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Chapter 1

Neural Network
Applications to
Telecommunications and
Network Management

1.1 Introduction

Multi-Layer artificial neural networks have traditionally been used for pat-
tern recognition and pattern classification and are well suited to this task.
The weights in such networks can be learned from sample data and train-
ing can be done using the well known backpropagation algorithm [1]. In
this chapter, a survey is carried out of the application of such networks to
various activities associated with telecommunications.

The neural network approach is valuable for a number of reasons. Firstly
the neural network has the ability to learn. Many software systems in the
telephone network require the intervention of humans if the implemented

function is to be modified. An example may be ATM Call Admission.
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If the software is setup to admit a fixed set of traffic classes, it requires
reprogramming if it is faced with new traffic class. This reprogramming
can require a lot of effort. Neural networks on the other hand contain their
“program” in their weight settings and can even continuously update their
weights to learn a new call acceptance problem as they are running. This
automated learning capability is a key benefit of neural networks.

The ability to learn is tightly linked to the ability to generalize on data
that was not present in the training set. Neural networks have been char-
acterized as universal function approximators [2, 3, 4]. This explains the
ability of neural networks to generalize well, even on input data that con-
tains a lot of noise and artifacts.

The second benefit of using neural networks is the parallelism in the
architecture of the networks. Each neuron in the network is a simple pro-
cessing device that can be easily implemented in silicon. It can then provide
its mapping from input to output almost instantly. The availability and
utilization of dedicated neural network chips will provide new opportunities
for high speed processing of data.

Present day telecommunications networks could already be character-
ized as massively parallel systems. Neural networks provide the capability
to extend this parallelism to the circuit level.

The chapter is organized as follows. First an introduction is given to
the different types of neural network. The remainder of the chapter is then
arranged by application area. For each area, a report is given on current

status of neural networks. The following areas are included:

e Network Routing



ATM Admission Control

Equalization and Filters

Speech Recognition

Time Series Prediction

Support Activities

1.2 Neural Network Architectures

Four architectures are most commonly found in the neural network litera-
ture [1]. These are (i) perceptrons (ii) feed-forward neural networks, also
known as multi-layer perceptrons (MLP) (iii) recurrent neural networks
and (iv) Hopfield networks. An example of each is given in this section
along with a short description of their similarities and differences. A good

reference for all these architectures and associated training techniques is

[1].
1.2.1 Perceptrons

A perceptron is the simplest type of neural network, whose output is a linear
combination of its inputs. An example of a simple perceptron is shown in
Figure 1.1. It can be trained to adjust its weights to yield a decision function
that is sufficient for classification of problems that are linearly separable.
A problem is linearly separable if all the positive examples are on one side
of a hyperplane in its input space. The exclusive or function (XOR) is
an example of a decision function that is not linearly separable and which

cannot be learned perfectly by a perceptron.
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Figure 1.2: simple feed-forward neural network
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Figure 1.3: simple recurrent neural network

1.2.2 Feed-Forward Neural Networks

The feed-forward neural network is the most widely used neural network.
An example of a simple feed-forward neural network is shown in Figure 1.2.
It is ideal for pattern classification problems. The inputs are the measure-
ments of the attributes of the object under study and the output is a binary
indicator of which of two classes it belongs to. Of course there may be more
that a single output, if there are more than two classes. The XOR problem

can be learned by a feed-forward neural network.

1.2.3 Recurrent Networks

Recurrent Networks are similar to feed-forward neural networks except that

feedback connections are also allowed. An example of a simple recurrent
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Figure 1.4: simple Hopfield neural network

neural network is shown in Figure 1.3. By using feedback connections, the
state of the network at the present time is not only dictated by the present
inputs but also by the inputs in the previous time-steps which are fed back.
The recurrent networks can be likened to finite state machines and provide
mappings between input and output that are similar. Training for recurrent

networks is more complicated than that for feed-forward networks.

1.2.4 Hopfield Networks

Hopfield Networks are best described by the differential equations that gov-
ern their dynamics. They are comprised of amplifiers, resistors and small
capacitors, all of which can all be implemented on silicon. An example of
a simple Hopfield Network is shown in Figure 1.4. The mode of operation

of the network is that a switch is thrown allowing currents to flow in the



network and the network reaches an equilibrium state that corresponds to
the solution of an optimization problem. The fact that it is a solution can
be seen by analyzing the dynamics of the network and showing the “en-
ergy function” of the network decreases with time. The energy function
implicitly encodes the optimization problem to be solved. Hopfield Net-
works have been successfully applied to the Traveling Salesman Problem,
for example, where a salesman has to visit each city in a given list of cities
once and minimize the total distance traveled. The weights of the network

are hand-chosen to represent the problem constraints.

1.3 Network Routing

Network routing is by its very nature a distributed operation requiring each
node in a network to make a decision on the best of many outgoing links
available to route traffic based on a knowledge of its final destination and in
some cases a knowledge of congestion situations elsewhere in the network.

Littman and Boyan in [5] describe an algorithm for packet routing in
which learning is employed. The aim of the algorithm is to adjust the
routing tables to achieve minimal routing times. The ability to learn routing
rules shows promise for real networks where links can be added or taken
away without the need for planning studies on the implications for routing
policy. Also if links fail, the ability to learn new routing options should
result in an improved grade of service. Experiments on a 36-node irregularly
connected network showed the learning approach to be superior to routing
based on the precomputed shortest path.

Distributed reinforcement learning is used. Each node keeps an estimate

for each destination of how long it will take to reach the destination if it
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is sent on each of the available outgoing links. The outgoing link with
the lowest estimated delivery time is chosen. Instead of then waiting for
the packet to finally reach its destination before updating the policy, the
node queries the winning neighbor for its estimated delivery time and uses
that to update its own estimate, by factoring in its own delay. This policy
relies on nodes nearer the destination to have better estimates of delay
time. Simulation showed the algorithm performed equivalently to a fixed
path algorithm for low loads, and better for high loads. For high loads,
the learning algorithm was able to make use of longer paths that provided

shorter delays under loaded conditions.

A slightly different approach is taken by Jensen, Eshera and Barash
in [6]. Again they are concerned with routing tables in a packet switch
network. Again dynamic update of the routing tables is carried out. Again

simulation is used to compare the results with fixed routing tables.

The algorithm employed seeks to minimize time taken for a packet to
travel from source to destination. The assumption is made that the time
taken for a packet to travel from source to destination is identical to the
time taken for a packet to travel from destination to source. This is called
backward learning. The sending timestamp on each received packet is used
to compute the travel time, which in turn is used to update the weight of
that route to that destination. Simulations showed the algorithm performed

equivalently to a fixed path algorithm for low loads.

Further references to the use of neural networks in dynamic routing are

given in [7, 9, 10] which the interested reader can followup.
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1.4 ATM Admission Control

In an ATM network, since resources are shared, the peak bit rate, mean
bit rate and burstiness of a traffic source are important parameters. At the
time the call is set up, the user may specify these parameter via a request
for a communications channel with a given class of service. The network at
call setup time must make a decision on whether to admit a call based on
its declared class of service and based on some accepted quality of service
criterion. In the statistically multiplexed environment, ATM admission

control is an important function.

Hiramatsu and Takahashi in [8] propose an adaptable threshold for ac-
cepting new call setup requests using a neural network as a controller.
Simulations show that the neural network can learn the correct threshold
for allowed mixes of traffic that can be accepted. In the simulation the neu-
ral network had as inputs the number of calls currently in progress from
each of two classes of traffic and the output was an indication of whether
to accept or reject a new call. The network was trained by using cell loss
rate as an error measure during the training. It was demonstrated for the
two classes of traffic, that the network was able to learn the correct “accept
or reject” boundary to achieve a given quality of service as specified by the

acceptable cell loss rate.

Neves, de Almeida and Leitdo in [32] also describe a scheme for using
neural networks for ATM call control. The main difference is that the
neural network is trained to give as outputs the expected delay, cell loss
rate and maximum and minimum buffer occupancies from a given traffic

mix. This allows acceptance or rejection of a new call based on the required



quality of service objectives. A simulation of three service classes using a
feed-forward neural network with 7 hidden units showed the neural network
to work very well at achieving a good mix of traffic while keeping within
the quality of service bounds.

Further references to admission control using neural networks can be

found in [27, 29, 31] for the interested reader.

1.5 Equalization and Filters

Since feed-forward neural networks implement functions that are similar
to linear filters, it is not surprising that many attempts have been made
to replace linear filters with neural networks. The advantage of using a
neural network is that a well known training algorithm, backpropagation,
can be used to optimize the weights of the neural network with respect
to minimizing a mean squared error function. Thus a feed-forward neural
network can be regarded as a filter whose output is a non-linear function
of its previous inputs.

Brown in [22] comments that some of the results for improvements due
to neural networks should be interpreted with caution. In the paper, results
previously obtained are reviewed and it is noted that while a 2-input feed-
forward neural network is much better than a 2-input linear filter at channel
equalization on a non-minimum phase channel, this advantage disappears
as more tapped delay inputs are considered. Brown also shows that the
use of direct connections from input to output can speed-up the training of
neural network filters.

Cid-Sueiro and Figueiras-Vidal in [23] describe how recurrent radial ba-

sis function networks (RRBF) can be used to improve the performance over
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the standard Finite Impulse Response (FIR) approach. The assumptions
made for the equalization problem are that the transmitted sequence xy
has been corrupted by possibly non-linear distortion and additive Gaussian
White Noise. They show that the formula for the optimum decision on a
symbol can be written in a form that is identical to that of a recurrent neu-
ral network that uses Radial Basis Function instead of sigmoids. A radial

basis function is a function of the form
2
T
=exp(—
y=exp( 3)

The parameters for the network are obtained from a knowledge of the chan-
nels impulse response.
Further references to channel equalization using neural networks can be

found in [24, 25, 26] for the interested reader.

1.6 Speech Recognition

Speech recognition is an enabling technology that would allow more auto-
mated interactions between the customers and the network. The central
problem is one of pattern recognition. Since neural networks are adept at
pattern recognition, many successful attempts have been made at apply-
ing neural networks to the problem. The conventional approach is to use
Hidden Markov Models or Dynamic Time Warping followed by Template
Matching [12].

Kwasny, Kalman, Engebretson and Wu in [11] describe a network which
is capable of classifying raw speech waveforms as being either English or
French. They use a recurrent neural network which has been trained on

examples of English and French. The waveform is divided into a number
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of segments and each segment is classified using the network. These classi-
fications can be regarded as votes for a particular decision. At the end of
the waveform, the votes are summed to yield a decision on the language of
the speaker.

The inputs for their model were sampled frequency bands over time.
Two hundred and forty inputs represented five frequency bands over 1.2
seconds. There were four hidden units used, with the hidden unit outputs
used as inputs for the the next time step. The network classified both
training and test sets correctly. For training to succeed, singular value
decomposition was applied to the inputs patterns, re-orienting the data to
maximize orthogonality among the input activations.

Lerrink and Jabri in [13] describe experiments with three different learn-
ing algorithms for the problem of phoneme recognition from spectral input
data. Two of the methods implement partially supervised learning, that
is, the correct classification is not provided and instead the network gets a
Boolean indication of right or wrong for each classification it makes dur-
ing training. The Boolean indication is given at word boundaries. The
“temporal difference” (TD) algorithm is one of the most widely used in re-
inforcement learning research. The infinite input duration (IID) algorithm
can be used to train a recurrent neural network directly. Finally fully su-
pervised learning using Backpropagation Through Time (BTT) was used
to train a recurrent neural network as a reference. The results for percent-
age correct classification in Table 1.1 indicate the difficulty of implementing
learning without full supervision.

Further references to speech recognition using neural networks can be

found in [28, 14, 15] for the interested reader.
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Algorithm Results
(Percent correct)

TD 69%
IID 73%
BTT 76%

Table 1.1: Performance for Phoneme Recognition

1.7 Time Series Prediction

In network management, the ability to predict future traffic arrivals, occu-
pancy levels, and error events on links can be a valuable tool. This can be
done using time series prediction of the statistic of interest. The ability of
neural networks to learn non-linear mappings means that the limitations of

the standard Linear Predictor can be overcome.

Fishwick, Almeida and Tang in [16] carried out a study in which they
compared the Box-Jenkins methodology [17] to using feed-forward neural
networks. From their results they conclude both methods yield comparable
results. The neural network models were seen to be robust and provided
good long-term forecasts. They were also seen to be parsimonious in their

data requirements.

Goodman and Ambrose in [18] describe how feed-forward neural net-
works can do slightly better than Linear Predictors (or perceptrons) for
the prediction of telephone traffic occupancy on a trunk group. A six input
network is used, with four hidden units. The inputs are a tapped delay line

representation of the previous 6 observations of occupancy.

Further references to time series prediction using neural networks can

be found in [19, 20, 21] for the interested reader.
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1.8 Support Activities

There are many telecommunications related activities that are essential to
the smooth operation of a telephone company. Examples might be billing
of customers or negotiation of new service requirements. In these support
activities neural networks can play their role. A few examples are provided

below.
e Toll Fraud Detection [30]
e Modeling of Software Metrics [33, 34]
e Preprocessing for Fault Diagnosis Expert Systems [35]

e Character Recognition [36]

1.9 Conclusions

It is clear that neural networks have a large part to play in telecommuni-
cations. The parallel computation capability of the networks is attractive
in an environment that is of necessity distributed and requires real-time
responses. The application of neural networks to telecommunications ap-
plications is proceeding by leaps and bounds.

It is clear from the survey presented in this chapter that a lot of the
research work in application of neural networks to telecommunications ap-
plication areas is anecdotal in nature. For example, a researcher may apply
a chosen network architecture to a given problem, tweak some parameters
or modify the architecture to obtain good learning performance, and report
the success of the network in learning a solution to the problem. It is be ex-

pected in the years ahead that more emphasis will be put on comparison of
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neural networks with existing conventional techniques and the derivation
of bounds on the performance of neural networks. Given the overlap of
pattern recognition with statistical decision theory, well known statistical
theory may provide the basis for deriving these bounds.

It is hoped that the reader has seen some of the benefits to be gained
from the use of neural networks. Their main drawback is the computation
power needed to properly train them. However recent years have seen
the cost of computation fall dramatically. It can be expected that neural
networks will become increasingly popular and useful in a wide range of

application areas.
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