BURST ERROR CORRECTING CONVOLUTIONAL CODES

R,M.F. Goodman . . .t Ca e maee -

Summary

This paper reviews several burst-error correction techniques which use
convolutional codes, and introduces some new developments being
studied at Bull.

1. Introduction

Most practical data transmission channels exhibit error statistics
which are non-Gaussian and bursty. For =xample, telephone data channels
are subject to impulsive noise which causes bursts of errors. Such a
channel may be considered ‘classically bursty' in that bursts are
separated by very long error-free gaps. Arother bhursty channel is the H.F.
data transmission channel. Here bursts are diffuse, that is, there is a
higher kackground level of errors due to the effects of interierence,
fading, and multipath: and bursts can really only be classified as pericds
in which the overall density of errors rises past scme aribtrary thresh-
old. 1In such systems there is never any r=ally lengthy error-free
pericd. '

Exrors also occur in a bursty fashion when computer data is stored_iff
on magnetic media such as tape or floppy disk. In the case of tape, o
data is stored in parallel tracks at densities of the order of a thousand
bits per inch, and there are several comron causes of errors. .These
include oxide particles on the head or the tape, voids or drop-cuts in
the oxide coating of the tape, dust or other foreign particles on the
tape and head, and tape damage due to handling. These defects usually
only affect one track at a given time, but cause bursts of errors on that
track. Similarly, floppy disks have a high density of information. For
example a single density S5}" floppy disk can hold a million bits of
information. Errors again occur in bursts due to the magnetic nature of
the medium and the high density of data storage in terms of bits per inch.

In order to deal with such channels it is necessary to use error

- control codes that are capable of dealing with bursts of errors. 1In

addition, it is usually not possible to classify a channel as ‘purely
bursty' so that some randcm-error—-correction vower is requirad. In this
paper we look at several burst correction techniques using convolutional
cedes. An advantage of using convolutional codes is that it is easy to
design good burst correcting codes, particularly for the correction of
long bursts, with a wide variety of code rates.

2. -Convolutional Codes and Burst Correction

A convolutional code is one in which the encoder accepts a block of
k, message bits as input and outputs a segment of ng > ko coded bits. -
The n bits are produced by mod -2 additions on message bits over K
blocks, where g is the constraint length of the code in segments. If the
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very low with such a scheme. If the code rate is given by ko = R, then

k, message bits are reproduced exactly in the n, bit segment the code is
systematic. Alternatively, the code can be expressed as a (n,k) ccde where
n = Kn,, k = Kxo and n is ths constraint length in bits. The cocde rate R is
given by R = ko/ng-

As far as burst correction is concerned we are interested in the burst
correcting ability of the code b, where b is the length of a burst in bits. A
burst of length b is usually defined relative to a guard space g, which is a
sequence of all-zero error digits. A burst is defined as a sequence of error
bits starting and ending with a 'l' and separated from other kursts by at least

g '0O' digits. For a good scheme, therefore, the ratio g/b should ke as small
as possible.

An upper boundl on b is given by

K(1-R)no ) 4
b g (L3R) + ng 1 = 3 + 1

for a & rate code, and computer generated or constructional codes can approach .
this bound very closely.

2
A well known bound on burst~-correcting capability relative to guard
space is given by
1+R
1-R
and again many practical codes approach this. -

%.a = 3 for a % rate code.

There is, therefore, no real problem in finding codes which approach the
optimum burst correcting power. What is a problem is choosing the right
decoding scheme for a particular burst noise situation.

3. pBurst-Correcting Decoding Schemes

In this section we review some of the popular hburst-error-correcting
convolutional coding schenmes.

3.1 Detection and Retransmission

In this scheme the convolutional code is used purely as an error detecting
code, and uses a feedback channel to request re-transmission of a ccded 'block'
that has keen detected to ke in error. The decoder cperates as shown in
figure 1, and basically consists of a replica encoder. The ‘'syndrome' is formed
by modulo-2 addition of the received parity and calculated parity. If a syndrome

_ bit equal to 'l' appears at any time during the reception of an incoming block,
~ that block is flagged as being in exror and a retransmission reguested.

== : The constraint length K of code is usually chosen to be much less than

 the total 'block' length of the transmitted packet. This is hecause the

encoder must be ‘flushed out' with K~1 zeros after the last message bit, and
tefore the lst message bit in the next 'block'. Thus thera is an overhead of
K-1 bits per block. The prokability of undeteqted error, however, can be made

. v . o N _
the probability of undetected error is the probability of an all-zero syndrome
which is 2-(no-ko)K . For example, a 4-rate code with decoding constraint
length K = 20 segments (40 bits) would give a probability of undetected error

of 2720 j.e. 107° . 1In general, in order to detect any burst of length b or
less, (nO - kO)K 2 b.

In many cases such as magnetic tape storage) a 'repeat request' of the
original data is not possible and error detection schemes can not be used.

3.2 Interleaving
Interleavingis a powerful technique for randomising bursts of errors, and
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thus enabling a powerful random-error-correcting convolutional decoding scheme

such as Viterbi deccding or sequential decoding to ke used under bursty
conditions.

There are two ways of interleaving a convelutional code. Firstly symkol
interleaving. This is performed by simply reading the coded sequence into the
rows of an array with A columns and M rows, where AM is the total packet length
in bits. The bits are then read out to the charnel sequentially by columns,
and the inverse operation performed at the deccder. Thus bits that were
adjacent on the channel are separated by A bits at the decoder. By this
means a t-error random correcting code with burst correcting ability b < t can
be interleaved to correct any combination of t or fewer bursts of length A or
less over AK segments, or single bursts of length Ab.

Secondly, a convolutional code can ke segment-interleaved. That is,
no-bit segments are separated by \ segments = ngA bits. In this case we can
think of the data stream as being sent to A parallel encoders whose outputs .
are segment interleaved sequentially. This methed cannot be used if b < '

in the original code. It is, however, easier to implement thar symbol
interleavin

2%}

3.3 Burst Correcting Decoders

=

There are two main classes of 'pure' constructional kurst correcting ccdes.
These are BPM (Berlekamp-Preparata-Massey) codes, and Iwadare codes.t These
codes can be used to construct reasonable pawer burst~correcting codes LBy
interleaving the rasic codes of each class. In general, however, it has been
shown that ccmputer generated codes perform better Also, it is -always

—_—

possible to produce goed long bur;t-cvrractlrg ccdes by interleaving a gcod
short codsz.

In general form of a decoder for a computer generated burst-correcting
&-*ate code can take the form shown in figure 2. The decoder consists of a
received data register and a syndrome register. The read only memory is
'addressed' by the syndrome and outputs a 'l' only if the syndrome corresponds
to a correctable burst with an error in the right-hand end of the data register.
The 'l' corrects the data bit about to be output, and is also fed-back to
remove the effect of the error from the symdrome. The constraint length of the
code is limited by the size of the ROM, but again interleaving can be used to
produce a longer effective constraint lergth.

3.4 Burst and Random Error Correction

In many cases it is not possible to define a channel as purely 'burst’
or purely 'random'. A channel may exhibit a predeminantly bursty nature
against a background of random errors, or may have high error density bursts
separated by medium density ‘gaps'.- In any of these cases it is necassary to
have some randcmverror-cor*ecting power in the ccding scheme The pure kurst
correcting schemes described so far have very poor random correctlng power, and
are thus unsuitable for channels such as these.

The first scheme which exhlblts both random and burst correcting power is
diffuse threshold decoding. : : . :

A typical decoder is shown in figure 3, and contains a replica encoder
plus a syndrome register. The taps on the syndrome register are parity checks
- which are orthcgonal cn the error digit at the right hand end of the message
bits register. Thus an error in this cosition will cause all four check sums
to go to 'l'. An additional error will cause one of the sums to revert to a 'O’
kbut a clear majority of the sums are still 'l'. The decoder is therefore
intrinsically capable of correcting double errors. By separating the encoder
taps by =8 bits the decoder achieves its burst correcting power. This is
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because no burst of length b = 28 ¢an cause more than two check sums to fail
unless one ~f the errors is at the right hand end of the data register.

The diffuse code therefore has a random correction power of 2, and a burst
power of 28 relative to a guard space of g = 68+2. Notice that g/b = 3 for 8
large, indicating that the code is very nearly optimum. By extending this
principle to threshold decodable codes with greater power it is passible to
produce a wide range of good burst and random correcting codes.

The second technique is due to Gallager and is usually referred to as the
Gallager burst decoder.3 The decoder can operate in an adaptive random/burst
mode, and is again based on a random error correcting threshold decodable
code of constraint length K = m+l. Figure 4 shows such a decoder. The decoder
uses the weight of the orthogonal checks to decide whether to move ahead
without change, to perform a correction, or to shift to the other mode. The
decoder operates as follows. In the normal or 'Random' mode the decoder
simply corrects errors before they get into the M stage register, and through
to the output. If a long dense burst of errors occurs the correction power
of the code will be exceeded, but the code is designed so that this situation
‘canbe detected with a high probability. Thus it is highly probable that code
overload will be detected before erroneous data has left the decoder. At
this point the decoder assumes that it has detected the start of a burst of
length 2N or less, helf of which is confined to the N - stages of the replica
encoder. 1If no errcrs are in the first m stages of the replica encecder then the
syndrome bits S are a good estimate of the error bits in the burst, and these
are simply allowed through to the output, to correct the burst. Again feedlkack
is used to remove the effects of errors from the syndrome, and when successive
syndrcme bhits revert to all zeros, the decoder returns to the random mode.

The Gallager decoder can correct most bursts of length 2N relative to a guard
space of 2N+m. Note that g/b = 2N/ (2N+m) = 1 for practical values of N.

Thus the burst correcting power excesds the bhound previously mentioned, but only
at the expense of not being able to correct all bursts of g 2N.

The Gallager decoder orerates best on a channel which has dense long bursts
separated by long error free gaps. The diffuse decoder operates best on a
diffuse burst channel with a high background density of random errors.

4, More Powerful Schemes < -l Fe W

At Hull we are investigating various methods of improvinguthe performance
of burst correcting convolutional coding schemes.

Firstly, we have devised schemes for using soft-decision information in
diffuse threshold decoders and in Gallager deccders. In a hard-decision
error-control-coded binary data transmission system the receiver/demodulator
makes a hard 0/1 decision on each incoming data signal before feading the
demodulated bit to the error-correction decoder. For example, in a multiphase
modulation system a ‘hard' decision is made at each phase boundary. This
procedure results in a degradation of the channel decoder's periormance. A
soft-decision demodulator, on the other hand, assigns a 'confidence' value
to each output hit, in addition to the 'hard' binary O or 1 decision. In
essence this means that each demodulated bit is quantised into Q > 2 levels,
rather than Q@ = 2 levels as in the hard-decision case. This confidence
information can then be used to improve the error-correction decoder’s
performance ( in terms of lower output bit error rate) without incurring any
further redundancy penalty.

We have shown® that significant improvements in performance are achievable
if soft-decision decoding is implemented on bursty channels such as the H.F.
channel. ' In particular, the multiple burst performance of these decoders is very
significantly improved. For example, when soft-decision was applied to the
diffuse threshold decoder described earlier, in a bit error rate environment of
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approximately 1 in 16 the output error rate was improved by a factor of
approximately two. —_

Secondly, we are investigating the use of cenvolutional burst

correction schems for multi-track magnetic tape storage. We have devised a
scheme which may be called convolutional preduct ceding. This is shown in
figure 5. Each data track of the tage (for examsle 8) is encoded with a
burst correcting convolutional code o a suitable rate. The ninth track is a
transverse parity check on the 8 data tracks, and is also encoded with the

same
nine

-each

When
nine

convolutional burst correcting code. The Seccder essentially consists of
separate decoders. Decoding prcceeds as follows. Under normal conditions
decoder decodes the bits of its track in a segment by segment manner.

all the data bits in a particular transverss line have emerged from the
decoders a check on the transverse parity is made. If the parity is

correct then this line of transverse Sata is outzut as ocrrect. If a burst
which is confined to a single track occurs then the code can normally correct

this

and proceed. The code is, however, designed to detect overload with a high

probability, and if a bad burst occurs the deccéer will refuse to decode rather

than

make a decoding error. In this case deccding proceeds on the other eight

tracks in such a way that the other deccders 'overtake' the 'stuck' decoder by
one segment. The transverse parity can then decide what the data bits about
to be output by the 'stuck' decoder should be. The bits are corrected and the
'stuck' decoder can usually proceed. If not, a similar procedure occurs. In

this

way, the decoders.can 'help' each other, ard by this means long bhursts

can be effectively corrected.
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