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Abstract

This paper presents the application of a neural network controller to the
problem of active drag reduction in a fully turbulent 3D fluid flow regime.  The
neural network learns a function nearly identical to an analytically derived
control law.  We then demonstrate the ability of a neural controller to maintain
a drag-reduced flow in a fully turbulent fluid simulation.  Finally we examine
the amount of parameter variation that may be required for a physical
implementation of such a neural controller.

1. Introduction

In today’s cost-conscious air transportation industry, fuel costs are a substantial economic concern.  Drag
reduction is an important way to increase fuel efficiency thereby reducing these costs.  It is estimated that
even a 5% reduction in drag can easily translate into millions of dollars in annual fuel cost savings.  Neural
networks have been used to actively reduce drag in 2D flow simulations [1].  In this paper we will briefly
review two analytic active control laws that achieve substantial drag reduction in fully turbulent 3D flow
simulations.  We then present a neural network approach to this problem and compare the results of an on-
line neural controller with those of the analytic schemes.

2.  What causes drag?

Large skin friction drag has recently been linked to organized structures in turbulent flows which play an
important role in turbulence transport.  The main cause of high drag in turbulent flows is commonly
observed near-wall streamwise vortices, see Figure 1.  The interaction of these vortices, which appear
randomly in both space and time, with the viscous layer near surfaces creates high local regions of surface
shear stress which contribute to the total drag.  Therefore, attempts to reduce drag in turbulent flows have
focused on either preventing the formation or mitigating the strength of these vortices.  The small size of
these vortices, which decreases as the Reynolds number of the flow increases, has limited physical
experimentation.  The inherent complexity of the non-linear governing Navier-Stokes equations has
likewise limited analytical approaches.
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Figure 1:  Diagram of the interaction between a vortex pair and a surface.  x, y, and
z represent the streamwise, normal and spanwise directions with u, v, and w the
respective velocity components.

2. Analytic active control

With the recent development of accurate numerical algorithms, computer simulations of turbulent flows
have revolutionized the study of the basic physics of turbulence.  Comparison of time-averaged statistics
and instantaneous turbulence structures with existing experimental results has validated these computer-
generated databases [2].  The availability of full 3D velocity, vorticity, and pressure field data provides a
unique opportunity to probe the organized structures in turbulence.

Numerical experimentation has demonstrated that active feedback control can achieve significant drag

reduction ( )≈ 25%  [3].  This reduction results from the suppression of the interaction of the streamwise
vortices with the surface.  The active control scheme used in these experiments involved blowing and
suction at the surface according to the normal component of the velocity field sensed in the near-wall
region directly above the surface, see Figure 2.  The actuation is thus given by:

( )v v ywall = − =+ 10

We will refer to equation 1 as Near Wall Control (NWC).  Choi, et. al. [3] also discovered that
approximately 80% of the drag reduction is due to large actuations (i.e. those with magnitude greater than
vrms  ) which account for about 15% of all actuations.

y+=10
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Figure 2:  Near-Wall Control scheme

It is difficult and/or impractical to place sensors away from surfaces within the flow field to detect the fluid
motions associated with the streamwise vortices.  By correlating the near-wall normal velocity with
measurements taken via pressure and shear stress sensors at the surface, a practical version of the control
law can be constructed.

Empirical observations indicate that the streamwise vortices can be suppressed by wall blowing and
suction.  Suboptimal control theory has been used to derive a simple control law for the actuations  based
only on the surface spanwise shear stress as:

( 1)
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where kz is the wave number in the spanwise direction, ∂
∂
w
y wall

is the surface spanwise shear stress, C is a

positive scale factor determining the amplitude of the actuation, and ( )�⋅  denotes a Fourier transformed

quantity [4].  Equation 2 produces actuations proportional to the distribution of the spanwise derivative of

the spanwise surface shear stress.  Taking the inverse Fourier transform of 
ik

k
z

z
 for finite maximum wave

number (discretization) , the above control law can be rewritten as
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where the weights are given by 
( )W Aj

j
j= −cos π 1

 , N denotes the total number of weights, and k denotes

the discretized location on the surface.  The summation is then performed over the spanwise discretized
points.  We will refer to equation 3 as Spanwise Derivative Control (SDC).  Lee, et. al. [4] have
demonstrated that such a control scheme achieves roughly 20% drag reduction (the dashed curve in Figure
7).  This result is consistent with those obtained by Choi, et. al. [5] using active control based on flow
information in the near-wall region (NWC).

3.  Neural Networks

The above results demonstrate the existence of active control schemes that achieve appreciable drag
reduction in fully turbulent flow simulations.  Neural networks offer an alternative approach to active
control.  This approach uses a neural network to “learn” a correlation between the surface measurements
and the desired control actuations from empirical data.  Therefore, no prior knowledge of the system is
required, although it may be useful in guiding network architecture design.

3.1  Off-line training

As an initial experiment, we trained a neural network using the spanwise surface shear stress as input and
the actuation from the NWC as the desired output.  The data consisted of 100 timesteps of data generated
from a simulated controlled flow using NWC.  Each timestep contains a 32x32 array of input

values ( )∂
∂
w
y wall

and the corresponding actuations from NWC ( )( )− + =v y 10 .  Since we want the output to be

based on a local input area, we designed a shared weight network.  The network has a single set of weights
that is convolved over the entire input space to generate the output values.  The templates (i.e. set of
network weights) attempt to find spatially invariant correlations between the input data and the desired
output.  For our problem we selected a two layer network with hyperbolic tangent hidden units and a linear
output unit, see Figure 3.

( 2)
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Figure 3:  Neural network architecture

The functional form of the neural network is:
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where Nh  is the number of hidden units, Ni  is the length of the input template, and W l  are the weights

for the l th layer.  The input template shape can be arbitrary, however based on the SDC, we chose to use a
single row of inputs oriented in the spanwise direction (see Figure 3).  We then trained several networks
with different length input templates and different numbers of hidden units using the scaled conjugate
gradient method presented by Moller [6].  Since we wanted the network to accurately predict the larger
actuations (which as mentioned earlier are responsible for the majority of the drag reduction), we chose to
add an exponential prefactor to the standard total sum squared error measure as:
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This error measure emphasizes the error contributed by the larger actuations depending on the scale
parameter k.

The final input templates (normalized by the maximum weight in the template) for two networks with one
hidden unit and input template lengths of 5 and 7 respectively are shown in Figures 4 and 5.  The dashed
curves in these figures represent the (normalized) coefficients (cj’s in equation 6) of an N-point centered
difference approximation to the spanwise derivative based on Taylor series expansions given by:
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We see that the network learns an approximate spanwise derivative of the spanwise shear stress, thereby
learning the SDC law.  Increasing the number of hidden units only minimally improves performance.
However, increasing template length significantly reduces the final training error.  This indicates that
performance is directly related to the accuracy of the derivative approximation.

3.2  On-line control

There are numerous implementation schemes for on-line neural control.  The most direct is  adaptive
inverse model control [7].  This scheme is presented pictorially in Figure 6.  This configuration employs a
neural network to model the (possibly time-varying) inverse plant and then simply uses a copy of the
model as the controller.  One restriction of this technique is that it usually requires an initial model training
phase using random plant inputs and corresponding plant outputs.  Once the model represents a reasonably
close approximation to the actual plant inverse, a copy is then implemented as a feedforward controller.
We have the advantage of the off-line trained networks discussed above to represent an approximate
inverse model (and controller), thus avoiding an initial on-line training phase.

Plant

Σ

NN
Inverse

Plant Model

NN
Controller

model
error

Weight Copy

v

+

-

∆dw/dydesired
∆dw/dy

v
~

Figure 6:  Schematic representation of adaptive inverse model control

The desired inputs to the controller are a fractional reduction in the shear stress at each grid point from the
previous timestep, i.e.
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Figure 5:  Final template weights for
length 7 input array
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where 0 1< <η .  The output is the predicted actuation necessary to produce this shear stress reduction.

Good performance was achieved for η = 085. .

In order to verify that the approximate derivative pattern (figure 4 or 5) learned off-line generalizes to the
on-line data, we allowed all the weights in the network to adapt and examined the input template pattern
after each timestep.  There was no appreciable change in the relative magnitudes of the template weights
over time, indicating that the pattern is preserved.  The absolute magnitudes, however, did vary indicating
the need for gain and bias adaptation for each layer.

Hence for the current on-line implementation, we fix the input template weights as the approximate
derivative coefficients and use a single hidden unit network giving only four adaptable parameters (a bias
and gain for each layer).  This simplified network has the following functional form:

  v w w
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The results are shown by the solid line in Figure 7.  It can be seen that this network performs similarly to
the SDC.

4.  Physical systems

The ultimate goal of these control schemes is to implement them in a physical system.  An active field of
research, inspired by biology, is attempting to build integrated systems utilizing micromachine technology
to actively control turbulent flows.  Such systems would use control laws similar to the ones discussed
above while operating at the necessary physical scale determined by the desired flow conditions.

( 8)

Figure 7:  On-line simulation results
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4.1  Biological inspiration

In many complex problems, one can often find inspiration by observing how nature has evolved a
biological solution.  For the problem of drag reduction, deep sea sharks serve as a biological model.  These
sharks (e.g. hammerheads) can swim up to 20 m/s in deep water.  Little is known about the physiology of
these species as it is difficult to replicate a deep-sea environment.  Biologists have, however, been able to
examine the scales (dermal denticles) that cover the shark’s skin.  Recently, the denticles have been found
to have microscopic structure to them [8], see Figure 8.  Evolutionary arguments theorize the structure of
these scales assists the sharks’ movement possibly indicating some type of underwater drag reduction.

The question of active control in sharks is even more of a mystery.  It is speculated [9] that sharks can
actively move their denticles.  The indirect evidence for this is the denticles are connected to muscles
underneath the shark’s skin and the number of mechano-receptive pressure sensors (pit organs) on a
shark’s body is positively correlated with the speed of the species.  Whether sharks actually utilize active
control remains unanswered.  However from this example of biology, it may be beneficial to employ
microscopic actively controlled structures to reduce drag.

Figure 8:  Shark skin

4.2  Silicon implementation

For a typical airflow of 15 m/s in the wind tunnel, the Reynolds number is approximately 104 which
corresponds to vortex streaks with statistical mean widths of about 1 mm.  The length of a typical vortex
streak can be about 2 cm resulting in a 20:1 aspect ratio for the streaks.  The average spacing between
streaks is about 2.5 mm and the frequency of appearance is about 100 Hz.  Recent advances in
micromachining have developed microsensors and actuators that can operate at these small scales
[10,11,12].  Integrating these sensors and actuators with analog VLSI control circuitry (neural or
otherwise) provides an exciting new direction for possible drag reduction [13].  One concern with any
physical system that employs adaptive schemes is the amount of parameter variation required for different
operating regimes.

To investigate this question, we constructed a single weight linear network with functional form:
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and trained it off-line minimizing the error at each time step.  Figure 9 plots the value of W0  at each

timestep for two different error scale factors (k in equation 5).  We observe that the gain has a larger

( 9)
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variation for larger scale factors.  On-line training of similar networks shows that larger scale factors
produce less fluctuation about the mean drag reduction (even though the average drag reduction is roughly
the same for different scale factors).  Therefore, there appears to be a trade-off between the amount of
fluctuation in the drag and the amount of parameter variation required.

5.  Remarks

We have presented a neural network that learns a function nearly identical to an analytic control law.  The
actuation is proportional to the approximate spanwise derivative of the spanwise shear stress.  We have
also demonstrated the ability of a network that explicitly computes the approximate derivative to achieve
20% drag reduction in an on-line adaptive inverse control scheme with only gain and bias adaptation.  New
technological advances provide the opportunity to implement such a controller in a real system provided
the system can achieve the necessary range of parameter variation.  Preliminary results indicate that greater
parameter variation may be required if less drag fluctuation is desired.
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