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Soft-decision error-correction coding schemes

for HF data transmission.

R.M.F. Goodman, A.D. Green, and A.F.!. t-linfield

Summary

This paper is concerned with the use of soft-decision decoding of error-

correcting codes in the context of HF data transmission. The use of soft-

decision information from the data modem results in an improvement in the
performance of a forward-error-corre~~ion scheme, when compared with hard-

decision decoding, without any further redundancy penalty. In the paper, we
estimate the theoretical improvements that can be expected from soft-decision

decoding of block and convolutional codes, in terms of both random and burst

error-correcting power. Also, this is related to expected coding gains for

the Gaussian and Rayleigh fading channels. In addition, the performance of

several low-complexity soft.-decision coding schemes are investigated.

Computer simulation results, using real error data recorded from a Kineplex

type modem, are presented and discussed.
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1. Introduction

In a hard-decision error-control-coded binary data transmission system the
receiver/demodulator makes a hard 0/1 decision on each incoming data signal
before feeding the demodulated bit to the error-correction decoder. Similarly,
in a multi-phase modulation system a 'hard' decision is made at each phase
boundary. This procedure results in a degradation of the channel decoder's

performance. A soft-decision demodulator on the other hand, assigns a

'confidence' value to each output bit, in addition to the 'hard' binary a or 1
decision. In essence this means that each demodulated bit is quantised into

Q > 2 levels, rather than Q = 2 levels as in the hard-decision case. This
confidence in~ormation can then be used to improve the error-correction decoder's
performance (in terms of lower output bit error rate) without incurring any
further redundancy penalty.

The use of soft-decision decoding is therefore particularly pertinent to
the case of HF data transmission. This is because, due to the high channel

error rates and non-Gaussian error statistics that exist on most HF data links,
hard-decision decoding schemes simply do not have sufficient error-correction
power per bit to provide useful coding gain. Soft-decision decoding schemes,
however, can increase the correction power per bit, but at the expense of
further complexity. The increase in coding gain (over that achievable with hard-
decision) that can be expected by using soft-decision decoding depends on a
number of factors. These include .the number and spacing of the quantisation
levels, the decoding algorithms used, and the channel characteristics. It will
be shown later, however, that soft-decision decoding can (at the most) double
the correction power per bit of a code, and therefore achieve a performance
that tends to the optimum maximum-likelihood decoder. This increase in power is

certainly worth having, particularly in the case of HF data transmission.

The main objection to the use of soft-decision decoding is one of hardware
complexity. This is because, in addition to the decoder having to handle and

store J bits (where 2J=Q) instead of 1 bit per decision, existing soft-decision
algorithms are much more complex than hard-decision algorithms. This is

particularly true in the case of block codes, as opposed to convolutional codes
where the tlit.erbi algorithm provides an effective (although still severely

complexity limited) soft-decision decoding scheme. In this paper we investi-

ga,te the performance of'several block and convolutional soft-decision decoding
schemes, with the accent. on low decoder complexity.

This paper develops in the following way. Firstly, we estimate the

performance improvements that can be expected from soft-decision decoding of

block and convolutional codes in terms of both random and burst. error-correcting
power. Also, this is related to expected coding gains for the Gaussian and

Rayleigh fading channels. The characteristics of the HF channel which have

major influences on the choice of any soft-decision error-control scheme are
then discussed. Next, several practical soft-decision decoding algorithms,
some of which stem from our previous work, are described. Finally, the

performance of the low-complexity schemes described are assessed for an HF .

channel, using error data recorded from a Kineplex type modem.

2. Expected i rovements in erformance due to soft-decision decodin

Given a block or convolutional error-control scheme, let us assume that the

soft-de7ision demodulator quantises each output digit vi to 2J=Q levels,
symmetr~cally spaced about the hard .0/1 decision boundary. The estimate of the

ith received binary digit is given by the soft-decision J-bit byte:

,
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[v.] ="Iv~v? ... v~], where the square brackets indicate a soft-decision
1. 1.1. 1.

quantity. The first bit of [vi] is the hard-decision estimate, and the remain-

ing J-l bits give an indication of the confidence of that estimate. The

confidence of the hard-decision may be defined as the J-l bit byte:

[c.] = [ctc? ... c.J-l], where [c.] = [v~v~ ... v~] if vt = 1, or [c.J =

1. 1. 1.J 1.. 1. 1. 1. 1. 1. 1.

[v?v~ v.] @ [11 ... 1] if v~ = O. Thus the confidence of a particular
1. 1. 1. 1.

received bit can vary from [c.] = [00 ...0] (least confident, nearest to the

1.

hard-decision 0/1 boundary), to [c.] = [11 ... 1] (furthest away from the
1.

boundary). Alternatively, we may consider that the demodulator output soft-

decision digit [v.] gives an estimate of the soft-decision error digit [e.]

1. 1.

which has been added to the transmitted digit [u.]. Hence, [v.] = [u.] @ [e.],

1. 1. 1. 1.

where [u.] = [00 ...0] or [11 ... 1] only. The value of the soft-decision

1.

error digit in levels can therefore lie between 0 and (Q-l), and a value of >

(Q/2) constitutes an 'error' in the hard decision sense. -

We may now form an estimate of the improvement in random-error correcting
power when soft-decision decoding is used. Consider a block or convolutional

code whose decoding constraint length is n bits. If the hard minimum distance

of the code is dh over n bits, then its bounded-distance hard correcting power

is the largest integer th ~ {(dh-l)/2}. This gives a per bit hard correction

power of thin. In the soft-decision sense code words (paths) are ~ ds = (Q-l)dh

soft-decision levels apart, and therefore the bounded distance guaranteed soft-

decision error-eorrection power in levels is t < {d - 1)/2}. The smallests - s
number of levels that constitutes an error in the hard decision sense is Q/2,

and the maximum number'-bf 'hard' errors that can be corrected is therefore

2 1

ts/(Q/2) = Q {Cds - 1)/2} = Q {(Q - l)dh - l} = dh for Q large. Thus, the per,

bit correction power has approximately doubled from thin to dh/n.

It should be noted that the doubling in correction power is an upper bound

on the improvement due to soft-decision, and will only be achieved at very high
signal-to-noise ratios. In general, at low signal-to-noise ratios the average

improvement will be significantly less than this.

2.1 Improvement on the Gaussian channel

Consider the Gaussian channel. If the (single-sided) noise power density
is given by No' the signal-to-noise ratio is given by y = E/No' and the bit

probability of error is given by the Q funetion:

p = J ~ [exp(-x2/2)/.(2:;]dx ~ Q(~) (1) .

~ -

where Yb = Eb/No = y/R is the normalised signal-to-noise ratio per information

bit, and R is the inverse of the bandwidth expansion factor (that is, the code

rate). The probability of bit error for a hard-decision coded system can be

lower bounded by

d n -' d
P > W

d p h(l - p) h, (2)

e h ;.

.
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where d~ is the minimum distance of the code over the decoding constraint length

n, and wd is the number of bit errors contributed by incorrect decoding of a

code path of distance dh'

As~ptotically, at high signal-to-noise ratio,

~

Q(v2YbR) :: exp(-'(bR) (3)

and h~nce equation (2) reduces to

P e :: wd exp(-'(bRdh) (4)

Assuming that soft-decision decoding effectively doubles the distance of a
code, that is, d = 2d.. , then for

s a

Pe(soft) = Pe(hard)' we require

Yb(soft) R2dh = Yb(hard) Rdh' that is,

Yb(hard) = 2
Yb(soft)

which indicates a 3dB improvement in coding gain. This is similar to the
improvement obtained in changing a dh-th order diversity system to a 2dh-th

order diversity systeml..

Also, Pe uncoded ~ exp (-Yb) from (3) which shows that the upper limit on

coding gain is given by:

Gc < lOlog Rdh (dB) for hard-decision decoding and

Gc < lOlog 2Rdh(dB) for soft-decision decoding.

~t the opposite extreme, that is, for the very noisy channel, it has been

shown that a performance loss of about 2dB is incurred when hard-decision de-

coding is used as opposed to infinitely quantised soft-decision decoding. Also,

the degradation involved in using the much more practical equal-spacing 8-level

quantisation is only about O.2dB3.

Thus, at high error rates on a Gaussian channel we expect a maximum soft-

decision coding gain of about 1.8dB, At low error-rates a 2dB improvement insignal-to-noise ratio corresponds to a reduction in output bit error rate of .

approximately 2 orders of magnitude for uncoded binary antipodal signalling on

the Gaussian channel. At high error rates, however, the uncoded performance-
curve flattens out, and a characteristic of coded transmission is that at some

value of Eb/No a coded transmission will perform worse than an uncoded one. The

coded performance curve effectively 'crosses over' the uncoded curve, In this

high error rate region, the uncoded output bit error rate is only improved by
about a factor of 3 for a 2dB improvement in E

b /N, Thus, although we expect an
0 ~

" }
~mprovement ~n performance due to soft-decision decoding at high error rates,

.

.
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this improvement will not be large.

2.2 The Rayleigh Channel

The bit error probability for the coherent Rayleigh fading channell is given

by:

p = !(l - ~) where

YbR ,

~ = (~+I)

The lower bound on bit error probability (equation 2) is then given by

d n-d-

Pe > wdh (¥) h (~) n (5)

which for high signal-to-noise ratios becomes:

I dh I dh - -

P = wd (4R) = K(-) .
e h Yb Yb

Assuming ds = 2dh' then for equal output bit error rate we have

Yb(hard) = Y~(soft)

which shows that the soft coding gain is an increasing function of Eb/No' and

that soft-decision deco.ding requires approximately half the signal-to-noise ratio

(in dB) to achieve the same output bit error rate as hard-decision decoding.

Soft-decision decoding on the Rayleigh fading channel is therefore

theoretically capable of providing much larger soft-coding gains than in the case

of the Gaussian channel. It must be noted again, however, that the expected

halving in power requirement will not be achieved at low signal-to-noise ratios.

2.3 Burst Channels

It is not possible to derive a theoretical soft-decision improvement figure

for a complicated time-varying channel such as. the HF channel. In general, the

HF channel can be considered4 to be a diffuse-burst channel in which error

bursts of medium to high density are separated by relatively short gaps with a
low density of errors. As such, any coding scheme that is used on the HF channel
must have both burst-and-random error-correction capability. We have already
shown that the random error-correction power of a code is improved by the use of

soft-decision decoding. It is therefore appropriate to assess the improvement in

burst correcting power. .

Consider a random error-correcting code with a correction power of th over a
decoding constraint length of n bits. This implies that all bursts of length
b ~ ~ or less can be corrected. If we assume that, asymptotically, soft-

decision decoding doubles the power of the code, then the code will now be able
to correct any combination of two or less burst9of length b ~ th' or at single

burst of length 2th'

Interleaving is a powerful technique which can be used to p~ovide both

.
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burst-and-random correction power, whilst still using a random error-

correction decoder. If the above basic code is interleaved to a depth of \
then the hard-decision power of the interleaved code over nA bits is such that

any combination of th or fewer bursts of length A or less, can be corrected.

Thus the application of soft-decision should allo~.,. (at a maximum) any

combination of 2th or 'fewer bursts of length ~, or less to be corrected. It is

therefore the multiple-burst correcting power within a given constraint length
that is significantly increased by soft-decision decoding rather than the
single burst correcting power.

A well known5 bound on burst correcting capability (b) relative to error-

free guard space (g), which holds for both block and convolutional codes is

given by:

g 1 + Rb ~ 1 -R = 3 for a ! rate code.

In general, an interleaved random-error-correcting code does not approach this

bound closely. For example, the (23,12) perfect Golay code has b = 3 and g =

20 giving g/b = 6.7. However, if the use of soft-decision increases the
burst capability by only one to b = 4 on average,' then g/b = 4.75, a

significant improvement.

If, in the limit, ~ve assume that soft-decision decoding can double the
single burst correcting power of a code then

1 + R

(g/b) soft ~! (~) .

'. .

At high error rates the improvement due to soft decision will not be
mainly in the single-burst correction capability but rather in the multiple-
burst correction capability. This implies that soft-decision will show the
most improvement on a diffuse burst channel rather than a dense burst/long gaps
channel.

3. liF Channel Characteristics

The error characteristics experienced in liF data transmission depend not
only on the channel characteristics at a particular time but also on the type
of modem used. In this paper we consider a Kineplex type modem operating at
2400 bits per second. The data is transmitted in 48 bit parallel blocks or
frames, using orthogonal multi-subcarrier phase shift keying. Soft-decision
information on each demodulated bit is available from the modem.

There are several characteristic types of error events due to this modem
structure.

(i) Random errors.

(ii) Errors which occur in the same place in repeated frames due
to stationary frequency selective fading on one or more sub-
carriers within the band, thus causing isolated repetitive

bursts.

(iii) Sweeping frequency selective fades which traverse the band
causing errors in repeated frames but in different f~ame
positions.
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(iv) Flat fades across the band which cause large bursts of
errors.

Figure 1 shows a particular received sequence of bits, an error being
indicated by an asterisk. It can be seen that one particular sub-carrier
within the frame is experiencing a bad stationary selective fade, and
contributing errors in almost every successive frame.

Figure 3 shows a received sequence of bits in which two selective fades
are sweeping across the band, causing errors in successive frames but at

different frequencies.

Figure 2 shows a bad flat and selective fading situation which is causing
frequent bursts of errors.

. In addition, all the figures show a varying amount of residual errors.

As a consequence of these error characteristics it can be seen that any

coding scheme used on a bit-by-bit basis must have both burst and random error

correction power, and that if a random error-correcting code is used, it must

be interleaved in both time and frequency.

4. Soft-decision decoding schemes

Given a block or convolutional code operating over a decoding constraint
length of n bits, the optimum method of decoding is maximum-likelihood decoding,

which for the binary symmetric channel is equivalent to minimum distance de-
coding. A minimum distance hard-decision decoder therefore' attempts to find

the codeword (path), u, nearest in terms of Hamming distance to the received

~ sequence v. That is,_.~he code sequence which satisfies

n n
min { ~ (v. $ u.)} = min {~ e.} .

. 1 1. 1. . 1 1.
1.= 1.=

Alternatively, this is equivalent to finding the minimum weight error pattern e

which will turn the received sequence v into a valid code sequence u.

Similarly, we may define an optimum soft-decision minimum distance decoder
(which approximates to a maximum likelihood decoder) as one that attempts to

find the code sequence at minimum soft-distance (minimum number of level errors)
.

from the rece~ved sequence v. That is,

n n
':~1 min {~ ( [v.] $ [u.])} = min { ~ [e.]}

?!'., . 1 1. 1. . 1 1.

1.= 1.=

We now briefly describe several soft-decision decoding schemes which.
'approximate to this optimum behaviour; but have low complexity. The performance

of these codes on the HF channel is assessed in the next section. Each code
is identified by an abbreviation.

4.1 Soft-decision threshold decoding

Recently, we have proposed a soft-decision version of the well known hard-
decision majority decision threshold decoding algorithm6 which is suitable for

both block and convolutional codes7,8. The convolutional code~ investigated in
. .-

th1.S class are:

. .'
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(i) A half-rate random error-correcting code ~olith n = 14, th = 2,

and generator sequence g = 11000100000101. (T14H)

(ii) A half-rate random error-correcting code with n = 24, th = 3,

and generat.or sequence g = 1100000000000101000101.01, (T24H)

(iii) A half-rate burst and random-error-correcting diffuse code9

~oli th n = 68+2, which can correct any 2 random errors T.vi thin

n consecutive bits, or any burst of length.:: 26 relative to

a guard space of n bits. This code has g = 11(00)8-1

01(00)8-1 01(00)801, (TDIFH)

(iv) A one-third rate code with n = 15, th = 3, and g = 111 010 001 001

. 001. (T15T).

'.
4.2 The (23,12) perfect Golay code

The perfect Golay code is a triple-error-correcting code with 12
-information digits in the decoding constraint length of 23, \~e have developed

a soft-decision mini~um dista~ce decoding a1go:ithm for this cod7 which i~ 11

based on error-trapp~ng decod~ng10, The a1gor~thm uses permutat~on decod~ng

in a predictive manner such that both burst and random error-correction is

possible, (GOLAY)

4.3 Sub-optimum soft-decision minimum-distance decoding of convolutional co~~s

Optimum minimum distance soft-decision decoding of convolutional codes can

be achieved by means of the Viterbi algorithm, provided that the encoding
constraint length is limited to about 14 bits so that decoder complexity does

not become excessive. Viterbi decoders have been investigated by several

researchers, and these have been shown to exhibit reasonably good performance

over both satellite and HF channe1s12,13 ,

Recently, however, we have proposed a hard-decision minimum distance de-
coding algorithm, that is efficient for both short and long codes14, The

algorithm consists of bolO main processes. A direct mapping scheme which can

locate the minimum distance path without any searching, and an efficient path

searching scheme. In this paper we investigate the performance of two very low

complexity but sub-optimum forms of the algorithm,

( ' ) H d d o, d o ' d ' 15,16 ~ ar - ec~s~on ~rect mapp~ng ecodJ.ng .
( ' 0 ) S f d o, ff . ° h ,17,18J.J. 0 t- ecJ.sJ.on e ~cJ.ent pat search~ng .

Both decoding methods are applied to the following codes:

(i) A half-rate code with n = 22, th = 3, and g = 1101000100010001010000 .
(MD22H)

(ii) A one-third rate code with n = 21, th = 4 , and
g = 111001.010010001011011

(MD21T)

4,4 Interleaving

In order to combat the effects of flat and selective fadin~ in a mu1ti-
0

subcarrier HF transmission syst~m, it is necessary to interleave the transmitted

,
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bits in both time and frequency. In practise this involves reading the encoded

data stream into a 48 by ~ array, where ~ is the interleaving depth in frames;

and reading out the bit stream to the modem in a diagonal manner. The inverse

operation of de-interleaving is performed at the receiver, before feeding bits

to the error-correction decoder. Given a fixed parallel frame of 48 bits,

there exists a trade-off between the time and frequency separation of adjacent
bits in the de-interleaved stream. For example, if ~ = 48 then bits are

separated in time by 48 frames, but will have been transmitted on the same sub-

carrier. Thus, stationary selective fades will cause long bursts of errors in

the de-interleaved bit stream. In this paper we consider interleaving to a
depth of 8 frames, which gives adjacent bits a separation of 8 bits in time,
and ~/8 = 6 bits in frequency across the frame.

5. Performance Results .

In this section we investigate the performance of the coding schemes
described in the last section. The decoding schemes were computer simulated

using runs of data-independent soft-decision error sequences, recorded from the

modem operating over a real HF link. Results are presented for three runs

which display characteristic error conditions, as summarised in Table 1.

Table 1.

Frames Bits Errors Error rate length (secs) characteristics

RUN 1 440 21120 964 1 in 22 8.8 stationary

selective

fading

RUN 2 440 2l12~. 1951 1 in 11 8.8 Flat fades .'.

RUN 3 440 21120 1350 1 in 16 8.8 Sweeping select-

ive fades

Figures 4,5 and 6 are histograms of the error sequences for the runs.
Each horizontal division corresponds to two frames or 96 bits. Each asterisk
(plotted vertically) corresponds to a hard-decision error.

Each coding scheme described in section 4 was tried on each of the three
runs, using both hard and soft decision decoding, and both interleaved and non-

interleaved operation. The results of these simulations are plotted in
figures 7, 8 and 9, in histogram form, corresponding to runs 1, 2 and 3
respectively. The vertical axis corresponds to the normalised relative output

bit error rate for each coding scheme. That is:

( 1.) = decoder output data error~

F channel errors x Code Rate

where F can be considered to be the improvement factor in output bit error rate
due to the use of coding. Both hard-decision and soft-decision results are
presented, the unshaded area indicating the soft-decision result and the un-

shaded plus shaded area indicating the hard-decision result. The shaded area

therefore indicates the relative improvement offered by soft-decision over hard-
decision decoding. The abbreviations used to identify the coding schemes are

as indicated in Section 4.

;.

In addition, figure 10 shows results averaged over all three runs.

. '
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6. Discussion

From the results presented, it can be seen that soft-decision decoding
yields useful performance gains for all the coding schemes tried. Averaged

over all results the output bit error rat~ is improved by a factor of about 2!
by the use of soft-decision decoding. This result is in excellent agreement

with the e:{pected improvement given in section 2.1, for high error rates.

Comparing the different coding schemes, it can be seen that the more
nearly optim~~ decoding schemes perform best, as expected. For example, with

the threshold decoders, the n = 14 half-rate scheme and the n = 15 one-third

rate scheme both perform reasonably well. This is because threshold decoding

performs nearly as well as full minimum distance decoding for short constraint

length, low power codes. As constraint lengths are increased, threshold de-
coding wastes much of the power of a code, resulting in inferior performance at
low error rates. This is exemplified by the n = 24 half-rate threshold de-
codeable code. Also, the diffuse decoding scheme, which is essentially lorN

power, performs as 'well as the interleaved"n = 14. This is to be expected as
both schemes have t, = 2.

n

In general, as constraint lengths are increased so is correction power.

However, this is only true if the decoding scheme utilises the full minimum

distance and hence .correction power of the code. This can be seen by the way
in which the Golay scheme significantly outperforms the sub-optimum minimum

distance path searching scheme. Both codes operate over roughly the same'

constraint length, but the Golay scheme is much closer to the optimum maximum

likelihood decoder over this constraint lenBth. In addition, at high error
rates, block codes perform better than convolutional codes, because the output

burst of errors due to a decoding error is restricted to one block length. A

convolutional code may take several constraint lengths to recover from the de-
coding error, thus causing long output bursts of errors to occur.

The minimum distance soft-decision path searching scheme when used on the
one-third rate code, however, performs much better than in the half-rate case.
This scheme ~yas the only one to achieve zero output errors (Run 3).

In conclusion, it can be seen that for half-rate codes used at high error
rates on the HF channel, the best performance ~yill be obtained if an optimum
soft-decision minimum distance decoding scheme is available for long constraint
lengths. This requirement implies that powerful, interleaved, random-error-
correcting codes should be used rather then burst-correcting schemes ~vhich are
sub-optimum in their random correction power. Such algorithms are very complex

for block codes, but for half-rate convolutional codes the Viterbi algorithm is

capable of providing good results, as shown in reference 13. Similarly, we
expect that a full soft-decision minimum distance decoding algorithm based on

the algorithm in reference 14, should provide equal or superior results to that
of the Viterbi algorithm. In addition, such a decoding scheme would be

considerably less complex than a Viterbi decoder, for one-third rate codes.

Finally, it should be noted that if very low output bit error rates are
required at high channel error rates it becomes necessary to use high redundancy

codes (e.g. one-third rate). However, as it is not possible to correct for rate,

as is done in the case of the Gaussian channel, it is not possible to assess

whether or not coding schemes are using this redundancy effectively. A true

assessment would require different modem/error-correction designs to be compared

on the basis of output data bit error rate, with each design operating within a

fixed channel bandwidth, and at a fixed data output speed. ,
;-

.
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