

The paper and pencil method of division, using the binary operands X = 010011 and Y = 011 (X

= 19 and Y = 3 in decimal numbers) is demonstrated briefly with the following:

0110 = Q
y = 011 1010011 = RO

- 01100 = 22y

111 = R1

- 00110 = 21y

001 = R2 = R

Although we get the final remainder after two subtractions (22y and 21 Y) the partial

remainder was compared with 23y (23y > RO) and 21y (21y > R2); but since the current

partial remainder was less than these multiples of the divisor, they were never subtr~cted.

Division and multiplication are in many respects dual operations. As a shift and subtract

process division superficially resembles the shift and add method of multiplication. Division,

however, requires the results of one subtraction to determine the next one. This introduces

a sequential ordering in the subtraction of multiples of the divisor from the partial

remainders that is not present in the addition of the partial products. Implementations of

division in the integer ring (that is, normal arithmatic, with carries) have been slower than

the equivalent multiplication operation. A parallel multiplier has O(logn) worst case delay,

while the area efficient serial parallel multiplier (SPM) ,has O(n) worst case delay[I].

Division on the other hand has no equivalents (with the same performance) to these

multiplier architectures.

3. EXISTING DIVIDER IMPLEMENT A TIONS

Conventional divider implementations [1] use some variant of the paper and pencil method

of division: either doing explicit comparison and subtraction (non-restoring), or by using

subtraction and compensating addition (restoring division).

Often, using iterative techniques [1] ,the faster multiplier has been used to speed up

division. However, this is very area inefficient, unless a multiplier is already required.

Other methods, notably the SRT and CORDIC algorithms [1], employ a fast adder in their

design. However, all these methods have O(nlogn) worst case gate delay (both require n

n-bit additions).

The Purdy and Purdy algorithm [2] performs division in O(n) time. It differs from most

dividers in that the remainder is calculated first by performing three consecutive

tests/subtractions on the most significant bits of a carry-save representation of the partial

remainder successively eliminating the most significant bits. After the remainder is finally

computed, it is subtracted from the dividend to make a "divisible dividend" the quotient is

2

then generated from least to most significant bit by successively testing the even/oddness of

" the dividend and subtracting.

. 4. NEW DIVIDER ALGORITHM

The following is the divider algorithm in program form. An n+m bit dividend is divided by

an n bit divisor to generate an m+ 1 bit quotient and an n bit remainder. Sum-carry additions

(the carries are not propagated but stored as inputs to the adder during the next add) are

performed m times. Three boolean functions (ro, fl, and fl.) of the three most significant bits

of the divisor, the PRSUM, and the PRCARRY registers determine whether zero, the current

multiple of the divisor, or twice the current multiple of the divisor is to be subtracted from

the current partial remainder (stored as the sum of the PRSUM and PRCARRY registers).

INPUT DIVIDEND[n + m], DIVISOR[n];

OUTPUT QUOTIENT[m + 1], REMAINDER[n];

begin

PRSUM:= DIVIDEND; PRCARRY:=O; SD[-l]:= 2M*DIVISOR;

i:= 0;
while (i <= m - 1)

do begin
SD[i] := SD[i - 1]/2;

if (fO) then
begin

PRSUM, PRCARRY : = PRSUM + PRCARRY;
QC[m - i] := 0; QS[m - i] :=0;

end;

else if (f1) then

begin
PRSUM, PRCARRY := PRSUM + PRCARRY - SD[i];
QC[m - i] := 0; QS[m - i] :=1;

end;

else

begin

PRSUM, PRCARRY:= PRSUM + PRCARRY - 2*SD[i];
QC[m - i] := 1; QS[m - i] :=0;

end;

i:= i + 1;
{fO is (S = 0 and C = 0) and (S-l = 0 or C-1 = 0)
f1 is «(S = 1 or C = 1) and (S-l = 0 or C-1 = 0) and((S-l != C-1) or

(maj. of S-2, C-2, and D-2 = 0» or (S = 0 and C = 0 and S-l = 1 and C-1 = 1»

f2 is (not fO and not f1) Where Sand C are the msb's of PRSUM and PRCARRY, S-l

and C-1 are the next most significant bits and S-2, C-2, and D-2 are the third most
significant bits of PRSUM, PRCARRY, and the two's complement of the divisor

}
end;

REMAINDER: = PRSUM + PRCARRY;
if (REMAINDER> 2*DIVISOR) then

begin

REMAINDER := REMAINDER - 2*DIVISOR; QC[O]:= 1; QS[O] := 0;

end;

else if (REMAINDER> DIVISOR) then
begin

REMAINDER := REMAINDER - DIVISOR; QC[O]:= 0; QS[O] := 1;

end;

else

3

begin
QC[O]:= 0; QS[O] := 0;

end;

QUOTIENT := 2*QC + QS; {QC and QS are the integers
formed by the bits QC[i], QS[i]}

end;

5. WHY IT WORKS

To avoid a long comparison with the entire partial remainder (PR); the n bit partial

remainder (contained in an n bit SUM and an n bit CARRY register) is not compared with an

n bit shifted over version of the divisor (SDn). Instead, an n - 1 bit version (SDn-I) is

subtracted no times, once, or twice depending on the values of the highest order bits of the

carry save representation of the partial remainder; leaving an n-I bit partial remainder.

After iteration i the partial remainder is known to take up a maximum of n - i bits in PRSUM
and n - i bits in PRCARRY.1n addition, this partial remainder has a total value of less than

2n-i. The final result of these subtractions, after the divisor itself is subtracted, is contained

in a PRSUM and PRCARRY each with possibly as many bits as the divisor. The result may not

be the remainder, but is either the remainder, the remainder plus the divisor, or the

remainder plus twice the divisor. So PRSUM and PRCA~Y must be added together and the

divisor must be compared or subtracted twice to compute the remainder. The quotient is in

sum-carry folm as the number of times each SDi was subtracted.

6. ARCHITECTURES

Figures Ia and Ib show the two building blocks used in the divider implementation F')ft

serial-parallel implementation, the cells contain latches to store the results from each VI!
/

iteration around the while loop (see program in section 4). For a parallel implementation,

the latches are optional, and can be used to improve throughput. Figure 1 a is the standard bit

level adder cell [3] with a small change in select logic. A multiplexor is used in order to

select from the three possible inputs (0, -I, or -2 times the divisor). This additional logic does

not increase the worst case delay. Figure 1 b is the cell which looks at three bits of the

operands to decide on the subtraction multiples of the divisor (setting QC and QS). This cell is

significantly more complex than that of figure la, and is approximately 30% slower.

Figure 2 shows an O(mn) array of cells, a parallel implementation of the algorithm which

calculates the main loop of the program by distributing the iterations on a row by row basis.

Latches can be used to buffer the results allowing the array to be pipelined to accept new

operands each clock cycle.

Figure 3 shows a linear chain of O(m+n) cells which can be used for a serial-parallel

implementation. It calculates the main looop of the program by doing one iteration each

clock cycle and storing the intelmediate results in latches.

4

. 7. CONCLUSION/FUTURE WORK

This paper describes a fast algorithm together with parallel and serial-parallel

implementations that offer better asymptotic throughput than existing algorithms. The

serial-parallel implementation appears particularly attractive; dividing in approximately n

steps with n + m cells, one-fourth the steps and cells used for the Purdy and Purdy divider

(the test conditions slightly reduce our clock rate, so the true speed up is around three

times). More work is needed to replace the global control lines (QC and QS) with a systolic

pipeline. Also, an asynchronous logic implementation appears to offer significant benefits

for speeding up the division algorithm.

8. REFERENCES

[1] K. Hwang, Computer Arithmetic: Principles, Architecture, and Design. New York: Wiley,

1979.

[2] C. N. Purdy and G. B. Purdy, "Integer Division in Linear Time with Bounded Fan-In," IEEE

Trans. on Computers, vol. C-36, pp. 640 - 644, May 1987.

[3] H. T. Kung, "Why Systolic Architectures?" IEEE Computer, vol.IS, pp. 37-46, Jan. 1982.

1 ,

c

5

Si. SDi. Ci.,J J J SDiJ

.,:,. J OJ+l "r CiJ SiJ+l CiJ-l 11

, . - S '. . - - - 1.)
SDij+l . - - - SDij

Q:1

Q:J Q:J QSi

a[ij] CO[ij]

QSi ~i

Ci+l,j SDi+lj Si+l,j O+lJ+l Si+lJ+l O+lJ Si+lJ

(a) a cell (b) co cell

Figure 1 (a) and (b)

co(l,D+m-3] .[O,D+m-4] .[O,n+m-5J .[O,D+m-6][0,0]

co[I.n+m-4] .[I,n+m-5] .[I,n+m-6][I,OJ

co[2,n+m-5J .[2,n+m-6](2,0]

. .

. .

. .

. .

co[m-I,n-3] .[m-I,n-4] .[m-I~,OJ

Figure 2: Parallel Implementation

[~~=~~~~~:J-O--O-O---O -0

Figure 3: Serial/Parallel Implementation

6

