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Abstract

We present a statistical coding framework that supports
content analysis and retrieval in the compressed domain.
An unsupervised learning approach based upon latent vari-
able modeling is adopted to learn a collection, or mixture,
of local linear subspaces that are designed for compression,
while providing a probabilistic model of the source useful for
inferring image content. The compressed bitstream is orga-
nized to enable the progressive decoding of the compressed
data, such that the bitstream is only decompressed up to the
level necessary to satisfy the query. We describe methods
of extracting relevant features from the compressed repre-
sentation that support query based on single and multiple
example images, high level class categories such as people,
and low-level features like particular colors and textures.
Retrieval experiments have shown that this representation
provides good inferencing with very little decompression.

1. Introduction

With the improvement of internet communications, dig-
ital image and video libraries are becoming more readily
available, thereupon generating the need for fast and effi-
cient methods to store, and retrieve the visual information.
Until recently, the processes of data compression and con-
tent analysis were considered independently. Early efforts
in the area of content-based retrieval attempted to extend
traditional database techniques to support multi-media data
storage, management and retrieval. Such systems stored
meta-data in the form of text annotations or keywords as-
signed by a human operator, or relied upon the extraction
of visual features (e.g. edges, color, etc.) stored in addition
to the compressed imagery. These methods are inefficient
from a compression perspective, since they entail full de-
compression of the data for image domain feature analysis,�

T. Keaton is supported by a Doctoral Fellowship with the Information
Sciences Lab, HRL Laboratories, LLC, Malibu, CA 90265.

and their indexing schemes often produce a data expansion.
From a recognition perspective, these methods restrict the
types of queries that can be made by deriving the feature sets
and descriptors a priori. Even if the set of image attributes
extracted for indexing is rich, users of such systems are re-
quired to specify at the time of query which attributes are
important and their desired range of values (e.g., percent-
age of the color red contained in the image). Clearly, since
both compression and content indexing rely on efficient in-
formation extraction, an optimal solution to the problem of
content-based retrieval should entail the joint optimization
of both processes.

1.1. Previous Work

Prior methods of recognition or content-based retrieval
in the compressed domain have generally taken two ap-
proaches. In the first approach, existing compression stan-
dards such as JPEG and MPEG are extended to support
content-based analysis by deriving features and models from
the transform coefficients [6]. This approach generally leads
to an expansion of the data, and requires either partial or full
decompression of the bitstream. An alternative approach
explored by Gray et al. [4] involves a method of designing
a vector quantizer for both classification and compression
by incorporating a weighted Bayes risk component into the
distortion measure used to design the code. Unfortunately
at high vector dimensions (i.e., �	�
� blocks), the compu-
tation associated with using a vector quantizer grows ex-
ponentially, and thus its use is limited to very small vector
dimensions (i.e., ����� blocks). In our work, we take an
intermediate approach by using an existing compression al-
gorithm that is well-suited for content analysis, and modify
its design criteria to improve its retrieval performance.

Shannon’s coding theory tells us how to design efficient
codes when the distribution defining the information source
is given. However, the source distribution is generally un-
known, and instead must be estimated from the observed
data. Therefore, coding efficiency will depend upon how



Figure 1. Reconstructed image that was com-
pressed to 0.4 bpp.

well the estimated model matches the distribution of the
data-generating source. Universal coding theory attempts
to improve practical code design by assuming that the data
is generated by a distribution in a class of sources, rather
than a specific source distribution. In practice, the approach
employs a two-stage structure in which the single source
code of traditional image compression systems is replaced
with a family of codes designed to cover a large class of
possible sources. In the first stage, the encoder describes
the code from its collection considered to be the "best" from
a compression standpoint. In the second stage, the encoder
describes the data using the selected code. This general
coding strategy was shown in [2] to give good compres-
sion performance in applications where the statistics of the
source are not available at design time or may vary over time
and space.

Pattern recognition systems also rely upon the design
of good inferencing models derived from the statistics of
the data. For the problem of content-based retrieval, we
can expect image and video libraries to contain images of
different types with varying statistics where different image
clusters are better represented by a class of models. Thus,
a new universal source coding technique modified to define
a proper probability density model of the data would be
well-suited for the design of efficient codes from which
recognition in the compressed domain can be achieved.

In [2], Effros and Chou introduced a two-stage univer-
sal transform code called the Weighted Universal Transform
Code (WUTC). The algorithm is based upon the Karhunen-
Loeve Transform (KLT) which is a data-dependent trans-
form that achieves optimal decorrelation and energy com-
paction. By replacing JPEG’s single, non-optimal trans-
form code with a collection of optimal transform codes,
the WUTC algorithm achieved up to 3 db performance im-

provement over JPEG. In [5], we investigated the direct
application of the WUTC algorithm for the efficient coding
of image libraries, and discussed its inadequacies in terms
of statistical modeling. The partitions formed using the
expected error in reconstruction criterion are not optimal,
since the clustering is done independently of the KLT pro-
jection. Proper clustering should include a distance within
the subspace, and since the KLT does not define a proper
density model for the data, it cannot model the off-subspace
noise nor the in-subspace variability which are necessary for
achieving good classification. Recently, projection methods
based upon Gaussian latent variable modeling have been
proposed [3], which overcome these deficiencies by deriv-
ing the transformation basis within a maximum-likelihood
framework.

1.2. Our Approach

In this paper, we propose a universal statistical coding
framework based upon Gaussian latent variable modeling for
learning a collection of �
��� block transform codes, derived
from a training set comprised of representative samples from
the database. For color imagery, a set of codes is learned
separately for the luminance, and both chrominance bands
of the YCbCr format. By allowing a collection of bases to
be learned, each can become specialized to a larger variety
of structures present in the data ensemble. We find that the
final subspaces learned are color and texture selective, for
example, skin-like regions are encoded using the same group
of transform codes. Since the transform codes are derived
within a maximum-likelihood framework, the partitioning
of the data and estimation of the basis vectors are combined,
where likelihood replaces the squared reconstruction error
as the code selection criteria. Using this coding strategy,
we achieved a 17% gain in classification performance over
WUTC, with less than 1 db increase in distortion for all
rates.

In local transform coding, we wish to allocate bits to
different coefficients based on the variances of the compo-
nents. This strategy effectively prunes components having
a very low variance. We utilize different bit allocations for
each transform basis. The quantized data is then entropy
encoded using an arithmetic encoder. Figure 1 shows a re-
constructed image after compression to 0.4 bits-per-pixel
using our statistical coder.

The compressed representation is structured to permit the
progressive independent decoding of the coefficients leading
to efficient and successively refinable methods of query and
retrieval. We utilize the information provided by the index
map indicating which transform codes were used to encode
each image block, to derive features useful for determining
the similarity between images. Our coding strategy permits
quick searches through large database populations without



Figure 2. A block diagram of the system.

requiring the additional storage of content descriptors, or
fully decompressing the bitstream, while still supporting
conventional query techniques. A block diagram of the
proposed system is shown in Figure 2.

This paper is organized as follows. In section 2, we intro-
duce the latent variable modeling framework for learning a
mixture of local linear subspaces. Section 3 explains how we
can perform content analysis and similarity matching from
the resulting compressed representation. In Section 4, we
describe our query processing engine which is based upon
Bayesian evidential reasoning. The latter sections present
preliminary experimental results and conclusions.

2. Latent Variable Modeling

Latent variable modeling for data reduction assumes that
the high-dimensional observed space x is generated from
an underlying low-dimensional process defined by a linear
transformation of a small number of latent variables, or
hidden causes, z, plus additive noise u: x = � z + u, where
the columns of � are the basis functions. The latent variable
model is specified by the prior distributions of the latent
space p(z) and the noise model p(u), and the linear mapping� from latent space to data space. The model concurrently
performs the two steps of data partitioning and reduction
by inferring the state of the latent variables, or transform
coefficients, z, using a maximum a posteriori criterion, then
adapting the basis to obtain a good model of the data space
distribution. Maximum likelihood estimation is used to
optimize the parameters of the model.

2.1. Mixtures of Factor Analyzers

Factor analysis [3] is a latent variable method for model-
ing the covariance structure of high dimensional data using
a small number of latent variables called factors, where �
is known as the factor loading matrix. The factors z are
assumed to be independent and Gaussian distributed with
zero-mean unit variance, z ��� (0,I). The additive noise u
is also normally distributed with zero-mean and a diagonal
covariance matrix � , u ��� (0, � ). Hence, the observed

variables are independent given the factors, and x is there-
fore distributed with zero mean and covariance ��������� .
The goal of factor analysis is to find the � and � that best
model the covariance structure of x. The factor variables
z model correlations between the elements of x, while the
u variables account for independent noise in each element
of x. Factor analysis defines a proper probability density
model over the observed space, where different regions of
the input space are locally modeled by assigning a different
mean ��� , and index ��� (where j = 1,...,M), to each factor
analyzer.

2.2. EM Learning of Model Parameters

The EM learning algorithm can be used to learn the model
parameters without the explicit computation of the sample
covariance which greatly reduces the algorithm’s computa-
tional complexity:

E-Step: Compute the moments  "!#� $ %'& ���)( *+!-, ,%'& .�( *+!0/1�2�3, , and %	& .4.4�5( *+!1/0���3, for all data points i and mix-
ture components j given the current parameter values �6� ,
and �7� .
M-Step: This results in the following update equations for
the parameters:8��94:<;� $>=@? !  A!#�B*+!C%	& 8.D( *+!0/0���B, �FE =5? !  A!#�G%'& 8. 8. � ( *+!0/0���3, EIHKJ8� 94:<;� $ J9KLNMCOQP

R ? !#�  A!#�4=-*+!�S 8� 94:<;� %'& 8.D( *+!1/0���3, E * �!UT
Details on the derivation of these update equations can be
found in [3]. We iterate between the two steps until the
model likelihood is maximized. Since our application is
image coding, the final step assigns an image block to the
mixture component yielding the lowest reconstruction error.

3. Similarity Matching Based on Transform
Code Usage

We perform quick searches on the compressed imagery
by only decompressing the information provided by the in-
dex map indicating which transform codes were used to en-
code each image block. Since we encode the luminance and
chrominance bands separately, the index uniquely identifies
which transform code was used to encode each band. Fig-
ure 1 shows the index map representation of an image. We
see that our encoder has segmented the image into regions
of similar color and texture composition, thus providing a
useful representation for content-based retrieval. We can
determine the similarity between images by computing first
and second order statistical features derived from the index
map representation.

Color histogram matching is one of the most popular im-
age retrieval approaches because it has shown good recog-
nition performance without the need for object extraction,



Figure 3. An example of a correct retrieval.

and for low dimensional spaces it is easy to compute. We
adopt a similar approach for image matching by computing
histograms of the indices of transform codes used to encode
an image. Given a query image, its code usage histogram
is computed and matched to histograms of database images.
The best matching histogram is selected and its class label is
considered the "recognized" classification. The histograms
are normalized and compared using relative entropy or the
Kullback-Leibler divergence which computes the distance
between two distributions. Figure 3 shows an example of a
correct retrieval result obtained using this method of classi-
fication. The performances obtained with this method are
remarkably robust. Objects are recognized despite changes
in size and orientation. The code usage histograms may be
clustered, so that comparisons with the centroid distribu-
tions may be used to reduce the search space prior to image
matching or to retrieve based upon a specified class label.

In addition to the first-order statistics, we can compute
second-order statistics in the form of co-occurrence ma-
trices, that describe the occurrence of some block coding
spatial relationship. The co-occurrence statistics may be
represented by a matrix of relative frequencies VXWNY ZQ= O /I[ E ,where entries describe how frequently two transform codes

O and [ appear separated by a block distance L in a scan
direction \ . The co-occurrence statistics can be used to
support query by more than one example image.

4. Progressive Matching of Transform Coeffi-
cients

The factors of the transform code can be used to rank
order the coefficients, thus permitting their independent
compression and progressive decoding. We can group co-
efficients into multiple description levels based upon this
ranking, for example, the level 1 description are the first
coefficients of each block. By structuring the bitstream in
this fashion we achieve a successively refinable description
that supports query refinement.

As we progressively decode the transform coefficients,
their matching distance must be included in the overall sim-
ilarity measure between two images. We compute the co-
efficient matching using the modified Hausdorff distance,
which is a distance defined between two sets of points that
encodes an intuitive notion of the concept of "looking simi-

lar" without trying to build any one-to-one correspondences
between the two sets of points.

Given two sets of coefficients that have been encoded
using the same transform code, one set originating from
query image ]^$ O J /B_�_`_�/ O4a and the other from a model
image bc$d[ J /G_`_�_`/I[Ie within the database. The modified
Hausdorff distance [1] is defined as

f =C]�/gb E $ihkjml�=@ K=C]�/1b E /I K=-bn/I] E1E
 K=C]�/1b E $ oprq	sqmtNu hwv�xy t4z|{ O S�[ {

{~}K{ is defined as the Euclidean distance between the point
sets, and

prq
is the number of points in set ] . As each

description level is decoded, this distance is computed for
all transform code classes.

5. Query Processing Thru Bayesian Evidential
Reasoning

We treat the normalized coefficient distances between
the query image and an image in the database, as evidence,%7! , pointing to the hypothesis,

f
, that the query image

is similar to the model image in the database. Bayesian
evidential reasoning is then used to aggregate the evidence
into a single measure of similarity.

Bayesian evidence theory uses an “Odds-Likelihood Ra-
tio" formulation of Bayes’ rule to aggregate the evidence
from multiple sources. The likelihood of the evidence %~! ,
given that the hypothesis

f
is true, is

� =C%7!U( f E $ Vw=C%~!U( f EVw=C%7!I(�� f E _
where Vw=C%7!I( f E are modeled by the normalized coefficient
distances weighted by their significance defined by the code
usage histogram. The formula for updating the odds (i.e.,
the a posteriori odds) of a hypothesis

f
, given the evidence

observed, %7! , is

� = f ( % J /I%���/B_�_�_`/I% 9 E $ � = f E 9�!�� J
� =C%7!I( f E

thus, the final measure of “similarity" between the query
image and a model image is

Vw= f ( % J /g%���/G_`_�_�/g% 9 E $
� = f ( % J /I%��m/B_�_`_�/g% 9 Eo � � = f ( % J /g%��m/B_�_`_�/g% 9 E _

The "best match" is chosen to be the model hypothesis
f

having the greatest probability given all of the accumulated
evidence.



6. Retrieval Results

In the first experiment, we evaluated the performance of
our system using a database derived from the MIT’s Vi-
sion Texture (VisTex) image collection. Each of the 167
512x512 reference texture images was subdivided into 9
128x128 images, where 5 were randomly selected to com-
prise the training set consisting of 835 images, and the other
4 were included in the test set containing 668 images. A
retrieval was considered to be correct if the query and the
first retrieved image were from the same reference image.
Compressing the images to an average rate of 0.4 bpp, we
compared the retrieval results of our coding scheme with
that achievable using WUTC designed for compression only.
Matching only the histograms of the transform code usage
maps, WUTC achieved a 78% correct retrieval rate, while
our method achieved 95% correct retrieval with only an
average of 1 dB difference in the distortion performance.

In the second experiment, we compared the retrieval per-
formance of matching histograms of transform code usage,
to the performance achieved in the uncompressed domain
using color histograms. The database consisted of 5 com-
plex image classes: birds, deserts, flowers, people, and water
scenes, with 10 images per class. The classification accu-
racy of the color indexing method was 76%, while matching
the histograms derived from the compressed representation,
coded at a rate of 0.4 bpp, achieved 72%. Although the
retrieval rates were nearly the same, our algorithm required
that we only decode the index map information which on
average is less than 35% of the bitstream, while the color
indexing method required the full decompression of the im-
age. Decompressing and matching the first 5 coefficients
improved the retrieval accuracy to 94%.

Finally, our third experiment involved video shot detec-
tion and frame retrieval. Using only the difference in code
usage maps we correctly identified the representative shots
in the video sequence shown in Figure 4. The number be-
low each image identifies the video shot each frame was
classified as. Our algorithm was also able to segment the
sequence into key frames including transition frames. We
achieved 96% correct frame retrieval on a database of 20
video clips decoding only the index map information.

7 Conclusions

We introduced a universal statistical coder based upon a
mixture of local linear Gaussian subspaces, which we have
shown to be an efficient encoding scheme supporting con-
tent analysis in the compressed domain. The transformation
basis was derived from the perspective of density estima-
tion, thus offering the advantage of allowing Bayesian in-
ferencing methods to be applied for image comparison. The
compressed representation can be structured to permit the

Figure 4. Video shot detection from code us-
age maps.

progressive independent decoding of the coefficients lead-
ing to successively refinable methods of query and retrieval.
Our experiments showed that good retrieval rates can be
achieved without full decompression of the data offering a
substantial savings in space and time.
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