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Abstract

Various techniques, including feed-forward neural
networks, are applied to the time series predic-
tion problem. The forecasting of occupancy on
a telephone trunk group is taken as a case study.
The relative performances of the techniques are re-
ported. Theoretical justifications are provided for
the results.

1 Introduction

Pacific Bell and Caltech have for some time been
working on a real-time traffic management/expert
system. This project is called NOAA, Network
Operators Advice and Assistance. The task of
NOAA is to take information from the Pacific Bell
network management computer, use it to isolate
and diagnose exceptional events in the network
and then recommend the same corrective advice
as network management staff would in the same
circumstances.

The development of the expert system has been
reported in previous papers [1, 2]. The occupancy
predictor is one module in this system and is used to
aid traffic rerouting. Occupancy is a good indicator
of spare capacity on a trunk group.

Although the problems described in this paper

are concerned with monitoring telephony traffic,
the techniques should be applicable to the moni-
toring of any large network, with little modifica-
tion. For example, rather than monitor trunk oc-
cupancy, the network manager may be monitoring
link throughput, but the same analysis techniques
should apply.

2 Data set

The data set for this study consisted of about 1500
observations of occupancy of a single trunk group
taken every 5 minutes over 7 days. Occupancy is
defined as the moving average of twenty samples
of the number of trunks occupied on a route. The
samples are taken every 30 seconds and the result
is scaled to be between 0 and 1. The occupancy for
every trunk group in the network is reported every
five minutes. The first 300 points of the data set
are shown in Fig. 1. Some key features to note are:� the traffic level varies according to time of

day� spikes may be present in the time series, e.g.
close to example 60� the variance of the occupancy varies with the
traffic level
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Figure 1: Occupancy Dataset



Method Error

Using linear predictor 16215
Using non-linear prediction 16167
Using neural network 16119
Using local approximation 16085
Using Hidden Markov Model 16081
Using log transformation 16033

Table 1: Scaled RMS Prediction Error for Various
Prediction Methods

3 Cross-validation

In testing the relative merits of prediction tech-
niques, a distinction must be made between learn-
ing ability and generalisation ability. A good pre-
diction method will generalize well on examples
that have not been seen before. This can be tested
for using cross-validation. With � -fold cross-
validation and a data set of size

�
, we carry out �

tests using all but
��� � of the data set to provide

the training set and then testing on the
��� � test

set examples that were not in the training set. This
makes maximum use of the data set and allows us
to check the significance of the results.

4 Results

The results are shown in Table 1. All methods
predict next observation based on previous 6 ob-
servations. The linear predictor can be taken as
the baseline performance to beat. Error is RMS
prediction error multiplied by 1,000,000, with a
difference of 100 being significant. 50-fold cross-
validation was used.

5 Linear Predictor

It is known that for a process that has a multivariate
Gaussian distribution the Linear Predictor (LP) is
the best predictor[3]. Since the Poisson or tele-
phone traffic distribution looks like a Gaussian for

large traffic levels, it not surprising that the linear
predictor did well. The other nonlinear methods
can only give small percentage improvements.

To find the LP weights, a matrix equation can be
written for the residual errors ��� of an approximate
solution of the prediction problem in terms of the
occupancy observations �	� as follows:
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or in short,
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Then ����� (the total square residual error) can be
minimized with respect to the weight vector � by
setting

� � � �
� � � ��� � � � � � ��� �

and differentiating � � � with respect to � and
setting the result to zero giving� � � � �

� � �
and hence � �

� � � � �"! 1 � � � �#�
Thus the LP coefficients can be obtained by a

simple 6x6 matrix inversion.

6 Non-Linear Predictor

Non-linear prediction allows the use of � � �"$
crossproduct terms in the

�
matrix of section 5,

but still uses matrix inversion to give the predic-
tor coefficients. This is also known as polyno-
mial regression. A slight improvement in predic-
tion performance was obtained. Trial and error



showed that the best results were obtained with
pure squares of the input terms.

7 Neural Network

Previous comparisons of neural networks and lin-
ear predictors have shown that neural network
sometimes can give better results [4, 5]. How-
ever the data sets used were not particularly long,
so the statistical significance of these comparisons
may be questionable.

Moody in [6] gives learning limits for neural
networks. See appendix A for some details. A
key point in his paper is that too many hidden units
combined with a low value for weight regulari-
sation will produce an increase in generalisation
error. From this it can be deduced that there is
an optimum number of hidden units for a given
learning problem.

In our studies a feed-forward neural network,
with a single hidden layer was used. Quickprop[7]
was used for training as it was advertised as having
faster convergence than standard back-prop and
was freely available on the internet. For the neural
network, trial and error showed that four hidden
units and a linear output unit gave best results.
This architecture was fixed prior to training.

A plot of hidden unit activations gave valuable
insight into the features of the data set. One of the
four hidden units reacted strongly to the overall
traffic level, one of the units reacted strongly to
rate of change of traffic level while the other two
reacted strongly to the rate of rate of change of
traffic level.

8 Local Approximation

Local approximation techniques work well for time
series with no noise[8]. The assumption is that
the mapping from input space (the six previous
observations of occupancy) to output space (the
next observation) is locally linear.

The local approximation technique trains a lin-
ear predictor on a subset of the training set which is
in some sense close to the example to be predicted.
The key point is that a different subset is used for
each test example to be predicted. Euclidean dis-
tance was used as a measure of closeness. Trial
and error showed best performance with using a
subset of the training set of size 640. Prediction
performance was reasonably good.

9 Hidden Markov Model

Hidden Markov Models (HMM) are popu-
lar for word classification in automatic speech
recognition[9].

The HMM is defined by a set of states, % , and
two matrices

� � $ and &(')� . � � $ is the probability
of a transition to state * from state + and &,')� is
the probability of observing an observation of -
given that you are in state * . This is illustrated in
Fig. 2. The

� � $ matrix gives rise to the Markov
in the name, and the & ')� matrix gives rise to the
Hidden in the name.

The Baum-Welsh algorithm can be used to learn
the A and B matrices[9]. A different algorithm, the
Baum Backward-Forward algorithm can be used
to derive the probabilities of the system being in a
particular state given the observations observed[9].
In this way, the HMM can be used as a classifier.

In our case, a HMM was used to classify the
trunk group as being in one of two modes/states:
(i) traffic varying a lot as during a traffic spike or (ii)
traffic behaving normally. This classification was
used to choose between two linear predictors for
training purposes as shown in Fig. 3. For testing
purposes, as shown in Fig. 4, the HMM output
probability for state 1 (. 1) was used to combine
the estimates from the two linear predictors (LP � )
to yield the occupancy estimate ˆ� as follows:

ˆ� � . 1 / LP1 0 �
1 � 0 � . 1 � / LP2

The observation, - �)1 � , used as input to the
HMM model was the prediction error from a 5-
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input linear predictor in predicting the most recent
occupancy reading. The A-matrix was learned
from the data using the Baum-Welsh algorithm.
An assumption of a Gaussian distribution of pre-
diction error was used to generate the B-matrix.
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Figure 4: Testing a Dual LP

10 Log Transformation

A log transformation of the data was carried out,
prior to training a linear predictor. This was the
best prediction method. It is believed that the rea-
son why it was so good is that it tended to give the
same output as a linear predictor when the traffic
levels were about constant. This was because the
log predictor had approximately the same weights
as the linear predictor, and averaging in “log space”
is the same as averaging in linear space if the points
being averaged are close together.

On the other hand, in the event of spikes (as
occurred in a small part of the data set) the log
predictor gave much better prediction results. This
may reflect the geometric averaging process as be-
ing better than the arithmetic averaging process
following a spike.

It might be argued that heteroskedasticity is the
cause of the log predictor’s success. Heteroskedas-
ticity is the change of variance of the occupancy
statistic as the traffic level rises. This may inter-
fere with the calculation of the coefficients of the
LP. A possible solution is to take a log transforma-
tion of the data to flatten the variance as was done
here. However heteroskedasticity can be ruled out
as a cause of the log predictors success because
in this event, a weighted least squares predictor
should obtain the same improvements as the log
predictor, and this was found not to be the case.

11 Conclusions

The spikes in the telephone traffic occupancy statis-
tic mean that it is possible to do better than use a
linear predictor for this data set.

The general nonlinear methods of neural net-
works and local approximation did well and can
be expected to be near optimal as the data set size
increases. Some progress in understanding the role
of each hidden unit in the neural network predictor
was obtained.

The Hidden Markov Model has a useful side



effect of giving a classification of the state of the
trunk group. This could be useful in a network
management context.

Examination of a larger data set will be neces-
sary before concluding that the log occupancy is
the best prediction method, since the number of
spikes was limited in this data set.

A Learning Limits for Neural
Networks

J. E. Moody carried out an analysis of general-
isation and regularisation in non-linear learning
systems[6].

Assume a set of
1

real valued input/output data
pairs were given and we had to estimate a function
to fit the data. The noise was i.i.d. with mean
zero and finite variance 2 2. The noise was not
necessarily Gaussian.

For a linear predictor, references were given to
the following result for the MSE 3�4658794 :

E
� 3 4:587)4 �<; E

� 3#4>=@?A�CB � 0 2 2 2 . 1
where . is the number of parameters (weights)

being estimated.
For a neural network, a new result correct to

second order was given:

E
� 3 465D7)4 �<; E

� 3 4E=@?"�FB � 0 2 2 2 . 59G�G1
where . 59G�G is a complicated function of various

Jacobians. However for a locally linear model,. 59G�G is a decreasing function of H the weight decay
parameter for the neural network with . 5)G�G � H �0 � � . .
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