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Abstract: The paper presents a new trapdoor-knapsack public-key cryptosystem. The encryption equation is

based on the general modular knapsack equation, but, unlike the Merkle-Hellman scheme, the knapsack com-

ponents do not have to have a superincreasing structure. The trapdoor is based on transformations between the

modular and radix form of the knapsack components, via the Chinese remainder theorem. The security is based

on factoring a number composed of 256 bit prime factors. The resulting cryptosystem has high density, approx-

imately 30'X, message expansion and a public key of 14 Kbits. This compares very favourably with the Merkle-

Hellman scheme which has over lOO"!., expansion and a public key of 80 Kbits. The major advantage of the

scheme when compared with the RSA scheme is one of speed. Typically, knapsack schemes such as the one

proposed here are capable of throughput speeds which are orders of magnitude faster than the RSA scheme.

List of principal symbols fact that the knapsack components are transformations of
. a superincreasing sequence [4]. In addition, it has been

a: = a published knapsack component shown that if the density of the knapsack is low, where

ai = a secret ~napsack component density is loosely defined as the ratio of message text bits to

a, = the public knapsack vector = (al: a2', ..., an) , cryptogram bits, then even non-superincreasing knapsacks

a = the secret knapsack vector = (ai' a2," '.' an) also are insecure [5, 6]. Finally, it should be noted that the

. transformable t? the secret ~napsack matrIx inherent message expansion that occurs in a knapsack

a)'1 = aj mod Pi = :esld~e of the jth knapsack component scheme makes the system difficult to use for authentica-

mod~lo the zth prIme tion. There are ways round this problem [3], but the

D = density of th~ c~yptosystem . inherent bijective mapping used in the RSA makes that

9 = number of b~ts ~n Xi. max' the message subblocks scheme superior for public-key digital signatures. Despite

h = number of bits I~ p'i. min ., these problems, knapsack schemes have one major practi-

K = the number of distinct secret matrIces a cal advantage over the RSA scheme, and that is speed,

n = the number, of knapsack components; also, the This is because the encryption and decryption processes

num,ber of prImes Pi used are intrinsically faster than performing the modular

Pi = a prIme nu~~er , exponentiations needed in the RSA. Typically, knapsack
p = a set of n distInct prImes = (Pi' P2, .", Pn) schemes can operate at throughput rates of 20 Mbits/s,

P = Ii Pi = the product of n distinct primes whereas the RSA is limited to about 50 Kbits/s, using

i= 1 current technology,

PK = number of bits in the public key The new trapdoor knapsack presented in this paper

b f b ' t ' ( ~ '(iJ ) uses the general modular knapsack equation (eqn. 1) and

r = num er 0 Ism L.. a. . .
j= 1 ) max does not require the knapsack components to be supenn-

n creasing. In addition, the system parameters can be chosen

S = the cryptogram = .L ai . Xi to give a very high density secure cryptosystem, The trap:-
S' = the transformed c;;~togram = S . W - 1 mod P also door is based on being able to transform between the radix

equal to (S-Ill, S-I21; .,', s-Inl) in modular form an~ modular, representations of the subset sums via the

W = a secret modular multiplier, relatively prime to P ChInese remaInder theorem [7], The system bears a. resem-

x = the message vector = (Xl' X2, "" xn) blance to ,th~ Lu-Lee [8] system, but, wherea,s their cryp-
v = number of bits in the random-message tail tosys~em IS linear and has been shown to be Insecure ~9],

E = efficiency of the cryptosystem ours IS based on the general modular knapsack equation,

which to date has not been generally broken.

In describing the algorithm we assume the reader is

1 Introcl~ction familiar with public-key cryptography and its terminology,
If this is not the case, we refer the reader to one of the

Public-key cryptosystems have received considerable many tutorial papers and books available [10, 11, 12].

attention over the last few years [1], This is because such

systems offer secure communication,s :-,:ithout ~h~ nee? for

prior key distribution and the possibility of digital slgna- 2 New trapdoor

tures. The two most important schemes are the RSA

scheme [2] and the trapdoor-knapsack scheme [3]. Of The general modular knapsack equation is given by

these, the knapsack scheme has fallen ,i~to disfavour n

because of successful attacks on the orIgInal Merkle- S = L ai ' Xi mod P (1)

Hellman scheme, Specifically, the attacks have not been on i=l
the encryption equation whic_h appears secure, but on the When used for cryptography, the as are the n published

knapsack components, P is a published modulus, and the
. xs are the message bits. In the binary knapsack the xs are

Paper 4156E (C3), first received 16th August 1984 and in revised form 31st July 0 or 1, but, in the general knapsack, they are 9 bit
1985 , numbers. The subset sum S is the cryptogram which is sent
Dr. McA.uley an~ Pr,?f. Goodman were formerly, with.the o:partment of Electronic to the legitimate user who is the onl

y one who can unwind

.' Engmeenng, University of Hull, Hull HU6 7RX, UnIted Kmgdom. They are now " ,

with the Electrical Engineering Department, CALTECH, Pasadena, CA91125. USA the cryptogram back to the orIgInal XS,
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Let (PI' P2, ..., Pn) be a set of prime integers whose The cryptosystem then operates as follows. A user wishing
product is given by to send us a message forms the ciphertext

n S=

( x 'a +x'a +"'+x .a ) mod pP = n Pi 1 1 2 2 n n
i=l via eqn. 1. We compute S'

and where S' = S . W-1 mod P
a~i) = aj mod Pi and express in modular form using our known factor-

is the residue of the jth knapsack component modulo the isation of P

ith prime. Then, by the Chinese remainder theorem S' - (S'(l), S,(2), ..., s,(n»)- (1) (2) (n)
aj aj, aj , ..., aj we then apply x = S'. a,-l, and hence recover the

is a bijective mapping. That is, the transformation is one- message. The cryptanalyst must either break the factor-

to-one for all as between 1 and P - 1. Thus, if the factor- isation of P or attack the trapdoor in some other manner.

isation of P is kept secret, then only the legitimate user will

be able to transform the radix representation of the knap-
sack components into their modular representation. This 3 Small example

forms the trapdoor. Let us now choose a set of n knapsack. ,components and express them in both radix and modular We now gIve .an example of the above metho.d USIng n = 3.
form' The example IS, of course, too small for secunty.

. Let n = 3 and define p = (37, 41, 43); hence P = 65231

at- at(l), at(2), ..., at(n) and h = 5 (eqn. 4). Choose g = 2, that is, the message com-

a ' - a '(l) a '(2) a ,(n) P onents are two-bit numbers. This dictates that r = 3 by
, 2 2' 2 ,..., 2a = . (2) eqn. 7 (h = 5 ;,,: 3 + 2). Choose n = 3 knapsack com-

" '(1) '(2) '(n) ponents which satisfy eqn. 6, that is, the columns of a' add

an - an , an ,..., an up to < 8, and express in both modular and radix form:

Let us then disguise the. trapdoor by formi~g ,a n~w set of a' = (3 1 1)-125174

knapsack components VIa the modular multiplIcatIon a' = a~ = (1: 5: 3)-151664

aj = aj . W mod P (3) a~ = (2, 1,2)-122509

w~ere. W.and P are relatively prime, and W-1 is the multi- Now choose W = 6553, which is relatively prime to

plIcatIve Inverse ~f W, modulo p. . P = 65231. Perform the modular multiplication of eqn. 3

We now publIsh p and the modified knapsack com- and publish the resulting knapsack components

ponents (a) in radix form. This is the public key. The fac-
torisation of p and the integer Ware kept secret, and, a1 = 50628

hence, so is the modular representation of the a'. a2 = 59907

Now, let

, , ~ 2h

( 4 ) a3 = 3560

P"m,n r

., , and the modulus

that IS, the pnmes are at least h + 1 bit numbers.

Let p = 65231

xi.max < 29 (5) Compute the inverse W-1 = 2618 via Euclid's algorithm

. . and invert the matrix a'

that IS, the message blocks are g bit numbers,

And let '"

(+7 -1 -2
)n a,-l = (1/16) +4 +4 -8

(~laj(i))max<2r (6) -9 -1 +14

that is, the columns of a' sum to an r bit number. To transm.it the 6 bit message x = (1, 2, 3) a user com-

In order to ensure that the encryption equation has a putes the ciphertext

unique decryption, we must ensure that the message to S = (1 . 50628) + (2 . 59907) + (3 . 3560)

ciphertext transformation x~ S is injective. To guarantee = 181122

this we must have = 50660 mod 65231

h ;,,: r + g (7) Using the secret W-1 the receiver computes

which also ~nsures. t~at ~odular multiplication is equiva- S' = 50660 . 2618 mod 65231
lent to matnx multIplIcatIon

( '(1) '(2) ,(n) ) = 13257 mod 65231
a1 , a1 ,..., al

(S'(l), ..., s,(n)) = (XI' ..., xn) : and using the secret p is able to transform into modular

a '(l) a '(2) a ,(n) form

n , n , ..., n

i.e. S' = (11, 14, 13)-13257.

S' = x . a' From eqn. 8, the receiver computes

and that the transformation can be inverted (provided the ( +7 - 1 - 2
)matrix a' is nonsingular) via 16'x=(II, 14, 13) +4 +4 -8

x=Soa,-1 (8) -9 -1 +14
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giving The final factor affecting n is the size of the public key, this
, is given by

x = (1, 2, 3) as transmItted.
PK = n . (n + 1) . (h + 1) bits (15)

4 Practical constraints As this varies with the square of n, we should aim to keep

We now choose the values of n, r, 9 and h, needed to give a n as small as possible, as well as h. Fro~ eqn. 9, we c~n set
secure practical cryptosystem. ~ = 255. If. we choose n = 7, ~hen the SIze of the publIc ~ey

First, consider the security of the trapdoor. In order to IS 14336 bItS by eqn. 15, WhICh compares favourably wIth

ensure that the published p is not factored we set the Merkle-Hellman scheme.

Consider now the value of r, which also detennines the
h ~ 255 (9) value of 9 via eqn. 7. A recent method of attacking knap-

so that the primes are at least 256-bit numbers. sac~s is given in Reference. 5 and is based on. fonning a

Consider now an attack on the dis uisin modular la~tIce of rank n. If the density of the knap~ack IS low, then

I . I. . f . g g "thIS method can successfully break any bmary knapsack.
mu tip IcatIon 0 eqn. 3. Re-arrangmg eqn. 3 for two parh- I t' I "f th d 't D' h h

cular knapsack components we can form n par ICU ar, 1 e ensl y IS SUC t at

ak - at . W = 0 mod p D = n < --.!.--

d log2 (max aj) log2 n
an

, the method is successful. However, for the general knap-
a, - a, . W = 0 mod p sack, it is more difficult to find a suitable lattice. In our

Differencing these two equations we can then form case the density is given by

ak . a; - a, . at = 0 mod p (10) D =--L-

and, similarly, for all the residues modulo our secret h + 1

primes, we find if we assume the primes are all h + 1 bit numbers. So, to

ak . a;(i) - a, . at(i) = 0 mod p, (11) mi~imise the redundan.cy of the scheme and to increase the

, resIstance to low densIty attacks, h should be as small as

Given that the ak and a, are public, eqn. 11 shows that we possible. Thus, we set eqn. 7 to equality (h = r + g), so that
need sufficient randomness in the knapsack components in

order t,o prevent the attacker trying all possible pairs a;(I) D = 9

and at(') and thus breaking the trapdoor. If we assume that 9 + r + 1

any number 1 ~ alIi) ~ 2' can be chosen to be a knapsack N t ." D t k II F 12ow, 0 maXImise , we mus eep r sma. rom eqn.
component, then, to prevent the attack, we should set th " t 64 . .

255 64 191 Thwe erelore se r = , gIvmg 9 = - = . e

r ~ 64 (12) size of the message block is then n . 9 = 1337 bits, which

S dl I t " d h . f h k k certainly satisfies eqn. 13. The efficiency of the system is

econ y, e us conSI er t e securIty 0 t e napsac. In given by

the past few years there have been rapid advances in

solving the basic knapsack problem [5, 6]. Although these 9 - v

attacks have been on the binary knapsack (g = 1), the E = m (16)

techniques can be extended to cover the general knapsackproblem. The choice of 9 and n will determine the knap- I~ we choose v = 6 in order to satisfy eqn. 14, then eqn. 16
sack security. gIves E = 0.72.

In order to present a large knapsack problem we set The final system parameters are then n = 7, r = 64,

9 = 191, h = 255 and v = 6. This gives a density D = 0.75,
n . 9 ~ 256 (13) a public-key size PK = 14336 bits and an overall efficiency

Consider now the value of n. This is affected by several' of E = 0.72.

conflicting factors. First, n is influenced by the fact that the

general knapsack problem is not as secure as the binary 5 Conclusions

knapsack because the least significant bits of the messagt:

are not as ',"ell hidden. We have reduced the problem by In this paper we have presented a new public-key cryp-

performing the reduction mod p, but we must still set a to system based on the general modular knapsack problem.

lower limit on n. If we use the parameters of eqn. 13 in a Its security is not based on disguising a superincreasing

binary knapsack, then 9 = 1 and n = 256, say. In this case, sequence, but on the difficulty of factoring a number with

the least significant bit of the subset sum depends on up to seven 256-bit prime factors and on a knapsack problem

256 bits of the message. In the general knapsack k > 1, and with a typical density of 0.75 and a block size of 1337 bits.
so n is reduced via eqn. 13. Consequently, the involvement The knapsack nature of the system ensures that fast

of the least significant bit is also reduced. encryption and decryption are possible when compared

In order to increase this involvement we can randomly with the RSA public-key cryptosystem. In addition, the

set the last v bits of each message subblock instead of using size of the public key, which is typically 14 Kbits, is not
these for information. We can show the average involve- excessive when compared with 80 K bits for the Merkle-

ment of the least significant information bit is then given Hellman scheme and 1 Kbits for the RSA. It may be pos-

by n(v + If/2. The overall efficiency of the system will sible to attack the trapdoor information via the methods

then be degraded by a factor v/g. In order to protect the in Reference 5, but we can see no productive method of

least significant bits we should set doing this. The only successful attacks on dense trapdoor

2 knapsacks to date have been on the security of the super-

n . (v + 1) ~ 128 (14) increasing sequence. Our method does not require this.

2 However, it may turn out that all injective trapdoor knap-
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sacks are solvable in polynomial time, in which case all 5 BRICKELL, E.F.: 'Solving low density knapsacks', Sandia National
such schemes are useless for cryptography. Laboratories, Albuquerque, New Mexico, USA 1983, p. 13

6 LAGARIAS, J.C., and ODL YZKO, A.M.: 'Solving low-density subset

sum problems', Bell Laboratories, Murray Hill, New Jersey, USA,

1983, p. 38
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