
VLSI NEURAL NETWORK WITH DIGITAL WEIGHTS AND ANALOG MULTIPLIERS

Vincent F. Koosh, Rodney Goodman

California Institute of Technology
Pasadena, CA 91125

darkd@micro.caltech.edu
http://www.micro.caltech.edu

ABSTRACT

A VLSI feedforward neural network is presented that makes use
of digital weights and analog multipliers. The network is trained
in a chip-in-loop fashion with a host computer implementing the
training algorithm. The chip uses a serial digital weight bus im-
plemented by a long shift register to input the weights. The inputs
and outputs of the network are provided directly at pins on the
chip. The training algorithm used is a parallel weight perturbation
technique[1]. Training results are shown for a 2 input, 1 output
network trained with an AND function, and for a 2 input, 2 hidden
unit, 1 output network trained with an XOR function.

1. INTRODUCTION

Training an analog neural network directly on a VLSI chip pro-
vides additional benefits over using a computer for the initial train-
ing and then downloading the weights. The analog hardware is
prone to have offsets and device mismatches. By training with the
chip in the loop, the neural network will also learn these offsets
and adjust the weights appropriately to account for them. A VLSI
neural network can be applied in many situations requiring fast,
low power operation such as handwriting recognition for PDA’s or
pattern detection for implantable medical devices[2].

There are several issues that must be addressed to implement
an analog VLSI neural network chip. First, an appropriate algo-
rithm suitable for VLSI implementation must be found. Tradi-
tional error backpropagation approaches for neural network train-
ing require too many bits of floating point precision to implement
efficiently in an analog VLSI chip. Techniques that are more suit-
able involve stochastic weight perturbation[1],[3],[4],[5],[6],[7],
where a weight is perturbed in a random direction, its effect on
the error is determined and the perturbation is kept if the error was
reduced; otherwise, the old weight is restored. In this approach,
the network observes the gradient rather than actually computing
it.

Serial weight perturbation[3] involves perturbing each weight
sequentially. This requires a number of iterations that is directly
proportional to the number of weights. A significant speed-up can
be obtained if all weights are perturbed randomly in parallel and
then measuring the effect on the error and keeping them all if the
error reduces. Both the parallel and serial methods can potentially
benefit from the use of annealing the perturbation. Initially large
perturbations are applied to move the weights quickly towards a
minimum. Then, the perturbation sizes are occasionally decreased
to achieve finer selection of the weights and a smaller error. In

general, however, optimized gradient descent techniques converge
more rapidly than the perturbative techniques.

Next, the issue of how to appropriately store the weights on-
chip in a non-volatile manner must be addressed. If the weights
are simply stored as charge on a capacitor, they will ultimately
decay due to parasitic conductance paths. One method would be
to use an analog memory cell [8],[9]. This would allow directly
storing the analog voltage value. However, this technique requires
using large voltages to obtain tunneling and/or injection through
the gate oxide and is still being investigated. Another approach
would be to use traditional digital storage with EEPROM’s. This
would then require having A/D/A (one A/D and one D/A) convert-
ers for the weights. A single A/D/A converter would only allow a
serial weight perturbation scheme that would be slow. A parallel
scheme, which would perturb all weights at once, would require
one A/D/A per weight. This would be faster, but would require
more area. One alternative would remove the A/D requirement by
replacing it with a digital counter to adjust the weight values. This
would then require one digital counter and one D/A per weight.

2. CIRCUITS

2.1. Synapse

A small synapse with one D/A per weight can be achieved by first
making a binary weighted current source (Figure 1) and then feed-
ing the binary weighted currents into diode connected transistors
to encode them as voltages. We then feed these voltages to tran-
sistors on the synapse to convert them back to currents. Thus, we
achieve many D/A’s with only one binary weighted array of tran-
sistors. It is clear, that the linearity of the D/A will be poor because
of matching errors between the current source array and synapses
which may be located on opposite sides of the chip. This is not
a concern because the network will be able to learn around these
offsets.

Vdd

11

i0i1i2i3i4

24816
Iin

Figure 1: Current Source Circuit

The synapse[6],[2] is shown in Figure 2. The synapse per-
forms the weighting of the inputs by multiplying the input volt-
ages by a weight stored in a digital word denoted by b0 through



b5 b5

b0 b1 b4b3b2

i4i3i2i1i0

Vin-Vin+

b5

Iout+ Iout-

Figure 2: Synapse Circuit

b5. The sign bit, b5, changes the direction of current to achieve
the appropriate sign.

In the subthreshold region of operation, the transistor equation
is given by[10]:

Id = Id0e
κVgs/Ut

and the output of the synapse is given by[10],[2]:

∆Iout = Iout+ − Iout− =



















+I0W tanh
(

κ(Vin+−Vin−)

2Ut

)

b5 = 1

−I0W tanh
(

κ(Vin+−Vin−)

2Ut

)

b5 = 0

where W is the weight of the synapse encoded by the digital
word and I0 is the least significant bit (LSB) current.

Thus, in the subthreshold linear region, the output is approxi-
mately given by:

∆Iout ≈ gm∆Vin =
κI0

2Ut
W∆Vin

In the above threshold regime, the transistor equation in satu-
ration is approximately given by:

ID ≈ K(Vgs − Vt)
2

The synapse output is no longer described by a simple tanh
function, but is nevertheless still sigmoidal with a wider “linear”
range.

In the above threshold linear region, the output is approxi-
mately given by:

∆Iout ≈ gm∆Vin = 2
√

KI0

√
W∆Vin

It is clear that above threshold, the synapse is not doing a pure
weighting of the input voltage. However, since the weights are
learned on chip, they will be adjusted accordingly to the necessary
value. Furthermore, it is possible that some synapses will oper-
ate below threshold while others above depending on the choice
of LSB current. Again, on-chip learning will be able to set the
weights to account for these different modes of operation.

Vdd

Vdd Vdd

Voffset Voffset

Iin+ Iin-Vout-Vout+

Vcm Vcm

Vgain Vgain

2:1:1

Iin+
d

Iin-
d

Icm
d

Icm
d

V
1+

V
1-

Figure 3: Neuron Circuit

2.2. Neuron

The synapse circuit outputs a differential current that will be summed
in the neuron circuit shown in Figure 3. The neuron circuit per-
forms the summation from all of the input synapses. The neuron
circuit then converts the currents back into a differential voltage
feeding into the next layer of synapses. Since the outputs of the
synapse will all have a common mode component, it is important
for the neuron to have common mode cancellation[2]. Since one
side of the differential current inputs may have a larger share of
the common mode current, it is important to distribute this com-
mon mode to keep both differential currents within a reasonable
operating range.

Iin+ = Iin+d
+

Iin+d
+ Iin−d

2
= Iin+d

+ Icmd

Iin− = Iin−d
+

Iin+d
+ Iin−d

2
= Iin−d

+ Icmd

∆I = Iin+ − Iin− = Iin+d
− Iin−d

Icm =
Iin+ + Iin−

2
=

Iin+d
+ Iin−d

+ 2Icmd

2
= 2Icmd

⇒ Iin+d
= Iin+ −

Icm

2
=

∆I

2
+

Icm

2

⇒ Iin−d
= Iin− −

Icm

2
= −

∆I

2
+

Icm

2

If the ∆I is of equal size or larger than Icm, the transistor
with Iin−d

may begin to cutoff and the above equations would not
exactly hold; however, the current cutoff is graceful and should
not normally affect performance. With the common mode signal
properly equalized, the differential currents are then mirrored into
the current to voltage transformation stage. This stage effectively
takes the differential input currents and uses a transistor in the tri-
ode region to provide a differential output. This stage will usually



be operating above threshold, because the Voffset and Vcm con-
trols are used to ensure that the output voltages are approximately
mid-rail. This is done by simply adding additional current to the
diode connected transistor stack. Having the outputs mid-rail is
important for proper biasing of the next stage of synapses. The
above threshold transistor equation in the triode region is given
by Id = 2K(Vgs − Vt −

Vds

2
)Vds ≈ 2K(Vgs−Vt)Vds for small

enough Vds. If K1denotes the prefactor with W/L of the cas-
code transistor and K2 denotes the same for the transistor with
gate Vout, the voltage output of the neuron will then be given by:

Iin = K1(Vgain − Vt − V1)
2 ≈ K2 (2(Vout − Vt)V1)

V1 = Vgain − Vt −

√

Iin

K1

Iin = 2K2(Vout − Vt)

(

Vgain − Vt −

√

Iin

K1

)

Vout =
Iin

2K2(Vgain − Vt)− 2

√

K2
2

K1
Iin

+ Vt

if
W1

L1
=

W2

L2
then K1 = K2 = K,

⇒ Vout =
Iin

2K(Vgain − Vt)− 2
√

KIin

+ Vt

for small Iin, R ≈
1

2K(Vgain − Vt)

Thus, it is clear that Vgain can be used to adjust the effective
gain of the stage.

Using these two circuit building blocks it is possible to con-
struct a multilayer feed-forward neural network. Note that the non-
linear squashing function is actually performed in the next layer of
synapse circuits rather than in the neuron as in a traditional neural
network. However, this is equivalent as long as the inputs to the
first layer are kept within the linear range of the synapses. The
biases for each neuron are simply implemented as synapses tied
to fixed bias voltages. Also, depending on the type of network
outputs desired, additional circuitry may be needed for the final
squashing function.

3. TRAINING ALGORITHM

The neural network is trained by using the parallel perturbative
weight update rule[1]. The perturbative technique requires gener-
ating random weight increments to adjust the weights during each
iteration. These random perturbations are then applied to all of the
weights in parallel. In batch mode, all input training patterns are
applied and the error is accumulated. This error is then checked
to see if it was higher or lower than the unperturbed iteration. If
the error is lower, the perturbations are kept, otherwise they are
discarded. This process repeats until a sufficiently low error is
achieved. The following is an outline of the algorithm:

0 10 20 30 40 50 60 70 80
−20

−10

0

10

20

30

W
ei

gh
t

Weight and Error vs. Iteration for training AND network

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

iteration

E
rr

or
 V

ol
ta

ge

Figure 4: Training of a 2:1 network with AND function

Initialize Weights;
Get Error;
while(Error > Error Goal);

Perturb Weights;
Get New Error;
if (New Error < Error),

Weights = New Weights;
Error = New Error;

else
Restore Old Weights;

end
end

4. TEST RESULTS

A chip implementing the above circuits was fabricated in a 1.2µm
CMOS process. All synapse and neuron transistors were 3.6µ/3.6µ.
An LSB current of 100nA was chosen for the current source. The
above neural network circuits were trained with some simple dig-
ital functions such as 2 input AND and 2 input XOR. The results
of some training runs are shown in Figures 4-5. As can be seen
from the figures, the network weights slowly converge to a correct
solution. Since the training was done on digital functions, a dif-
ferential to single ended converter was placed on the output of the
final neuron. This was simply a 5 transistor transconductance am-
plifier. The error voltages were calculated as a total sum voltage
error over all input patterns at the output of the transconductance
amplifier. Since Vdd was 5V, the output would only easily move to
within about 0.5V from Vdd because the transconductance ampli-
fier had low gain. Thus, when the error gets to around 2V it means
that all of the outputs are within about 0.5V from their respec-
tive rail and functionally correct. A double inverter buffer can be
placed at the final output to obtain good digital signals. At the be-
ginning of each of the training runs, the error voltage starts around
or over 10V indicating that at least 2 of the input patterns give an
incorrect output.

Figure 4 shows the results from a 2 input, 1 output network



0 50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40

W
ei

gh
t

Weight and Error vs. Iteration for training XOR network

0 50 100 150 200 250 300 350 400 450 500
2

4

6

8

10

12

iteration

E
rr

or
 V

ol
ta

ge

Figure 5: Training of a 2:2:1 network with XOR function starting
with small random weights

learning an AND function. This network has only 2 synapses and
1 bias for a total of 3 weights. The weight values can go from -31
to +31 because of the 6 bit D/A converters used on the synapses.

Figure 5 shows the results of training a 2 input, 2 hidden unit, 1
output network with the XOR function. The weights are initialized
as small random numbers. The weights slowly diverge and the
error monotonically decreases until the function is learned. As
with gradient techniques, occasional training runs resulted in the
network getting stuck in a local minimum and the error would not
go all the way down.

Figure 6 shows the same network trained with XOR, but the
initial weights are chosen as mathematically correct weights for
ideal synapses and neurons. Although, the ideal weights should,
in theory, start off with correct outputs, the offsets and mismatches
of the circuit cause the outputs to be incorrect. However, since
the weights start near where they should be, the error goes down
rapidly to the correct solution. This is an example of how a more
complicated network could be trained on computer first to obtain
good initial weights and then the training could be completed with
the chip in the loop.

5. CONCLUSIONS

A VLSI implementation of a neural network has been demon-
strated. Digital weights are used to provide stable weight storage.
Analog multipliers are used because full digital multipliers would
occupy considerable space for large networks. Although the func-
tions learned were digital, the network is able to accept analog
inputs and provide analog outputs for learning other functions. A
parallel perturbation technique was used to train the network suc-
cessfully on the 2-input AND and XOR functions.

6. REFERENCES

[1] J. Alspector, R. Meir, B. Yuhas, A. Jayakumar, and D. Lippe,
“A Parallel Gradient Descent Method for Learning in Ana-

0 50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40

W
ei

gh
t

Weight and Error vs. Iteration for training XOR network

0 50 100 150 200 250 300 350 400 450 500
2

4

6

8

10

12

iteration

E
rr

or
 V

ol
ta

ge

Figure 6: Training of a 2:2:1 network with XOR function starting
with “ideal” weights

log VLSI Neural Networks”, Advances in Neural Informa-
tion Processing Systems, San Mateo, CA: Morgan Kaufman
Publishers, vol. 5, pp. 836-844, 1993.

[2] R. Coggins, M. Jabri, B. Flower, and S. Pickard, “A Hybrid
Analog and Digital VLSI Neural Network for Intracardiac
Morphology Classification”, IEEE J. of Solid-State Circuits,
vol. 30, no. 5, pp. 542-550, May 1995.

[3] M. Jabri, B. Flower, “Weight Perturbation: An Optimal Ar-
chitecture and Learning Technique for Analog VLSI Feed-
forward and Recurrent Multilayer Networks”, IEEE Tran. on
Neural Networks, vol. 3, no. 1, pp. 154-157, Jan. 1992.

[4] B. Flower, M. Jabri, “Summed Weight Neuron Perturbation:
An O(N) Improvement over Weight Perturbation”, Advances
in Neural Information Processing Systems, San Mateo, CA:
Morgan Kaufman Publishers, vol. 5, pp. 212-219, 1993.

[5] G. Cauwenberghs, “A Fast Stochastic Error-Descent Algo-
rithm for Supervised Learning and Optimization”, Advances
in Neural Information Processing Systems, San Mateo, CA:
Morgan Kaufman Publishers, vol. 5, pp. 244-251, 1993.

[6] P. W. Hollis, J. J. Paulos, “A Neural Network Learning Al-
gorithm Tailored for VLSI Implementation”, IEEE Tran. on
Neural Networks, vol. 5, no. 5, pp. 784-791, Sept. 1994.

[7] G. Cauwenberghs, “Analog VLSI Stochastic Perturbative
Learning Architectures”, Analog Integrated Circuits and Sig-
nal Processing, 13, 195-209, 1997.

[8] C. Diorio, P. Hasler, B. A. Minch, C. A. Mead, “A Single-
Transistor Silicon Synapse”,IEEE Tran. on Electron Devices,
vol. 43, no. 11,pp. 1972-1980, Nov. 1996.

[9] C. Diorio, P. Hasler, B. A. Minch, C. A. Mead, “A Com-
plementary Pair of Four-Terminal Silicon Synapses”, Analog
Integrated Circuits and Signal Processing, vol. 13, no. 1-2,
pp. 153-166, May-June 1997.

[10] C. Mead, Analog VLSI and Neural Systems, New York:
Addison-Wesley, 1989.


