

offset by the adders is either determined by u26-
u24, via the RA logic, or by the value on the

E-bus: as shown in Thble 7a.

Whether latches Dp, DQ, TT or TB store new values is determined by u23-u2l, via the RV
logic, as shown in Thble 7b.

Thus we can simultaneously point with any offset from pointers (DP or DQ), and either
increment, decrement or leave the pointers unchanged. The only restriction being that both
offsets (for K and C) must be in the same direction.

The two comparators AT and AB output a high, on F2 and F3, when the L value overshoots

or undershoots the values stored in TT (t) and TB (b) respectively (i.e. b<L< =t). These two

registers must be loaded with the stack limits band t.

Having two stack pointers enables us to simulate two stacks: the P-stack and the Q-stack.

Usually P will be initialised to RAM location 0 and fill up successively higher locations; while Q

will be initialized to aliI's and fill up successively lower ram locations.

The external RAM will then function as a stack, through the address suplied on L23-LO

(= C23-CO delayed one cycle).

With reference to Figure 4, stack data is written by setting u1610w and read by setting u16
high. Data read on D3l-DO passes through a transparent latch, TS (see Figure 4). TS passes data
unhindered when u16 is high (read); but, when u16 goes low it isolates S and transmits the value
corresponding to when u16 was last high.

486 The Journal of Forth Application and Research Volume 5 Number 4

Select Unes Output of Select Lines Load
A-Adders Reg.

u26 u2S u24 K C u23 u22 u21

0 0 0 H+l H+O 0 0 0 0
0 0 1 H+l H+l 0 0 1 0
0 1 0 H+l H+2 0 1 0 0
0 1 1 H+l H-E 0 1 1 0
1 0 0 H-l H-O 1 0 0 B
1 0 1 H-l H-l 1 0 1 T
1 1 0 H-l H-2 1 1 0 Q
1 1 1 H-l H-3 1 lIP

'DIble 78. RA Logic. 'DIble 7b. RV Logic.

6. M-word Instructions

We are now in a position to see what type of instructions can be performed by the ASP. These

instructions are called M-words, and are determined by m26-mO.

Thbles 8a to 8h illustrate some of the possible M-words. Each word has the function of its

seven fields (though the A field has been split into the A,D and E fields) and the effect on the P

and Q stacks. The entries in the Thbles are not exhaustive, there being many other useful

combinations. However, the ones in Thble 8 are sufficient to efficiently implement a stack based
high level language (such as C).

The example of DUP (duplicate the TOS), will be employed to help explain Thble 8. A

duplicate requires that TOS be copied into NOS, the old NOS is copied into the next free RAM

location and the stack pointer incremented so it continues to point to the next free location.

7.1 R-field.
As shown in Figure 5, bits ull-uO of the M-word determine what the R field does. For a

Dup' u10-u6 select LO and RO to be 0 and X respectively; while u2-uO set R to equal Xo. Thus,

the net effect of the ALU is to set R = Y.

7.2 F.field.

The 4:1 multiplexer, shown in Figure 4, selects the input to the NOS, via u13 and u12. For
DUP it selects the T input, which comes from the TOS. Thus, the new value of NOS will equal
the old value of TOS.

7.3 X.field.

Figure 4 shows that bits u15-u14 determine the value on the X bus, via ME. For DUP it sets

X equal to 1; forcing X to equal the old value of TOS.

7.4 A-field.

Figure 4 shows that bits u18-u16 determine what goes onto the the A, D and E busses: via

the tristate drivers and transparent latch TS. fur DUP it leaves A tristate, sets D = Y (i.e. write

NOS into the stack RAM) and sets E = L

7.5 H.field.

Figure 6 shows that bits u20-u19 determine the value on the H bus. For DUP it passes the

contents of VP, the P stack pointer, to H.

An Arithmetic-Stack Processor for High Level Language Execution 487

CLK f-"\ f-"\ f-"\
SYSTEM / \ J \ J '--

M X OUT X DUP X "+2 WORD

A ASpM sPU X C(6U~-1 XC=~D~~+1X "+2 WORD

D L L X "-1 WORD X OUT X DUP

N=T=T D=Y=N

a a less CPU (DUP)

STACK

RAM V ~_1 ,.,non V A=1 V A=Z
A 1\ "-1 WORD J\ (OUn J\ (DUP)

Figure 7. ASP System Interface. 'Dible 9. ASP Timing Diagram.

7.6 L-field

Figure 6 shows that u26-u24 set the values on the Land Kbuses: via ALand AK For a Dup,

it selects L = H (so the data on the D bus is written into the next free location) and K = H + 1

(so that P continues to address the next free location.

7.7 P-field.

Figure 6 shows that bits u23-u21 determine whether the value on the K bus is stored in the

Q or P latch; and whether H is stored in the DU and DB latches. For DUP it stores the K, which

equals the old P plus one, into VP.

7. ASP System Timing

Figure 7 shows the three basic subblocks in an ASP system: the ASP itself, the stack RAM
and the rest of the system.

An actual computer system, capable of executing a HLL would require two ASP devices.
One for address manipulation (ASP-A) and one for data manipulation (ASP-D).

The two chip system would contain a total of four stacks. The two data stacks (p-stack and

Q-stack) and the two address stacks (R-stackand S-stack). The two extra stacks, Q and S, made
possible by the extra register in the SPU, allow extra flexibility in system design.1)'pical uses

would be for loop counting, floating point numbers and HLLs requiring more than two stacks
(egLISP and Smalltalk).

The one chip system timings, are shown in Figure 10. Note particularly the delay between a

change in M, and its effect on the D, L and A busses.
Thble 9 illustrates the pipelined nature of the ASP. When a microcode word (say DUP) is

put onto M, the SPU immediately starts its calculations. That is, C=P (next free stack RAM
location) and P=P+1 (so the stack pointer continues to point to the next free location for the

next instruction). At this time the CPU and stack RAM will still be doing the previous instruction.

During the next cycle, when a new M-WORD is placed on M, the address calculated by the

SPU (and stored in DL) will be put onto theL bus. Also, the SPUwill execute the DUP operation

(T°S=NOS=old TOS and COS=next free RAM location=old NOS).

By having the stack address calculated in the previous cycle, it does not form part of the
critical timing path: which in turn determines the maximum clock frequency.~

488 The Joumal of Forth Application and Research Volume 5 Number 4

1M' CPU Field SPU Field P COM M26 - MO ?

Word R F X A D E H L P Stack (Hex)

a) Stack Manipulation

NOOP X Y T Z R T P -I 0 dc(x)ba-dc(c)ba 5lDCIC4 P

SWASH Y T. Z R T P -I P dc(x)ba-w(c)ab 5FDB344 P
DUP X T T Z W T P +0 P dc(x)ba - cb(x)aa OFCFlC4 P

DROP Y S. Z R T P -I P dc(x)ba-ed(c)cb SFD2344 P

SWAP Y T. Z R T P -1 0 dc(x)ba-dc(c)ab 5lD3344 P

OVER Y T. Z W T P +0 P dc(x)ba - cb(x)ab OFC3344 P

ROn X T S Z W T P -I 0 dx(c)ba-db(c)ac 51CBIC4 P

PERI X S T Z W T P -1 0 dx(c)ba-db(c)ca 51CEIC4 P

NIP X S T Z R T P -1 P dc(x)ba-ed(c)ca 5FDEIC4 P

TIP X Y T Z R T P -2 P dc(x)ba-ed(d)ba 6FDCIC4 P

b) P and Q Interstack Communication
QTO X S T Z W T Q +0 Q ed(c)ab-w(c)cb hg-ga OD4E344 P

QFROM X Y S Z R T Q -1 Q cb(x)ax-cb(g)ag hg-ih 5D581C4 P

QCOPY X Y S Z R T Q -1 0 cb(x)ax-cb(g)ag hg-hg 51581C4 P

c) Comparison Operations

B< (X-O)N Y T Z R T P -1 0 dc(x)ba-dc(c)bg g: a<O 51DC902 F
B> (O-X)N Y T Z R T P -1 0 dc(x)ba-dc(c)bg g:a>O 51DC9D2 F
B- (X-O)Z Y T Z R T P -1 0 dc(x)ba-dc(c)bg g: a=O 51DC9D3 P

> (X-Y)N S T Z R T P -1 P dc(x)ba-w(c)cg g: b>a 5FDEB12 F
< (Y-X)N S T Z R T P -1 P dc(x)ba-ed(c)cg g: b<a SFDESD2 F

U> (X-Y)NU S T Z R T P -I P dc(x)ba-dc(c)bg g: b>a 5FDE312 F

U< (Y-X)NU S T Z R T P -I P dc(x)ba-dc(c)bg g: b<a SFDEOD2 F
- (X-Y)Z S T Z R T P -I P dc(x)ba-dc(c)bg g:b=a 5FDESD3 P

d) Logical Operations

AND (X'+Y')' S T Z R T P -I P dc(x)ba-ed(c)cg g=a.b 5FDE3C4 P

OR (X'. V')' S T Z R T P -I P dc(x)ba - ed(c)cg g=a+b 5FDE3C5 P

XOR X'xnY S T Z R T P -1 P dc(x)ba-ed(c)cg g=a@b 5FDEOC6 P

NAND (X.Y)' S T Z R T P -1 P dc(x)ba-ed(c)cg g=(a.b)' 5FDEOO5 P

NOR (X+Y)' S T Z R T P -1 P dc(x)ba-w(c)cg g=(a+b)' 5FDE004 P

XNOR Xxn Y S T Z R T P -I P dc(x)ba - ed(c)cg g=a@b' 5FDE006 P

S T Z R T P -1 P dc(x)ba-ed(c)cg

ANYOP (X?Y) S T Z R T P -1 P dc(x)ba-ed(c)cg g=aob 5FDE??? P

NOT (X+O)' S Y Z R T P -1 0 dc(x)ba-dc(c)bg g=a' 51DC102 P

Thbles Sa - Sd. M-Word Primitives.

An Arithmetic-Stack Processor for High Level Language Execution 489

'M' CPU Field SPU Field P COM M26 - MO ?

Word R F X A D E H L P Stack (Hex)

e) Arithmetic Operations

+ Y+X S T Z R T P -1 P dc(x)ba-ed(c)cg g=b+a 5FDEBOO P

- Y+X'+1 S T Z R T P -1 P dc(x)ba-ed(c)cg g=b-a SFDE8DO P
1+ X+0+1 Y T Z R T P -1 0 dc(x)ba-dc(c)bg g=a+1 51DC910 P

2+ X+2 Y T Z R T P -1 0 dc(x)ba-dc(c)bg g=a+2 51DCCOO P

3+ X+2+1 Y T Z R T P -1 0 dc(x)ba-dc(c)bg g=a+3 51DCClO P

4+ X+4 Y T Z R T P -1 0 dc(x)ba-dc(c)bg g=a+4 51DCDOO P

5+ X+4+1 Y T Z R T P -1 0 dc(x)ba-dc(c)bg g=a+5 51DCD10 P

1- X-2+1 Y T Z R T P -1 0 dc(x)ba-dc(c)bg g=a-1 51DCE10 P

2- X-2 Y T Z R T P -1 0 dc(x)ba-dc(c)bg g=a-2 51DCEOO P

3- X-4+1 Y T Z R T P -1 0 dc(x)ba-dc(c)bg g=a-3 51DCFlO P

4- X-4 Y T Z R T P -1 0 dc(x)ba-dc(c)bg g=a-4 51DCFOO P

DAD1 Y+X T S Z R T P -2 P dc(x)ba-ed(d)ag g=b+d 6FDBBOO P

DAD2 Y+X+C T S Z R T P -0 P ed(x)ag-fe(c)gh h=a+c+C 4FDB830 F

NEGATE O+X'+l Y T Z R T P -1 0 dc(x)ba-dc(c)bg g= -a 51DC9DO P

DNEGl 0+Y'+1 T . Z R T P -1 0 dc(x)ba-dc(c)ag g= -b 51DFB50 P

DNEG2 O+Y'+C T . Z R T P -1 0 dc(x)ba-dc(c)gh h= -a+C 51DFB70 F

MUL K+L G. Z R T P -1 0 dc(x)ba-dc(c)gh h,g=a.b 51D9AAO -

U+ Y+X S T Z R T P -1 P dc(x)ba-dc(c)cg g=b+a 5FDEOOO F

U- Y+X'+1 S T Z R T P -1 P dc(x)ba-dc(c)cg g+b-a SFDEODO F

f) External Operations

IN X T E Z W A P +0 P dc(x)ba-cb(x)an n=A 0FE31C4 P

IN4+ X+4 T E Z W A P +0 P dc(x)ba-cb(x)an n=A+4 0FE3500 P

OUT Y S. E R T P -1 P dc(x)ba - ed(c)cb A=a 5F9A344 P

tOUT X Y T E R T P -1 0 dc(x)ba-dc(c)ba A=a 519C1C4 P

OUT4+ X+4 Y T E R T P -1 0 dc(x)ba-dc(c)bg A=a 519C500 P

INp. X Y T Z RAE -1 0 dc(x)ba-xy(y)ba P=A+1 1EFC1C4 P

INQ* X Y T Z RAE -1 0 dc(x)ba-dc(c)ba Q=A+1 1CFC1C4 P

INT. X Y T Z RAE -1 0 dc(x)ba-dc(c)ba T=A lAFC1C4 P

INB* X Y T Z RAE -1 0 dc(x)ba-dc(c)ba B=A 18FC1C4 P

g) Control Operations

BR X T E Z RAP -1 P dc(x)ba - cb(x)ag g=A 5FE31C4 P

BRZ(F) X Y T Z RAP -1 0 dc(x)ba-cb(x)ag g=a+1(Z) 51DC110 P

BRZ(T) X T E Z RAP -1 P dc(x)ba-cb(x)ag g=A(Z) 5FE31C4 P

Thbles Se-8g. More M-Word Primitives. (. = 2 cycles)

490 The Journal of Forth Application and Research VolumeS Number4

'M' CPU Field SPU Field P COM M26 - MO ?

Word R F X A D E H L P Stack (Hex)

h) Short Litreram

LIT5 0+4+(1) T * Z W T P +0 P dc(x)ba-cb(x)ag g=S OFCFDSO P

LIT4 0+4 T * Z W T P +0 P dc(x)ba - cb(x)ag g=4 OFCFD40 P

LIT3 0+2+(1) T * Z W T P +0 P dc(x)ba-cb(x)ag g=3 OFCFCSO P

LIT2 0+2 T * Z W T P +0 P dc(x)ba-cb(x)ag g=2 OFCFC40 P

LITl 0+(1) T * Z W T P +0 P dc(x)ba-cb(x)ag g=2 OFCF9S0 P

LITe 0+0 T * Z W T P +0 P dc(x)ba - cb(x)ag g=O OFCF940 P

LITl- 0-2+(1) T * Z W T P +0 P dc(x)ba-cb(x)ag g= -1 OFCFESO P

LIT2- 0- 2 T * Z W T P +0 P dc(x)ba - cb(x)ag g= -2 OFCFE40 P

LIT3- 0-4+(1) T * Z W T P +0 P dc(x)ba-cb(x)ag g= -3 OFCFFSO P

LIT4- 0-4 T * Z W T P +0 P dc(x)ba-cb(x)ag g=-4 OFCFF40 P

i) Shin OpemtioDS (I/R = < - >: O/S/L= 0,S32,SO FILL: + / - T~ last op)

TWO* X(LO+) Y T Z R T P -1 0 dc(x)ba-dc(c)bg g=a*2 SlDC901 P

TWO/ X (RS+) Y T Z R T P -1 0 dc(x)ba-dc(c)bg g=a/2 SlDC907 F

ROTL X(LS-) Y T Z R T P -1 0 dc(x)ba-dc(c)bg g=aSL SlDC909 F

ROTR X (RL-) Y T Z R T P -1 0 dc(x)ba-dc(c)bg g=aSR SlDC90F P

ROTR2 Y(RL-) S * Z R T P -1 P dc(x)bx-dc(c)cg g=bSR SFD284F P

J) Stack Pointer Manipulation

SPTO* X Y T Z R T E +0 P cb(x)an-cb(b)an n -+ P 1EDC1C4 P

SQTO* X Y T Z R T E +0 Q cb(x)an - cb(b)an n -+ Q 1CDC1C4 P
STTO* X Y T Z R T E +0 T cb(x)an - cb(b)an n -+ T 1ADC1C4 P

SBTO* X Y T Z R T E +0 B cb(x)an-cb(b)an n-+B 18DC1C4 P
P> X Y E Z R T P -1 0 cb(x)ax - cb(b)an P-+ n SlD41C4 P

Q> X Y E Z R T Q -1 0 cb(x)ax-cb(b)an Q-+n SlS41C4 P

TOSPIC* X Y S Z R T P +0 0 cb(x)an-cb(b)av v=(n) OOD81C4 P

k) Relative Stack Manipulation

PICKl X Y T Z R T P +0 0 dc[x]bn - dc[b]bn []=(P) 01 CC1 C4

PICK2 X Y S Z RW T P -E 0 dc[b]bn-dc(v)bv v=(p-n) 31D81C4

-PICKl X Y T Z W T P -E 0 ba(x)vn - ba(x)vn (P-n)=v 31CC1C4

APl X Y T Z RAP +0 0 cb[x]aa-cb[a]aa []=(P)

AP2 X Y S Z W T P -E 0 cb[a]aa-cb(v)av v=(P-A)

-APl X T Y Z T P +0 P cb(x)av-ba(x)vv (P-A)=g

Thbles 8h - 8k. More M-Word Primitives. (*=2 Cycles)

An Arithmetic-Stack Processor for High Level Language Execution 491

Forth T 1st 2nd 3rd 4th 5th

Words M Word M Word M Word M Word M Word

2DROP 2 DROP DROP

ROT 2 NOOP ROn

-ROT 2 SWAP PERI

D+ 2 DADI DAD2

DNEG 2 DNEGI DNEG2

>Q 2 SWAP QTO

Q> 2 CUP QFROM

Q@ 2 DUP QCOPY

@ 2 OUTL IN

I 2 OUTL OUT

ATOP 2 INP INP

ATOQ 2 INQ INQ

ATOT 2 INT INT

ATOB 2 INB INB

SPI 2 SPTO SPTO

SQI 2 SQTO SQTO

STI 2 STTO STTO

SBI 2 SBTO SBTO

ABSPICK 2 TOSPIC TOSPIC

PICK 2 PICKI PICK2

-PICK 4 NOOP -PICKI DROP DROP

APICK 3 API AP2 DROP

-APICK 5 DUP -API -PICKl DROP DROP

Thble 10. Some One Chip Forth Words

492 The Journal of Forth Appli<2tion and Research Volume 5 Number 4

13 12 11 10 9 8 7 6 S 4 3 2 1

A A26 030 029 027 02S 022 020 017 014 012 010 DO9 DOl A

B A24 A27 031 018 026 021 019 016 013 011 ~ DO7 L23 B

C AZ3 A25 A31 A3O 024 021 018 015 005 006 003 DOO 1..22 C

D A21 A22 VDP OOZ 1.21 1..20 D

E A19 A2O A28 L17 L19 L18 E

F Al6 A17 A18 L14 L16 LIS F

G Al4 OND A1S L12 VDO L13 G

H A12 All A13 1..09 L10 Lll H

J AO9 AOS AlO CLK LO7 LOS J

K A07 A06 A01 ONP LOS 1.06 K

L AOS A03 AOO MOO M17 M11 M10 M13 M16 FO3 M24 LO2 LO4 L

M A04 MOl MOZ M03 MOS M06 M09 MIS M20 M21 M2S LOO LO3 M

N AOZ FO1 FOO M04 M07 MOS M09 M14 M19 M22 M21 M26 LO1 N

13 12 11 10 9 8 7 6 S 4 3 2 1

AOO Lll Al6 F13 DOO CO2 016 B06 LOO M02 L16 FO2 MOS NOS M24 LO3
A01 Kll Al7 F12 DOl A01 017 A06 LO1 N01 L17 EO3 M09 M07 M2S M03

AO2 N13 Al8 F11 DO2 003 018 C07 LO2 LO2 L18 EO1 M10 LO7 M26 N02

AO3 L12 Al9 E13 003 CO3 019 B07 LO3 MOl L19 E02 MIl LOS FOO NIl

A04 M13 A2O E12 004 004 020 A07 LO4 LO1 1..20 001 M12 N07 FO1 N12

AOS L13 A21 013 DOS COS 021 Cog LOS K02 1.21 002 M13 1.06 FO2 K04

A06 K12 A22 012 DO6 C04 022 AOS LO6 K01 L22 CO1 M14 N06 FO3 LO4

A07 K13 A23 C13 DO7 B02 023 BOS LO7 J02 L23 B01 MIS M06 CLK J03

A08 J12 A24 B13 DOS B03 024 C09 LOS J01 MOO L10 M16 LOS VDO 002

A09 J13 A2S C12 009 A02 02S A09 LO9 H03 MOl M12 M17 1..09 VDP 011

AlO J11 A26 A13 010 A03 026 B09 L10 H02 M02 M11 MIS K10 OND 012

All H12 A27 B12 011 B04 027 A10 L11 H01 M03 M10 M19 NOS OOP K03

Al2 H13 A28 Ell 012 A04 018 B10 L12 H03 M04 N10 M20 MOS - -

Al3 H11 A29 010 013 BOS 029 All L13 001 MOS M09 M21 N03 - -

Al4 013 A30 C10 014 AOS 030 A12 L14 F03 M06 MOS M22 N04 - -

AlS 011 A31 Cll 015 CO6 031 B11 L1S FO1 M07 N09 M23 M04 - -

Appendix Spec-A ASP Pin Connection Diagram (Pins Up) & Signals

