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Swarm Robotic Odor Localization

Adam T. Hayes, Alcherio Martinoli, Rodney M. Goodman

Abstract| This paper presents an investigation of odor

localization by groups of autonomous mobile robots using

principles of Swarm Intelligence. We describe a distributed

algorithm by which groups of agents can solve the full odor

localization task more e�ciently than a single agent. We

demonstrate that a group of real robots under fully dis-

tributed control can successfully traverse a real odor plume.

Finally, we show that an embodied simulator can faithfully

reproduce the real robots experiments and thus can be a

useful tool for o�-line study and optimization of real world

odor localization.
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ization, Plume Traversal

I. Introduction

T
HIS paper presents an investigation of odor localiza-

tion by groups of autonomous mobile robots using

principles of Swarm Intelligence (SI), a computational and

behavioral metaphor for solving distributed problems that

takes its inspiration from biological examples provided by

social insects. In most biological cases studied so far, ro-

bust and capable group behavior has been found to be me-

diated by nothing more than a small set of simple interac-

tions among individuals and between individuals and the

environment [1]. The application of SI principles to au-

tonomous collective robotics aims to develop robust task

solving by minimizing the complexity of the individual

units and emphasizing parallelism, exploitation of direct or

indirect local interactions, and distributedness. The main

advantages of this approach are two: �rst, scalability from

a few to thousands of units, and second, increased sys-

tem robustness, not only through unit redundancy but also

through the unit minimalistic design. Several examples of

collective robotics tasks solved with SI principles can be

found in the literature: aggregation [2], [3] and segregation

[4], exploration [5], stick pulling [6], and collective trans-

portation [7].

Recently, advances have been made in understanding bi-

ological and arti�cial odor classi�cation and odor localiza-

tion and tracking as developed in moths [8], [9] and rats [10]

in the air, and lobsters [11] and stomatopods [12] in water.

Biology utilizes olfaction for a wide variety of tasks in-

cluding �nding others of the same species, communication,

behavior modi�cation, avoiding predators, and searching

for food. Odors, unlike visual and auditory perceptions,

are non-spatial: they possess neither spatial metric nor di-

rection. In contrast, odorant stimuli possess both spatial

and temporal character, snaking out complex plumes that

can wander over a wide area. This implies that a level

of sophistication beyond gradient following is necessary for
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localization of an odor source.

Animals use a combination of hardware (frequency of

receptor adaptation, perhaps), software (temporal inte-

gration and/or spatial integration), and search strategies

(both intrinsic and landmark-based) to locate odor sources.

Odor localization is in essence a behavioral problem that

varies from animal to animal. While some animals ex-

ploit 
uid information at di�erent layers (lobster) or several

residues on the ground (ants), others can track odors in the

air (moths) or use a combination of information (dogs).

From an engineering standpoint there are advantages to

combining odor tracking with mobile robots, such as in

the detection of chemical leaks and the chemical mapping

of hazardous waste sites. We are interested in developing

small mobile robots that use odor tracking algorithms and

multi-sensor and sense (e.g. odometry, anemometry, olfac-

tion) fusion to search out and identify sources of odor.

The aim of the case study described in this paper is

three-fold. Firstly, we describe a distributed algorithm by

which groups of agents can solve the full odor localiza-

tion task more e�ciently than a single agent. Secondly,

we demonstrate that a group of real robots under fully dis-

tributed control can successfully traverse a real odor plume.

Thirdly, we show that an embodied simulator can faithfully

reproduce the real robots experiments and thus can be a

useful tool for o�-line study and optimization of real world

odor localization.

II. The Odor Localization Problem

The general odor localization problem addressed in this

paper is as follows: �nd a single odor source in an enclosed

2D area as e�ciently as possible. This can be broken down

into three subtasks: plume �nding - coming into contact

with the odor, plume traversal - following the odor plume to

its source, and source declaration - determining from odor

acquisition characteristics that the source is in the immedi-

ate vicinity. Plume �nding amounts to a basic search task,

with the added complication, due to the stochastic nature

of the plume, that a simple sequential search is not guar-

anteed to succeed. Plume traversing requires more spe-

cialized behavior, both to progress in the direction of the

source and to maintain consistent contact with the plume.

Source declaration does not necessarily have to be done

using odor information, as typically odor sources can be

sensed via other modalities from short range, but here we

propose a solution using no extra sensory apparatus.

A. Biological Inspiration

As an odor source dissolves into a 
uid medium, an odor

plume is formed. The turbulent nature of 
uid 
ow typi-

cally breaks the plume into isolated packets, areas of rela-

tive high concentration surrounded by 
uid that contains
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no odor. The task of odor localization thus becomes one

of plume traversal, or following the trail of odor packets

upstream to the source.

Environmental and behavioral constraints can preclude

the approach of remaining in a single position and con-

tinually sampling odor and 
ow data until a movement

can be made with a high degree of con�dence. In that

case, upon sensing an odor signal, a good policy is to move

directly upwind, as a good immediate local indication of

source direction under such circumstances is the instanta-

neous direction of 
ow [13]. When the odor is no longer

present, a good strategy is to perform a local search un-

til it is reacquired, as the location of the previous packet

encounter provides the best immediate estimate of where

the next will occur. This type of behavior has been ob-

served in moths [14], and its performance has been studied

in simulation [9].

The previous work on this algorithm was aimed at study-

ing biology, which limited the sensory and behavioral time

scales investigated. When applying these ideas to robots,

however, the separation between algorithm and underlying

hardware is much more clear, and it no longer makes sense

to constrain behavior strictly by sensory response charac-

teristics. Therefore, in this work key aspects of the search

behavior, such as surge duration and casting locality, are

treated as algorithm parameters.

B. The Spiral Surge Algorithm

The basic odor localization algorithm used in this study,

Spiral Surge (SS), is shown in Figure 1. It consists of dif-

ferent behaviors related to the three di�erent subtasks.
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Fig. 1. Spiral Surge odor localization behavior.

Plume �nding is performed by an initial outward spi-

ral search pattern (SpiralGap1). This allows for thorough

coverage of the local space if the total search area is very

large and initial information can be provided by the deploy-

ment point (an external 'best guess' as to source location).

Alternatively, if no a priori knowledge is available, a spiral

with a gap much greater than the arena size (producing

essentially straight line search paths) provides an e�ective

TABLE I

Spiral Surge Algorithm Parameters

SpiralGap1 Initial spiral gap width

SpiralGap2 Plume reacquisition spiral gap width

StepSize Surge distance post odor hit

CastTime Length of time before reverting from

reacquisition to initial search spiral

SrcDecThresh Signi�cance threshold between

consecutive separate odor hits

SrcDecCount Number of signi�cant di�erences

before source declaration

search procedure.

Plume traversal is performed using a type of surge algo-

rithm. When an odor is encountered during spiraling, the

robot samples the wind direction and moves upwind for a

set distance (StepSize). If during the surge another odor

packet is encountered, the robot resets the surge distance

but does not resample the wind direction. After the surge

distance has been reached, the robot begins a spiral casting

behavior, looking for another plume hit. The casting spiral

can be tighter than the plume �nding spiral (SpiralGap2),

as post surge the robot has information about packet den-

sity and a thorough local search is a good strategy. If the

robot subsequently re-encounters the plume, it will repeat

the surging behavior, but if there is no additional plume

information for a set amount of time (CastTime), the robot

will declare the plume lost and return to the plume �nding

behavior (with a wider, less local, spiral gap parameter).

Source declaration can be accomplished using the fact

that a robot performing the plume traversal behavior at

the head of a plume will tend to surge into an area where

there is no plume information, and then spiral back to the

origin of the surge before receiving another odor hit. If

the robot keeps track internally of the post spiral inter-hit

distances (using odometry, for example, which is su�cient

because information must be accurate only locally), a series

of small di�erences can indicate that the robot has ceased

progress up the plume, and must therefore be at the source.

However, because small inter-hit distances can occur in all

parts of the plume, this method is not foolproof, and tuning

of the di�erence threshold (SrcDecThresh), as well as the

number of observed occurrences before source declaration

(SrcDecCount), is required to obtain a particular perfor-

mance within a given plume. See Table I for a summary of

individual SS parameters.

SS uses only binary odor information generated from a

single plume sensor. This is motivated partially because

this is the most simple and reliable type of information

that can be obtained from real hardware. However, due

to the highly stochastic nature of turbulent 
uid 
ow and

the odor-packet nature of the plume, it is unclear that

more complex sensing { via graded intensity information or

larger sensor arrays { would bene�t an odor localizing agent

when 
ow information is available through other means.
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C. Collaborative Spiral Surge

One way to increase the performance of a robot swarm

is collaboration. In particular, if collaboration is obtained

with simple explicit communication schemes such as binary

signaling, the team performance can be enhanced without

losing autonomy or signi�cantly increasing complexity at

the individual level. Several simple types of communica-

tion can be integrated into basic SS. Though this issue is

not explored in this paper, the e�ects of communication

strategies can change depending on the environment, so

communication type should be a tunable system parame-

ter.

D. Plume Traversal

This paper will focus on the plume traversal subtask

because it contains most of the plume related complexity

present in the full odor localization task, and due to experi-

mental limitations it is not feasible to study all phases with

real robots at this time. To study plume traversal, we place

groups of agents within a starting area at the distal end of

an odor plume in an enclosed arena. Over repeated trials

we measure the time and distance traveled by the whole

group until the �rst agent comes within a given radius of

the plume source (Tsf, Dsf).

To justify the high density of agents in the plume (which

would be unlikely given that in the general problem the

plume area is a small percentage of the total search area),

we allow communication between the agents that causes

all downwind agents (locally determined from previous in-

dividual measurement and odometry) to surge toward an

agent that has received an odor hit and is initiating its

own surge behavior. This provides an attractive force that

holds the group together as it traverses the plume.

E�ciency for the plume traversal task cannot be de�ned

in the general case. Instead, there are two basic measures

of task performance: time and group energy (which can

be considered proportional to the sum of the individual

distances traveled). Since these measures are physically

independent, a composite metric incorporating a particular

weighting of these two basic factors can be considered.

P =
2

(
E(Tsf)

Tmin
)� + (

E(Dsf)

Dmin
)�

(1)

This metric is an arbitrary weighting of time and dis-

tance, which are normalized by the optimum values for the

given task (Tmin, Dmin). The form ensures that for any

exponent � and � greater than 0, the optimal system will

achieve a performance of 1, and any that require more time

or distance will have a performance less than 1. By choos-

ing speci�c values for � and �, the appropriate relationship

can be generated for evaluating any particular application.

III. Materials and Methods

A. Real Robots

We use Moorebots, as shown in Figure 2. The plume

traversal arena is 6.7 by 6.7 m, and the robots are 24 cm

in diameter. In addition to the standard con�guration, as

described in [15], each robot is equipped with four infra-red

range sensors for collision avoidance, a single odor sensor

tuned to sense water vapor, and a hot wire anemometer.

Fig. 2. Moorebots in plume traversal arena.

The odor sensor detects the presence of an airborne sub-

stance through a change in the electrical resistance of a

chemically sensitive carbon-doped polymer resistor [16].

We generate a water plume using a pan of hot water and

an array of fans. Mapping the plume using a random walk

behavior (see Figure 3) indicates that the plume is stable

over time.
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Fig. 3. Plume hits received by 6 real robots over 1 hour while per-
forming a random walk behavior.

The anemometer is enclosed in a tube which gives it

unidirectional sensitivity, which, combined with a scanning

behavior, allows the robot to measure wind direction. A

wind map of 2102 individual samples averaged spatially is

shown in Figure 4.

An overhead camera tracking system, combined with a

radio LAN among the robots and an external workstation,

is used to log position data during the trials, reposition

the robots between trials, and emulate the binary commu-

nication signals. Trials of di�erent group size are inter-
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Fig. 4. Average wind direction in plume traversal arena as measured
by the real robots. Plume source at upper right. Arrow lengths are
proportional to the mean 
ow magnitude at the tail of each arrow.

leaved and inactive robots are automatically positioned at

recharging stations.

B. Inherent Complexity of the Odor Localization Task

When studying the performance of distributed robotic

systems, it can be useful to model the system using di�er-

ent levels of abstraction. Probabilistic analytic models are

ideal, but it can be di�cult to formalize all relevant local

interactions at the macro level. Less abstract model types

include probabilistic numerical models (micro-level), non-

embodied point simulations, and �nally embodied simula-

tions. Successful modeling provides a way of understanding

the essential aspects of the system, as well as a signi�cantly

decreased evaluation time, which allows a more complete

investigation of the system parameter space.

In order to demonstrate SS as an odor localizing strategy,

we attempted to apply the numerical probabilistic model-

ing methodology described in [5]. However, we were un-

successful because that framework is not able to capture

the in
uence of agent trajectory across di�erent functional

states. In the previously studied exploration task, agent

trajectories were randomized via wall avoidance between

state transitions, so the assumptions of the model (that

position and heading within each state are random) were

approximately correct. In the odor localization task, tran-

sitions between areas where plume information is available

to areas where there is none do not require an intermedi-

ate avoidance procedure. Thus the random position and

heading assumptions of the modeling methodology do not

hold, and it cannot be successfully applied. Note that it

may yet be possible to develop a more sophisticated model

that properly incorporates all aspects of the algorithm and

dynamics of the environment.

The next lower level of investigation is non-embodied

point simulation. Again, we attempted to evaluate SS at

this level, but we found that the source declaration aspect

of the algorithm, a sub-task in which agent density can be

elevated around the source, is very sensitive to the inter-

agent repulsion parameters. Since these are intended only

to approximate the behavior of the real robots, we could

not hope to obtain accurate performance information using

non-embodied simulation.

C. Embodied Simulation

In absence of a functional higher level alternative, we

used Webots [17], a 3D sensor-based, kinematic simulator,

originally developed for Khepera robots [18], to systemati-

cally investigate the performance of SS in simulation. This

embodied simulator has previously been shown to generate

data that closely matches real Khepera [6], [3] and Moore-

bot [5] experiments, so we were con�dent that real robot

behavior was accurately captured.

Fig. 5. Webots plume traversal arena with average plume intensity
map.
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Fig. 6. Plume hits received by 6 simulated robots over 1 hour.

The physical arena was captured in Webots, as shown in

Figure 5. To properly capture the plume stimulus, we in-

corporated a series of leaky source 2D plume images gener-

ated in a water 
ume by Philip Roberts and Donald Web-

ster at Georgia Tech. Such 'plume movies', even though
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they do not capture the in
uence of the agents on plume

dynamics, o�er a good approximation to the discretized

(packet-like) nature of odor stimulus received in real en-

vironments. We scaled the recorded plume data to imi-

tate the average speed and envelope of the real plume data

(see Figure 6 and Figure 3), and tuned the odor sensitivity

threshold (higher threshold leads to less odor information)

based on performance observed in our real arena. Odor hit

frequency di�erences between the real and simulated maps

are due to di�erent polling rates of the respective measure-

ment systems and di�erences in response bandwidth of the

real and simulated sensors. Flow information was taken

directly from the real robot data (as shown in Figure 4)

and introduced into the embodied simulations.

IV. Results and Discussion

A. Real Robots

We tested real robot plume traversal performance using

two sets of SS parameters and two control experiments.

Only SpiralGap2 and StepSize are considered because we

are looking only at the plume traversal aspect of the task.

SS1 represents a non-local search in that its search paths

are straight and its surges extend to the boundaries of the

arena. SS2 uses a smaller spiral gap and surge length to

perform a more local exploration of the arena. Random

odor uses SS2 parameters, and receives odor hits that are

generated from the time sequence of SS2 odor hits but are

not correlated with robot position in the arena. This con-

trol experiment investigates whether an algorithm incor-

porating precise odor packet location information is more

e�cient than a blind upwind surging behavior. Random

Walk takes straight line paths and random avoidance turns

at boundaries (using no odor or 
ow information) to pro-

vide a traversal performance baseline. Speci�c parameters

relating to the real robot tests are listed in Table II. 15 tri-

als of each group size were run for SS1, SS2 and Random

Odor, and 30 trials were run for Random Walk due to the

high variance of performance values.

TABLE II

Plume Traversal Parameter Values

Agent Speed .3250 m/s

Arena Length 6.7 m

Plume Length 9 m

Plume Speed 1 m/s

Src Dec Radius .88 m

Plume:Arena Area 1:2.3

Goal:Arena Perimeter 1:18.0

�, � 1

Tmin 19.0 s

Dmin 6.2 m

SS1: SpiralGap2 1785 km

SS1: StepSize 9.1 m

SS2: SpiralGap2 .357 m

SS2: StepSize .91 m
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Fig. 7. Normalized time across group size for real robot trials. Lower
values are better.
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Fig. 8. Normalized distance across group size for real robot trials.
Lower values are better.

Figures 7 and 8 show that for all conditions studied,

traversal time decreases with group size while group dis-

tance traveled increases. Time and distance are normalized

to the minimum values possible for this task description.

Figure 9 shows that while single robots are generally

most e�cient in this arena, SS1 gives the best results for

each group size, demonstrating successful plume tracing.

Random Odor performs worse than SS2 for all group sizes,

indicating that location of odor information is an important

aspect of the search algorithm. Also, SS2 performs worse

than SS1, suggesting that local search is not a good strat-

egy in this small arena where the goal-to-search perimeter

ratio is high (i.e., it is likely to �nd the goal by chance).

All error bars in the plots represent standard error.

B. Webots

We successfully reproduced the real robot performance

data in Webots, as shown in Figure 10. Data represents

1000 trials per group size. All parameters in Table II apply

to the Webots data as well.
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Fig. 9. Performance across group size for real robot trials. Higher
values indicate better performance.
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Because our Webots data closely matches our available

real robot data, it is reasonable that further simulated ex-

periments will accurately re
ect real world behavior. The

main limitation to our real robot experiments thus far is

arena size, thus in simulation we ran a set of trials on ex-

actly the same plume traversal task except in a 16x (area)

larger arena. Figure 11 shows that in the larger arena the

local search of SS2 is the best strategy. In fact, performance

is higher than in the smaller arena because boundary inter-

actions (which render clean spirals di�cult) no longer play

a role in performance. Single robots are no longer the most

e�cient because the penalty for losing contact with the

plume is high. While larger group sizes ensure that plume

is never lost, they also bring higher interference and search

overlap as well. Optimal balance for this environment and

parameter set is at a group size of 3 for SS2. SS1 per-

forms worse due to higher likelihood of losing plume, as its

non-local search has di�culty maintaining plume contact.

Random walk performance decreases most drastically, as it
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Fig. 11. Performance on plume traversal task of Webots trials across
group size in larger arena. Higher values indicate better performance.

is most dependent on goal-to-search perimeter ratio.

V. Conclusion

In this paper we have described a distributed algorithm

for solving the full odor localization task, and shown that

group performance can exceed that of a single robot. We

have demonstrated that one subtask, plume traversal, can

be successfully accomplished by real robots. Furthermore,

we have established that an embodied simulator can accu-

rately replicate the real robots results, and shown that it

can be a useful tool for exploring system performance.

Achievement of near optimal performance on the full

odor localization task in the real world will require e�cient

search of a large parameter space, which may call for the

combination of accurate simulation and machine-learning

techniques.
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