
BINARY CODES WITH DISJOINT CODEBOOKS equals either the minimum-weight nonzero C1 word, the
AND MUTUAL HAMMING DISTANCE minimum-weight nonzero Czword, or the minimum-weight

Indexing term: Error-correction codes mutu~l word, whichever is smaller. The common code

. ; contams all these words, plus the all-zero word, and no other.
~~a;I-length lmear bmary block error-c<?ntrol.codes with The minimum distance of the common- code therefore e

q ualsdISJoint codebook~ and mutual Hamming dIstance are . . . .
considered. A method of constructing pairs of these disjoint the ffilOlmum mutual dIstance, whIch can never exceed d I or
c,?des fr°l!1 know~ cyclic codes, and determining thei~ mutual dz, whichever is smaller. A necessary and sufficient condition
distance, IS descrIbed. Some sets of length-I5 cyclic codes" d ... t d b k . th " ha h dare tabulated. lor IsJom co e 00 s IS erelore t t t e common co e

should have a distance ~ 1.
The author is concerned with the construction of sets of To test two codes for disjoint codebooks, the individual

equal-length linear binary block error-control codes with codes are tested for mutually linearly independent basis
disjoint codebooks for use in several coding schemes. 1 In vectors, and dm is determined by finding the distance of the

addition, for any pair of disjoint codes, it is required to find common code. These procedures are, however, impracticably
the minimum distance that separates the words of one code lengthy, even with computer aid, if k1 and kz are large.

from the words of the other. This distance is called the The converse procedure, that of partitioning a known

minimum mutual Hamming distance dm of the disjoint code common code-generator matrix to yield two useful disjoint
pair. This letter establishes the conditions which a pair of codes is attractive, and is at present under investigation. The
codes must fulfil if they are to have disjoint codebooks, and problems involved in testing for disjoint codes and dcter-
gives a general method for calculating dm. In particular, a mining dm are simplified if C1 and Cz are nontrivial

practical method of testing pairs of known cyclic codes for (k1, kz # 0, # n) cyclic codes. In this case, we consider the

disjoint codebooks, and determining their mutual distance, generator polynomials gl(X) and gz(x) of C1 and Cz, with

is described. degrees n-kl and n-kz, respectively. A generator poly-

An (n, k, d) binary linear block code has length n, a code- nomial can be characterised by a list of the exponents of its

book of 2k codewords (including the all-zero word) and roots, or written as a polynomial whose irreducible factors are

minimum distance d equal to the weight of the minimum- minimum functions of its constituent roots.z The 2k codewords

weight nonzero codeword. The code is completely specified by in a cyclic code consist of all multiples u(x) = m(x) g(x),
a k x n generator matrix G whose rows are linearly independent where m(.~) is a message polynomial of degree ~ k -1. For

basis vectors that span the codespace. Each of the 2k distinct C 1 and Cz to have disjoint codebooks, a word Ul in C 1 must

linear combinations of rows of G generates a distinct code- not be exactly divisible by gz(x). That is,

word. . . ml (x) gl (x)

ConsIder two codes C1 and Cz WIt~ parameters (n, k1, dJ -(~ (2)

and (n, k2, d2) and generator matrIces G1 and Gz. For g2

C1 and Cz to have disjoint codebooks, apart from the all- must have a nonzero remainder. Eqn. 2 therefore requires

zero word, no codeword in C 1 must equal a codeword in that the degree of ml (x) is less than the degree of g2 (x) giving

C:z. Thati~,n<?linearcombinationofrowsofG1equalsa n-k2>k1-1 and n>k1+kz-1. (3)
lmear combmatlon of rows of Gz, and therefore the rows of
G1 and G2 must be mutually linearly independent. A matrix as a necessary condition for disjoint codebooks.
Gc that has as rows all the basis vectors of C1, all the basis ,Because the factors of gl(X) and g2(X) are factors ?f

vectors of C2 and no others must therefore have k +k x +1, gl(x) and g2(X) may have common factors that will

linearly independent rows if <::1 and C2 are to be disjoint~ cancel in eqn. .2. A further necessary condition is t.hen that,
and can therefore be considered as the generator matrix of after cancella~Ion of co~on factors, the denoffilnator of

an (n, k1 + k2, dc) code, which will be called the common eqn. 2 ?Iust stIlI have a high~r degree than ml(x). The largest

code Cc. A necessary condition for the rows of Gc to be denommator after cancellation occurs when g2(X) contains

linearly independent and hence for C1 and C to be disjoint all the factors of x'+ 1 that do not appear in gl(X). The

is ' 2, degree of the resultant denominator is then at least k1,

which is the minimum degree required for the denominator
n ~ k1 +kz . (1) to have degree greater than kl-1, the degree of ml(x). The

Table 1

.

k1 k2 d1 d2 Roots gl(X)/g2(X) kc dm

9 6 4 6 3,5/0,1,7 \ 15 1

9 4 4 6 3,5/0, 1,5,1 '13 2
9 2 3 10 1,5/0,1,3,7 11 3
8 6 4 6 0, 3, 5/0, 1,7 14 2
8 2 4 10 0,3,5/0,1,3,7 10 2
8 2 4 10 0,1,5/0,1,3,7 0, 1 10 4
7 4 3 8 1,7/0,1,3,5 1 11 3
7 4 5 6 1,3/0,1,5,7 1 11 3
6 5 6 7 0,1,3/1,5,7 1 11 3
646 8 0,1,7/0,1,3,5 0,1 104
5 4 3 8 1,5,7/0,1,3,5 9 3
5 2 7 10 1,3,5/0,1,3,7 7 5
4 4 6 8 0,1,5,7/0,1,3,5 8 4 .

; 4 3 8 10 0,1,3,5/1,3,7 7 5
4 2 8 10 0, 1,3,5/0,1, 3,7 ~6 6

Given that eqn. 1 is satisfied and that the rows of Gc are conditions required for two cyclic codes to have disjoint code

linearly independent, it can be shown that the minimum books are therefore (a) k1, k2 # 0, # n, (b) n > k1+k2-1,

distance dc of the common code equals the minimum mutual and (C)gl(X) and g2 (x) between them contain all the irreducible

distance dm of the code pair. The sum of any C 1 word U 1 with factors of x' + 1.

any C2 word U2 equals a third word U12, and the weight of The generator of the common code, gc(x), must divide

this 'mutual' word equals the mutual distance between Ul and gl(X), g2(X) and all mutual words only, and is therefore the

U2. The minimum mutual distance between the codes then greatest common divisor of gl(X) and g2(X). The common
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code is also cyclic, so that its distance, and hence the mutual We can also generalise the present construction by using
distance of the disjoint code pair, is easily determined if the several generators such as in eqn. I or by adding a parity-check

code is tabulated.2 If the distance of the common code is digit to the elementary n'-tuples. In the following, f(X)

not known exactly, a lower bound on 'mutual distance can be denotes the all one n'-tuple and fp(X) is obtained by adding

obtained by the Bose-Chaudhuri-Hocquenghem (BCH) a parity-check digit to f(X). Many cyclic codes were tested

bound for cyclic codes.2 The converse procedure, that of for this construction (sometimes with a computer), and we

constructing a disjoint code pair, is also considerably now summarise the cases where the lower bound of Helgert
simplified: a common code is first selected, defining dm, and Stinatf3 was improved. We use AI to denote the number
and factors are added to gl(X) andg2(x), subject to conditions of vectors of weight i. The codes indexed by * were implicitly

(a) to (c), to produce the required codes. Similarly, a code constructed in Reference 5 and dHs is the bound on the
disjoint to an existing code can be easily constructed. Sets minimum distance3 of the best linear (n, k) code.
of more than two disjoint codes can also be formed by
repeated construction of disjoint pairs. These procedures for , - - 7 3 2 i

the testing and construction of disjoint cyclic code pairs are (a) n - 17 e(X) - I~ (X )

practical, and also suitable for computer implementation.
( ) ( ) - 0 S

gl X, D = e X + D(l + X) e(X)

Example: It is req~ir.e~ to test the (15, 6, 6)code and the (n, k, d) = (34,8,14) 13 ~ dHs ~ 14 *

(15, 4, 8) code for dISjOmt codebooks. The exponents of the
roots of the generator polynomial are tabulated2 as (0, 1, 7) (b) cfr (a) with a second generator
and (0, 1, 3, 5), respectively. Condition (a) is satisfied;

condition (b) is satisfied: 15> 6+4-1; and condition (c) is g2(X, D) = fp(X)

satisfied because all the roots of xIs + 1 are contained in gl (x) (n k d) = (35 9 14) 13 .:: d .:: 14
and g2(X). The codebooks are therefore disjoint. The roots ' , , , ~ HS ~

(0,1) are common and cancel, leaving (3, 5) as the roots of the S
denominator. The minimum functions of 3 and 5 have (c) n' = 21 e(X) = X7 + X14+ ~ X2i

degrees 4 and 2, respectively, giving a denominator of degree 6, 1=0

which is greater than 5, the degree of ml(x). The roots of gl(X, D) = e(X)+ D(l + X)e(X)

gc(x)ar~~0,1),andthecommonco.deisthereforethe(15,IO,4) g (X D)=f(X) (X D)= Df(,\,)

code, glvmg dm = 4. Table 1 gIves some of the length-I5 2, p g3, p

disjoint code pairs with mutual Hamming distances. (n, k, d) = (44,8,18) 17 ~ dHs ~ 20

R. M. F. GOODMAN 5th August 1974 (d) n' = 39 e(X) = ~ (X3 + X7)2i

School of Electronic Engineering 1=0

Kingston Polytechnic gl(X, D) = e(X)+D(X2+X+1)ISe(X)

Penrhyn Road, Kingston upon Thames, Surrey, England g2(X, D) = fp(X) g3(X, D) = Dfp(X)

References (n, k, d) = (80, 14, 32) 29 ~ dHs ~ 34

1 GOODMAN, R. M. F.: 'Variable redundancy coding'. Ph.D thesis' .. . .

University of Kent at Canterbury (in preparation) Weight dIstrIbutIon: Ao = ABo = 1

2 PETERSON, w. W., and WELDON, E. J., JUN.: 'Error-correcting codes'
(MIT Press, 1972) A32 = ~4B = 2535

A40 = 11312

3 19
(e) n' = 55 e(X) = ~ X(l1)21 + ~ (X3fi

1=0 1=0

gl(X, D) = e(X)+ D(X3+X + 1)1271 e(X)

(n, k, d)= (110,20,40) 36 ~ dHs ~ 46

GOOD BLOCK CODES DERIVED FROM Weight distribution:

CYCLIC CODES' Ao = 1, A40* = 109, A44 * ~ 676, A4B* = 2285

Indexing term: Error-correction codes AS2* = 5028, AS6* = 5630, A60* = 3724
;By combining irreducible cyclic codes, we obtain good
quasicyclic or extended quasicyclic codes, Some of these A64* = 1291, A6B* = 300; A72* = 21, A76* = 0
improve on the lower bound of Helgert and Stinaff.

ABo* = 1 where Ai* denotes AI/55
Let e(X) be the idempotent generator of an irreducible . .., . 1 . .

(n', k', d') cyclic block code, whose parity-check polynomial By USIng. MacWIllIams s equa.tIons, we check that the mml-

is h(X), and let f(X) be a primitive polynomial for the field mum weIght of the d~al code IS 5. The pr.esent code can thus

of polynomials modulo h(X). We now construct an be shortened to obtaIn a (105, 20) code wIth

(n = vn', k = k') quasicyclic block code, with one generator d = 36 (32 ~ dHs ~ 44).

g(X, D) that can be written as
19

g(X, D) = "£.1 D} e(X) [f(X)]b(J) modulo (X"-l) (1) (f) n' = 41 e(X) =I~O X21

}=o

Since any information k-tuple i(X) can be represented by gl(X, D) = e(X)+ De(X)(X3+ X+1)2S3

[f(X)]/I[i(~)] mod~lo h(X), fo~ a well chosen integer P[i(X)], (n k d) = (82 20 26) 24 ~ d ~ 32

the encodIng of z(X) results m ' , " HS

v-I 7

i(X)g(X, D) = ~ D} e(X)[f(X)]b(J)+/I[I(X)]. (2) (g) n' = 5l e(X) = ~ (X + X3 + Xs + X19)2i

}=o 1=0

that is, taken modulo X"-l. The minimal weight d of a gl(X, D) = e(X)+ De{X)(l + X)3

nonzero word, such as in eqn. 2, is at least vd', but it can be 1
larger for a good choice of b(j). A method was recently g2(X, D) = e(X11)+De(XI )(1+X)37

sketcheds that can be.used.to ~ho?se the best fu.nction b(j) g3(X, D) = fp(X) g4(X, D) = Dfp(X)

and to analyse the weIght dIstrIbutIon of the obtaIned codes.
It uses some results of Goethals,2 and is not recalled here. (n, k, d) = (102, 18, 36) 32 ~ dHs ~ 43
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