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Abstract 
  
 This paper presents a scalable threshold-based 
algorithm for allocating workers to a given task 
whose demand evolves dynamically over time. The 
algorithm is fully distributed and solely based on the 
local perceptions of the individuals. Each agent 
decides autonomously and deterministically to work 
only when it “feels” that some work needs to be done 
based on its sensory inputs. In this paper, we applied 
the worker allocation algorithm to a collective 
manipulation case study concerned with the gathering 
and clustering of initially scattered small objects. The 
aggregation experiment has been studied at three 
different experimental levels by using macroscopic 
and microscopic probabilistic models, and embodied 
simulations.  Results show that teams using a number 
of active workers dynamically controlled by the 
allocation algorithm achieve similar or better 
performances in aggregation than those characterized 
by a constant team size, while using a considerably 
reduced number of agents over the whole aggregation 
process. Since this algorithm does not imply any 
form of explicit communication among agents, it 
represents a cost-effective solution for controlling the 
number of active workers in embedded systems 
consisting of a few to thousands of units.  
 
Keywords: swarm intelligence, labor division, 
dynamic worker allocation, distributed algorithms, 
probabilistic modeling, embedded systems. 

1 Introduction 

 Swarm Intelligence1 (SI) is a new computational 
and behavioral metaphor for solving distributed 
problems; it is based on the principles underlying the 
behavior of natural systems consisting of many 
agents, such as ant colonies and bird flocks. The 
abilities of such systems appear to transcend the 
abilities of the constituent individual agents; in all the 

biological cases studied so far, the emergence of high 
level control has been found to be mediated by 
nothing more than a small set of simple low level 
interactions among individuals, and between 
individuals and the environment3. 
 The SI approach can be applied to control 
embedded systems that consist of many autonomous 
decision making entities endowed with minimal 
communication and local perception capabilities. In 
particular, we are interested in understanding task 
allocation and labor division mechanisms exploited 
in social insect societies that can be transported and 
adapted to artificial embedded systems such as 
mobile robotic platforms.  
 Recently, several macroscopic models, some of 
them based on threshold-based response2, others 
focusing only on task-switching probabilities10, have 
been proposed to explain these mechanisms in natural 
colonies. However, none of these theoretical 
approaches has focused on how workers gather the 
information necessary to decide whether or not to 
switch task or to engage in a task performance. More 
specifically, none of them has taken into 
consideration the partial perception in time and space 
of the demand and the embodiment of the agents. For 
instance, partial perceptions of the demand combined 
with real world uncertainties could strongly influence 
the optimal distribution of thresholds among 
teammates.  
 In the collective robotic literature, we find 
instead threshold-based approaches that take into 
account the embodiment of the agents but are not 
scalable because of communication requirements on 
a finite bandwidth or the necessity of an external 
supervisor. For instance, in the pioneering approach 
proposed by Parker11 each robot at every instant of 
time and in every position is aware of the progress in 
task accomplishment of its teammates based on a 
global radio networking and an absolute positioning 
system. In Krieger and Billeter’s experiment5, the 
demand related to the nest energy is assessed by an 
external supervisor and globally transmitted to all the 
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robots. Using this method, the team of robots has to 
be heterogeneous and each agent has to be 
characterized by a different threshold in order to 
regulate the activity of the team. This in turn results 
in a different exploitation of the teammates, the one 
endowed with the lowest threshold being more active 
than that with the highest one. Finally, none of these 
experimental works provides a theoretical framework 
that allows for comparisons among different robotic 
platforms, environments, and tasks or the 
performance prediction of teams consisting of 
hundreds or thousands of units.  
 In this paper we present a distributed, scalable 
algorithm that allows a homogeneous team of 
autonomous, embodied agents to dynamically 
allocate an appropriate number of workers to a given 
task as a function of their individual estimation of the 
progress in the task accomplishment. Since the agents 
do not perceive the demand globally but rather 
estimate it locally, they do not work or rest all at the 
same time, a behavior that would arise if we 
broadcasted the demand from an external supervisor. 
Finally, one of the main strengths of this work is the 
attempt to create a theoretical framework for real 
embedded systems provided with threshold allocation 
mechanisms. These systems are therefore analyzed at 
several implementation levels, from macroscopic 
models to embedded experiments (e.g. real robots) 
through numerical microscopic models and embodied 
simulations. Models allow for a better understanding 
of the allocation dynamics and for a generalization to 
other tasks, environmental constraints, and embedded 
platforms. Optimal parameters of the allocation 
algorithms can be investigated much more quickly at 
more abstract levels and the effectiveness of the 
devised solution can then be verified using embodied 
simulations and/or real embedded systems. In this 
paper we present only a validation of the model 
predictions using embodied simulations. Real robots 
experiments will be conducted in the near future. 

1.1 The aggregation experiment 
 The first case study we tackled for assessing the 
efficiency of the worker allocation algorithm is 
concerned with the gathering and clustering of small 
objects scattered in an enclosed arena. In the previous 
research6,7, the size of the working team was kept 
constant during the whole aggregation process. These 
experiments define our baseline for an efficiency 
comparison with and without the worker allocation 
algorithm. In this paper, we are using two team 
performance measurements previously adopted, both 
of them based on the aggregation process: the 
average cluster size and the number of clusters. 
  

1.2 The embodied simulations  
 We implemented the aggregation experiment in 
Webots 2.01, a 3D sensor-based, kinematics 
simulator8 of Khepera robots9. The simulator 
computes trajectories and sensory inputs of the 
embodied agents in an arena corresponding to the 
physical set-up (see Fig. 1a).  
  

 The mean acceleration ratio for this experiment 
with 10 robots between Webots and real time is about 
7 on a PC Pentium III 800 Mhz workstation. The 
environment is characterized by an 80x80 cm arena 
(or working zone) where twenty small seeds are 
randomly scattered at the beginning of the 
experiment (see Fig. 1b and c). One to ten agents 
work together in the shared environment. A parking 
space (resting zone) is appended to the working field. 
That is the place where non-active agents go to rest 
(or stay in an idle state to save energy). Agents are 
endowed with sensor capabilities for distinguishing 
the border between resting and working zone (e.g. 
physically speaking, IR sensors beneath the robots’ 
bodies).  
 Without considering the mode-switching 
behavior (explained in subsection 2.1), we can 
summarize each agent’s behavior with the following 
simple rules. In its default behavior, the agent moves 
straight forwards within the working zone looking for 
seeds. When at least one of its six frontal proximity 
sensors is activated, the agent starts a discriminating 
procedure. Two cases can occur: if the agent is in 
front of a large object (a wall, another agent, or the 
body side of a cluster of seeds), the object is 
considered as an obstacle and the agent avoids it. In 
the second case, the small object is considered as a 

Fig.1a: Close up of a simulated robot  (5.5 cm in 
diameter) in Webots equipped with a gripper turret 
in front of a seed. 
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seed. If the agent is not carrying a seed, it grasps the 
seed with the gripper, otherwise, it drops the seed it is 
carrying close to that it has found; then, in both cases, 

the agent resumes looking for seeds. With this simple 
individual behavior, the team is able to gather objects 
in clusters of increasing size. A cluster is defined as a 
group of seeds whose neighboring elements are sepa-
rated by at most one seed diameter. Note that, 
because only the two extreme seeds of a cluster can 
be identified as seeds (as opposed to obstacles) by the 
agents, clusters are built in lines. As shown by 
Martinoli et al.7, if the probability of creating new 
clusters by dropping a seed in the middle of the arena 
without having detected another seed or of splitting 
clusters in two by picking up an internal seed is zero, 
the number of clusters is monotonically decreasing 
and eventually a single cluster will always arise.  

1.3 The microscopic model 
 The central idea of the microscopic probabilistic 
model is to describe the experiment as a series of 
stochastic events with probabilities based on simple 
geometrical considerations. The probability for any 
agent to encounter any other object present in the 
arena (e.g. seeds, teammates, the border between the 
working field and the resting zone, etc.) is given by 
the ratio of the extended area occupied by that object 
to the total arena area in which the agent is moving. 
The extended area occupied by each object is 
computed by considering the detection range of that 
object by an active agent (robot) taken from the 
center of that agent. In this specific collective 
manipulation case study, seed picking up and 
dropping probabilities have also to be taken into 
account once a cluster is found and they depend on 
the angle of approach of the agent to the cluster 
(clusters can be modified only at their tips). The 
states of the agents in the numerical probabilistic 
model are defined by a finite state machine, but, 
instead of computing the detailed sensor information 
and trajectories of the agents, the change of states is 
determined by the throwing of dice. The overall 
behavior is then computed by averaging the results of 
several runs of the same experiment. Fig. 2 illustrates 
the transformation of a 2D arena space to a 1D 
probability space used in this model. A more detailed 
description of this microscopic modeling 
methodology can be found in previous work6,7. 

 Working with models also brings an additional 
time saving in comparison to embodied simulations. 
The mean acceleration ratio for this experiment with 
10 agents between the microscopic probabilistic 
model and Webots is about 700 on a PC Pentium III 
800 MHz workstation.  

1.4 The macroscopic model 
 For this particular experiment, we have extended 
the previously existing microscopic model to a more 
compact and abstract macroscopic model. At this 

Fig.1b: Experimental setup: the darker area
corresponds to the working zone, the lighter area
to the resting zone. Typical situation at the
beginning of the aggregation with 6 agents. 

Fig.1c: Typical situation at the end of aggregation
experiment (e.g. 4-hour simulated time). 
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Fig. 2: Example of transformation of the 2D arena 
space to a 1D probability space. 
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modeling level, we capture with a set of difference 
equations the state changes of the environment 
(aggregation evolution) as well as of the agents’ load 
(carrying or not carrying a seed).  
 The advantages of exploring two different 
modeling levels are three-fold. First, going through 
the intermediate level of abstraction defined by the 
microscopic model, the parameters used in the 
macroscopic model are still so realistic that the 
resulting predictions are not only qualitatively but 
also quantitatively accurate. Second, the microscopic 
model can also be used not only for predicting 
average team performances but also their variation 
(standard error, standard deviation). Third, at the 
macroscopic level, optimization of system parameters 
is easier and faster.  
 The macroscopic model is based on the 
following probabilities (the same used in the 
microscopic model, all are computed from simple 
geometrical considerations): 
• The time-dependent probability of any agent to 
encounter a wall: Pw(t). Without worker allocation, 
this probability is constant throughout the 
experiment. With the worker allocation, for working 
or resting agents, the enclosure is located around the 
working or the resting zones respectively.  
• The time-dependent probability of any agent to 
encounter a teammate: Prb(t). With worker allocation, 
this probability is not constant since the number of 
agents in both zones is not constant but defined by 
the worker allocation algorithm. 
• The time-dependent probability of any agent to 
encounter a cluster of a size n from the favorable 
seed-picking angle: Pn

dec(t). 
• The time-dependent probability of any agent to 
encounter a cluster of a size n from the favorable 
seed-dropping angle: Pn

inc(t).  
The last two probabilities change as a function of the 
aggregation process in both cases, with and without 
worker allocation.  
 In general, the number of clusters of size k is 
recursively given by Eq.1, where: Wf(t) is the number 
of robots not carrying a seed at time t, Wc(t) is the 
number of robots carrying a seed at time t, and Tp, the 
average amount of time a robot needs to pick up or 
drop a seed. 
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 In the right side of Eq. 1, the second and fifth 
terms represent the average number of clusters of size 
k having their size incremented or decremented by 

one seed within Tp time periods, the third and fourth 
terms represent the average number of clusters of size 
k-1 and k+1 respectively, transformed into clusters of 
size k within Tp time periods. Similarly, the average 
number of ‘free’ agents (i.e. agents not carrying a 
seed but looking for seeds to pick up) at time t+1 is 
given by Eq. 2, where: Ta is the average amount of 
time an agent needs to avoid an obstacle, Pobs(t) is the 
probability that any free agent gets involved in an 
obstacle avoidance process at time t, and M, the total 
number of seeds. 
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 In the right side of Eq. 2, the second, third, and 
fourth terms represent the average number of free 
agents involved in obstacle avoidance and cluster 
construction at time t or finishing an obstacle 
avoidance started at time period t - Ta respectively. 
The last term represents the average number of 
agents that dropped a seed within time period t - Ta. 
A similar difference equation gives the dynamic 
expression of Wc(t+1). 

2 The distributed worker allocation 

 The main objective of this case study is to show 
that the introduction of worker allocation 
mechanisms allows the team of agents to increase its 
efficiency as a whole by allocating the right number 
of workers as a function of the decreasing demand 
intrinsically defined by the aggregation process. 
Intuitively, we can imagine that at the beginning of 
the aggregation there are several possible 
manipulation sites (i.e. several scattered seeds) that 
allow for a parallel work of several agents. As the 
aggregation process goes on, these sites are more and 
more reduced and having more agents competing for 
the same manipulation site decreases their efficiency 
in aggregation. 
 In threshold-based systems, the ‘propensity’ for 
any given agent to act is given by a response 
threshold. If the demand is above an agent’s 
threshold then that agent continues to perform the 
task, conversely if the demand is below its threshold 
then the agent stops performing that particular task.  
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2.1 The worker allocation algorithm 
 Our current worker allocation algorithm is as 
follows. When an agent has not been able to work 
(i.e. to pick up and drop a seed) for a reasonable 
amount of time, its propensity to accomplish that 
particular task is decreased. If the stimulus goes 
below a fixed threshold (i.e. if the amount of time 
spent in the search for work to accomplish is above a 
given Tsearch time-out), a first deterministic switching 
mechanism prompts the agent to leave the working 
zone for resting in the adjacent parking space. An 
agent carrying a seed that decides to become inactive 
cannot do so until it finds an appropriate spot (i.e. 
one tip of a cluster) to drop the seed. A second 
deterministic switching mechanism allows the agent 
to resume the working activity as soon as the resting 
time has exceeded a Trest time-out. Thus, with this 
simple algorithm characterized by two thresholds 
common to all the teammates, the agents are able to 
locally evaluate the aggregation demand and to 
decide whether to work or rest. Since the agents do 
not perceive the demand globally but rather estimate 
it locally, they do not stop working all at the same 
time. Thus, by exploiting the intrinsic noise of the 
system as well as local perceptions and interactions, 
we can obtain a self-organized worker allocation 
based on the local assessment of the current status of 
the shared resource, i.e. the environment. 

2.2 The modified macroscopic model 
 We modified Eq. 2 to take into account the 
influence of worker allocation on the different 
parameters of the system. The key difference in the 
modeling of the number of free (respectively loaded) 
agents is that their actions now depend not only on 
the current environmental state but also on their 
recent experience. In particular for any given agent, 
the decision to leave or stay in the working zone at 
time t is dependent on whether that agent has been 
able to work (i.e. exactly pick up and drop at least 
one seed) over the last Tsearch time periods. A 
posteriori probabilities related to the states of the 
environment during that past are used to compute the 
probability for any given agent to stop working at 
time t. That probability is exactly equal to the 
probability that the same agent has not been able to 
find some work to accomplish during that period. 

3 Results and discussion 

In this section we present and compare results 
collected at the three different experimental levels, 
macroscopic modeling, microscopic modeling, and 
embodied simulations. Each aggregation run lasted 

10 h. For each team size, 100 and 30 runs were 
carried out using the microscopic model and the 
embodied simulator respectively. All error bars 
represent the standard deviations among runs. All 
results reported below were obtained without using 
any free parameters. All the parameters introduced in 
the models (e.g. mean obstacle avoidance duration, 
mean time to pick up/drop a seed, mean time to leave 
the working zone) were measured from a single 
embodied agent. 
 In the following experiments, we arbitrarily 
hand-coded two values for the two allocation 
parameters: Tsearch = 25 min, Trest > 10 h. For instance, 
Trest was chosen based on the following 
considerations: since in this particular aggregation 
experiment the demand is monotonically decreasing, 
there is no need to have inactive agents resuming the 
working activity. In the case of a demand changing 
differently, for instance if more seeds were suddenly 
introduced during the aggregation process, having a 
Trest shorter than the 10 h observation time would be 
an interesting solution to investigate. A systematic 
search for optimal parameters is an interesting topic 
for future research. 

3.1 Aggregation without worker allocation  
Fig. 3 presents the model predictions and the 

embodied simulation results of the aggregation 
experiment without the use of any task allocation 
algorithm for groups consisting of 10 agents. In 
Fig.3, the upper set of (three) curves represents the 
(increasing) average size of the clusters over time 
while the other set shows the (decreasing) average 
number of clusters over time.  

 The good agreement between the results from the 
three different levels shows how reliable both 
modeling methods are for an accurate forecast of the 
evolution of the aggregation process. 

Fig. 3: Aggregation w/o worker allocation with 
10 active workers  
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3.2 Aggregation with worker allocation 
 Fig. 4 presents the results of an aggregation 
experiment using worker allocation and 10 agents at 
the three different experimental levels. 

 In order to assess quantitatively the advantages 
of the worker allocation algorithm, we introduced a 
new metric, the allocation efficiency. In this 
aggregation case study, we defined the allocation 
efficiency as the ratio of the average cluster size at 
any given time to one plus the average number of 
active workers from the beginning till the same time, 
i.e. cluster size/(1+number of workers). Note that the 
offset at the denominator guaranties an upper bound 
on the possible values of the metric. In other words, 
the allocation efficiency corresponds to the amount of 
work done per number of workers allocated to the 
task. 
 Fig. 5 shows the allocation efficiency for this 
aggregation experiment with a group of 10 agents. 
The upper two curves represent the allocation 

efficiency (microscopic model and embodied 
simulations) of the team with the worker allocation 
algorithm while the lower two (overlapping) 
correspond to the allocation efficiency without any 
worker allocation algorithm. Note that this metric is a 
hyperbolic function of the number of active workers; 
therefore, it amplifies the differences illustrated in 
Fig.4b for small numbers of agents. This explains the 
net increase in mean values and standard deviations 
of the allocation efficiency of the embodied simulator 
related to those of the microscopic model. 

 Fig. 5 illustrates that the effect of the worker 
allocation algorithm becomes more significant after 
about 100 minutes when the first agents start to leave 
the working zone. It is worth noting that at this point, 
on average, a single cluster has not necessarily arisen 
yet. Therefore, by using the worker allocation in the 
last phase of the aggregation we achieve a similar 
mean clustering performance as with a full team 
while using fewer agents. However, the main 
advantage of worker allocation can be seen after 200 
minutes, when a single cluster has already arisen 
during most of the runs. The size of this single cluster 
continuously grows in the experiment with worker 
allocation while it converges to and remains stable 
around 15 seeds (see Fig. 3) in the experiment 
without worker allocation. Intuitively, this can be 
explained by the fact that with only two manipulation 
sites left in the arena, on average one half of the 
active agents are always carrying a seed and the other 
half are not. If the number of active agents is 
reduced, the size of the single cluster is consequently 
increased and this explains the high allocation 
efficiency using the worker allocation algorithm 
shown in Fig. 5 after 200 minutes.  

Fig.4a: Aggregation evolution with worker
allocation (set of 10 agents). 

Fig.4b: Average number of active workers
over time with the allocation algorithm. 

Fig.5: Allocation efficiencies for the 
aggregation experiment with 10 agents, w/ 
and w/o worker allocation 



  
Proceedings of the 2001 IEEE Systems, Man and Cybernetics Conference 

Copyright 2001 

4 Conclusion 

 In this paper, we have presented a scalable 
threshold-based algorithm that allows a homogeneous 
team of autonomous, embodied agents to 
dynamically allocate an appropriate number of 
workers to a given task as a function of their 
individual estimation of the progress in the task 
accomplishment. The algorithm is fully distributed 
and, since it is solely based on the local perceptions 
of the individuals and does not imply any form of 
explicit communication among agents, it represents a 
cost-effective solution for controlling the number of 
active workers in embedded systems consisting of a 
few to thousands of units. Results show that teams 
using a number of active workers dynamically 
controlled by the allocation algorithm achieve similar 
or better performances in aggregation than those 
characterized by a constant team size, while using a 
considerably reduced number of agents per time unit 
over the whole aggregation, thus, optimizing both the 
team performance and the use of the resources of the 
system. Our results reveal that intrinsic labor division 
mechanisms can achieve interesting performances 
without any use of external supervisors or global 
wireless networking. However, much work remains 
to be done in optimizing the efficiency of such 
distributed worker allocation algorithms while 
maintaining their scalability. Local peer-to-peer 
explicit communication and specialization through 
adaptive thresholds12 are just two possible paths to 
explore. Furthermore, the good agreement between 
models and embodied simulations confirms the 
usefulness of probabilistic modeling tools for 
achieving fast predictions and understanding 
aggregation and worker allocation dynamics. Finally, 
macroscopic models expressed in the form of 
difference equations seem to be a promising approach 
to other case studies and to further generalization of 
the allocation algorithm presented in this paper. 
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