
365

MICROPROCESSOR-CONTROLLED PERMUTATION DECODING OF

BLOCK ERROR-CORRECTING CODES.

R.M.F. Goodman* B.Sc., Ph.D.

A.D. Green* B.Sc.

Summary
Microprocessors can be used to simplify the hardware required to build
the decoder of a block error-control system, but only at the expense of
the low data throughput rates characteristic of software implementation.
This paper proposes a new soft-decision permutation decoding algorithm
for cyclic block codes, and deals with the implementation of both hard
and soft-decision permutation decoding on an Intel 8080A microprocessor
system. In particular, coding gain and data throughput trade-offs are
investigated for both total software and software plus specialised hard-
ware implementations, under Gaussian noise conditions. Finally, possible
system developments for achieving higher throughput speeds are discussed.

1. Introduction
Block error-correcting codes are used to provide effective error-control
in many digital communications systems. In general, the main problem in
implementing such a scheme is that of the decoder hardware complexity
required to efficiently decode a particular code, and thus realise a
certain degree of error-control or coding gain. In particular, the use
of demodulator 'confidence' information in soft-decision decoding, can
raise the hardware complexity to prohibitive levels. The advent of
microprocessors, however, has greatly simplified the implementation of
both hard and soft-decision decoding schemes in terms of providing both
powerful and flexible bit-handling and computation facilities with a
minimum hardware package count. Unfortunately, the penalty to be paid by
transferring complexity from hardware to software is that of low data
throughput rates, and in tbe case of a real time decoding system this

raises tbe question of buffer overflow. These problems may be overcome to

some extent by the use of specialised bardware modules wbich operate

under microprocessor control, and perform some of the decoding operations

whicb would otherwise be particularly time consuming if executed in soft-

ware.

In tbis paper we investigate the coding and data-throughput performance

for a variety of mixed hardware/software decoder implementations, all
based on an Intel 8080A microprocessor system. We restrict our attention

to two codes, the (23,12) triple-error correcting Golay code, and the

(23,11) expurgated Golay code; although the proposed soft-decision
algorit~ can be used on more powerful codes provided they are cyclic.

In the case of bard-decision decoding, the demodulator only outputs a
'hard' 0/1 decision so that 23 bits per block are transferred into tbe
microprocessor and therefore relatively fast operation is possible. The
coding gain obtainable is approximately 2dB at a user output bit error
rate of 10-5. In the case of soft-decision decoding, the demodulator
assigns a 'confidence' value to each output digit in addition to the
'hard' 0/1 decision. In practice this involves replacing the one bit

* Department of Electronic Engineering, University of Hull

.



366

hard-decision device at the demodulator output with a J bit A to D
converter. Each incoming data bit is therefore effectively quantised to
Q = 2J levels, and the microprocessor must now handle 23 J-bit bytes per

block. Thist together with the fact that the 80ft-decision algorithm is
more complex and time consuming than the hard-decision algorithms means
that operation is inevitably slower than hard-decision. The advantage of

sort-decision however is that coding gains of approximately 3.8dB are
achievablet thus effectively doubling the power of the codes. The actual
increase in coding gain (over that achievable with hard-decision) that can

be expected from soft-decision depends on both the number and spacing of

the quantisation levelst and on the channel characteristics. It hast

howevert been shown (ref. 1) that for the additive white Gaussian channel

with optimum-spacing infinite-level quantisation the maximum coding gain

is lower-bounded by about 2dB. FortunatelYt the degradation involved in
using the much more practical equal-spacing 8-level quantisation is only

about 0.25 (ref. 2)t and for an 8-bit microprocessor either 8 or 16 level
quantisation is suitable. In additions it has been shown (ref. 3) that
for both the Gaussian and Rayleigh-fading channels t the performance of a
soft-decision decoder approaches that of the optimum maximum-likelihood

decoder. This implies a 3dB improvement over hard-decision for the
Gaussian channels at high signal-to-noise ratios.

This paper develops in the following way. FirstlYt the basic concepts
of hard and soft-decision decoding are outlined. Nextt permutation

decoding is introducedt and the hard and sort-decision algorithms are

developed from this. FinallYt the microprocessor implementation of the

algorithm is described, and system performance results under Gaussian
noise conditions are presented and discussed.

2. Hard and Soft-Decision Decoding
Given an (ntk) t-error correcting block code the optimum method of

decoding is maximum-likelihood decodingt which for the hard-decision

binary symmetric channel is equivalent to minimum-distance decoding. A
minimum-distance decoder attempts to find the codeword nearest in terms

of Hamming distance to the received block v(x). That ist the codeword
which satisfies

n n
min { E ( v . (x) i u. (x) ) } = min { E e. (x) } .

. 1 J. J. . 1 J.
J.8 J.=

AlternativelYtthis is equivalent to finding the minimum weight error

pattern e(x) which will turn the received block v(x) into a valid

codeword u(x).

In the case of soft-decision decoding each digit in the block is
quantised to Q levels t so that the demodulator estimate of a particular

digit can be expressed as a J bit byte [vi(x)]t where the square brackets

are used to denote a soft-decision quantity. Therefore for 8-level

quantisation [vi(x)] can be [OOO]t [001]t"'t [110Jt [111]. In a similar
way we may form a soft-decision estimate of the error digit [ei(x)] which

has been added (modulo-2) to a given received digit [vi(x)] by the

channel. Thust given that Iui(x)] (= [000] or [111]) was transmittedt

and [vi(x)] was receivedt then [ei(x)] = [vi(x)]i[ui(x)]. The value of

the soft-decision error digit in levels can therefore lie between 0 and

(Q-1)t and a value of ~(Q/2) constitutes an 'error' in the hard decision
sense.

We may now define a soft-decision minimum distance decoder as a decoder
that attempts to find the codeword at minimum soft-decision distance

(minimum number of level errors) from the received block v(x). That ist



-

367

n n
min { ~ ([ v. (x) ] i [u. (x)] )} = min { ~ ( [e i (x)] )} .

. 1 J. J. . 1J.= J.=

We may now estimate the error-correcting capability of an (n,k) block

code in the soft-decision sense. If the hard minimum distance of the code
is dh then its bounded-distance hard correcting power is the largest
integer th ~{(dh-1)/2}. In the soft-decision sense codewords are

~ ds = (Q-1)dh soft-decision levels apart, and therefore the bounded-

distance guaranteed soft-decision error-correction power in levels is the
largest integer ts~{(ds-1)/2}. In order to see the improvement obtained
from soft-decision decoding, consider the (23,12) dh = 7 Golay code. In
this case th = {(7-1)/2} = 3 errors per block. For soft-decision,
ds = (8-1) x 7 = 49 levels, and therefore correction can be guaranteed
for ts = {(49-1)/2} = 24 level errors per block. The smallest number of
level errors that constitutes an error in the 'hard' sense is Q/2 = 4;
the most probable pattern of 6 hard-decision errors therefore has a
soft-decision weight of 6 x 4 = 24 levels, which is within the soft-

decision bounded-distance of the code, and can therefore be corrected.
Asymptotically, at high signal-to-noise ratios, soft-decision decoding
therefore effectively doubles the 'hard' correcting power of a code.

In practice, the algorithms used in this paper attempt to choose the
minimum weight (hard or soft) error pattern from amongst a number of

alternatives. In this way the predicted coding gains can be achieved but

only at the expense of computation time, and therefore low data throughput

rates.

3. Permutation Decodinp;
Given a t-error correcting (n,k) cyclic code with generator polynomial
g(x), the syndrome s(x) of a received block v(x) can be written
s(x) = remainder {v(x)/g(x)}; and depends only on the error pattern e(x),

and not on the actual codeword u(x) transmitted. We may thus write

e(x) = q(x)g(x) + s(x). If the errors in e(x) are all confined to the
n-k parity check positions of v(x), that is xn-k-l, ... ,x,1, then q(x)=O
and~x) = s(x). That is, the error pattern is identical to the syndrome.
If the errors are not confined to the n-k parity check positions of v(x),

then it may be possible to move the errors into the parity check positions

by rearranging bit positions within the block according to some code
preserving permutation (ref. 4). The errors then appear in the parJ.ty

check section of some other blockv'(x) which is a permutation of the

original received block v(x). The syndrome s'(x) is then identical to
the error pattern e'(x), which is a permutation of the original error

pattern e(x). Once the error pattern is known it can be reverse-permed

and modulo-2 added to the data bits of received block to give the correc-
ted data. A hard-decision permutation decoder for the Golay code would

therefore operate by sucessively applying code preserving permutations to
the received block, calculating the corresponding syndrome, and testing
the syndrome for a weight of ~ th = 3. Once the syndrome weight is 3 ?r

less the error pattern is assumed to be 'trapped', and reverse-permutm2on
gives the original error pattern. In the case of the (23,11) dh = 8

expurgated Golay code, the syndrome weight may never go down to ~ 3, in

which case the decoder chooses the minimum weight syndrome encountered

after exhausting all possible permutations.,

It is important that the permutations used are code-preserving
permutations. This ensures that the original code and the permed code
have the same generator polynomial g(x), and therefore the same syndrome
calculation hardware can be used to decode both the original block and
the permed block.



~

368

There are two main code-preserving permutations which are applicable to

all cyclic codes, and which are used in both the hard and soft-decision

decoding algorithms. These are the cyclic permutation, and the binary

permutation. The cyclic permutation states that any end-around cyclic

shift of a codeword results in ~othef codeword. That is, the bits in the
block are permed according to: x~ ~ x~ + 1 modulo xn, where i indicates
the ith bit in the block. The binary permutation ensures that the code is
preserved if:

i ~ i.2J dul n f 0 . ( )x x mo 0 x, or ~ J ~ P 1

The number of distinct perms (neglecting no permutation) is p, where p is
such that n.c = 2P+1_1, c being the smallest possible integer. In the
case of the (23,12) Golay code there are a total of 10 distinct binary

permutations, and 23 cyclic permutations for each binary permutation.

4. The Hard and Soft-Decision Permutation Decodin.Q: Al.Q:orithms
The hard decision algorithm is as follows:

1. The syndrome s(x) of v(x) is calculated. This can either be done by
software or hardware. Figure 4 shows a general hardware syndrome
generator for the (23,12) Golay code. The syndrome is loaded either

serially (n-k shifts) or in parallel. Once the generator is loaded

with the first n-k bits of v(x), feedback is allowed, and after k
further shifts the syndrome is in the register. If the weight of s(x)
is ~ 3 the error pattern is found and can be modulo-2 added to v(x).
If tho weight is zero, no errors are assumed to have occurred, and v(x)

is correct.

2. If the weight of s(x) > 3 a cyclic permutation is tried. The syndrome
s'{x) of an i-place cyclic shift of v(x) is easily computed by simply
shifting the syndrome generator, with feedback applied, i times. Thus

the syndrome generator is shifted up to 23 times, and a check on
syndrome weight is made after each shift. If the weight of s'(x) is
3 or less, the error pattern is found, and can be added to v(x) after

cyclic reverse-shifting.

3. If after 23 shifts the weight of s'(x) has not gone down to 3 or less,
a binary perm is tried. In this case v(x) is permed according to

equation 1, and applied to the syndrome generator. If the weight of
the permed syndrome is 3 or less the error pattern is found. If not,
then cyclic perms are applied by simply executing further shifts of the
syndrome generator as in step 2 above. Once the weight of the syndrome
goes down to 3 or less the error pattern is found, and must be cyclicly

reverse-permed and then binary reverse-permed before being modulo-2

added to v(x).

4. Operation continues in a like manner with binary perms followed by n
cyclic perms, until all distinct binary perms are exhausted. In the
case of the (23,12) Golay code all error patterns of 3 or less can be

'trapped' by using only 3 of the 10 binary perms (plus no perm). For

the (23,11) code only 2 binary perms are needed. In this latter case

it is possible that the syndrome weight never goes down to 3. This
indicates that an error pattern of weight> 3 has been detected, and
the decoder can either refuse to decode or choose the smallest weight

syndrome encountered.

The soft-decision algorithm proceeds in a manner similar to the hard-

decision algorithm in that the sequence of syndrome computation, cyclic
perms, binary plus cyclic perms, is the same. However, in the hard-
decision case we simply searched for a syndrome weight ~ 3; in the soft-



369

decision case a more complex (and therefore more time-consuming) test has
to be applied after each syndrome computation. In essence, we are
searching for an error-pattern whose soft-decision wei~ht is < ts' if one

cannot be found we choose the smallest weight encountered in the whole

~ecoding pro:ess. Assuming that the tentative error pattern at some stage

~n the decod~ng process is e'(x) = [OOO...Oks'(X)], the soft-decision

weight of that error pattern in leve!s is given by:

n
, , ,

.L { [vi(x)]t[hi(x)]t[ei(x)]} (2)

~=1

, ,

where [hi(x)] is the hard decision estimate of [Vi(X)], and equals [000]
or [111] as v'(x) = 0 or 1. The speed with which this computation can be

per~ormed has a great effect on the overall speed of the algorithm, and

although equation 2 implied that n additions of J bit soft-decision

numbers are required, significantly fewer are in fact needed (ref. 5).

Also, other techniques can be used to omit unnecessary soft weight
calculations.

The main factor which makes the soft-decision algorithm slower than the

4ard-decision algorithm is that more binary perms must be performed before
a decoding decision can be made. This is because that with soft-decision,
error patterns of weight up to 6 are correctable, and all 10 binary perms

are needed if the majority of patterns of weight ~ 6 are to be 'trappable'.

It is therefore important that a particular error pattern is 'trapped' in
as few binary perms as possible. We have found that if the binary perms
are used consecutively, that is, j = 0, 1,2,3...10, this is not the case.
In fact. the optimum perm order is j = 0,4, 1,8,5.2,7,9,3,6, 10 for

the (23,11) code, and j = 0, 1,2,4,3,6, 10,8.9.7.5 for the (23,12)

code, and not perming in the optimum order has a signi~icant effect on the

average effort required to decode a block, and hence on the average data

throughput rate.

It is possible to restrict the number of binary perms attempted in order to
increase the decoding speed. However, as the number of perms tried is
decreased from 10, more and more of the higher weight error patterns
become 'untrappable' and thus the coding performance is degraded. The
degradation is, however, gradual as the highest weight error patterns are
also the least probable, and therefore they do not affect the output
error rate as much as the lower weight patterns. For example, for the

(23,11) code. if all 10 perms are used then all patterns of weight 5 and

less are trappable. and 82% of weight 6 patterns are trappable. If only

5 perms are used then all patterns of weight 3 or less are trappable, with
99% of weight 4,85% of weight 5, and 65% of weight 6, also being
trappable. In this way a trade-off of coding gain versus data throughput
speed can be established.

5. Microprocessor Implementation

5.1 Hardware Structure

The development decoding system is based on an Intel 8080A microprocessor
and uses the standard SDK-80 system development kit, with additional RAM
and two specialised hardware modules which perform syndrome calculation
and hard-decision bit permutation. The development system is shown in

figure 1, and as well as executing the actual decoding schemes, allows for

the input and editing of programs, and the output of performance

statistics.

The syndrome generator is shown in figure 2, and is of the type shown in

figure 4, with the added refinement that syndrome weights are calculated.



370

paper
tape matrix
reader printer

demodulator

2K

RAM . t output

I/O UART CPU .~npu interface

INTERFACE ~nterface

permer

Fig.1. DEVELOPMENT SYSTEM

data bus

,

Fig.2. SYNDROME GENERATOR MODULE



371

data bus

permutat. n
network

,

!~dreSS and bus contr~V control '

~ig.3. ~ERMUTATION MODULE ,

:-
j

f

Fig.4. SlNDROME GENERATOR (23,11)

,

,---

?



372

Fig.5. (23,12) HARD DECISION

10

18K Software

/'"

10-3

alp

BER

Uncoded

/'

10-4 Off-line or

6.5K Software

18K Mixed

1

t

[';~j.:'C\ H{Y

10-6

3

b 0



373

Maximum Throughpu Speed ( its/see)

10 1.2 1.9 3 5
5 1.8 2.7 4.1 6 8 11 14 16
2 2.7 3.5 4.5 6

1 Fig.6. (23,11) SOFT-DECISION

MIXED IMPLEMENTATION

10-3

O/P

BER Uncoded

/
10-4

10-5

10-6

3



374

The syndrome generator has its input/output organised as locations in
memory, thus enabling the processor to read or write directly to it.
Operation of the generator under program control is as follows. The
syndrome generator is first loaded with the 23 bit received block by

writing 3 bytes of 8,8, and 7 bits to the 8-bit input register. After

each of the bytes has been loaded, 8 clock pulses are applied to the

registers, thus shifting the information into the Galois Field (2) divider.

The bistable X ensures that the eighth (unused) bit of the third byte is
not s,hifted into the divider. The syndrome is now available in the divider

register. The feedback on the divider is then disabled, and a further 11
bit cyclic shift of the divider register is made, to accumulate the weight

of the register's contents into the weight counter, and replace the

syndrome in the register. Syndrome and syndrome weight outputs are then

directly available onto the data bus by reading the divider and weight

registers, which are memory-mapped. The syndrome generator also has the

ability to compute the syndrome of a single place cyclic shift of the

received block, by performing a single place shift of the current contents

of the divider register, with feedback enabled. To do this the divider

register is clocked by the processor write signal when the control address

of the syndrome generator is selected. Again, this is followed by an 11

bit cyclic shift to calculate the weight of the new syndrome. The syndrome

generator is clocked by the processor clock at approximately 2MHz. This

ensures that the actual time taken to calculate syndrome and syndrome

weight is equivalent to a few machine instruction times, which means that
as far as the software is concernedthese are available 'instantly'.

Bit permutation of the hard-decision received blocks is performed by the
circuit shown in figure 3, which consists of five 8-bit latches, the three
output latches being tri-state. The operation of the bit permer is as
follows. The block requiring permutation is fed to the permer in three

bytes, the first to latch 1, the second to latch 2. As the third byte is

written to the permer, latches 3, 4, and 5 are enabled and the current

information on the data bus, as well as the outputs from latches 1 and 2,

are loaded into these, via the permutation network. As the outputs of

latches 3, 4, and 5 are read by the processor, the information on the data

bus is latched into the corresponding input latch. In this way the action

of reading the output of the permer automatically forms the next perm in

the latch outputs, thus making the execution of multiple permutations a
simple matter of repeated read commands. Note, however, that the permu-
tations are executed in numerical order, so that extra software control is
required to run through perms in the optimum order.

The input interface accepts data from the demodulator in the form of a
parallel 4-bit quantised estimate of each channel digit, which can there-

fore take values between 0000 and 1111. The interface separates the 4-bit

estimate into a hard-decision estimate, and three bits of soft-decision

information. The hard-decision bits are clocked into an 8 bit register,
to form a byte of hard-decision information, while the soft-decision infor-
mation is treated as a 'nibble' of 4-bits, and therefore packed two to a
byte. Thus for every 8 channel bits there are 5 bytes of data to be input
when using the soft-decision algorithm, or one byte when using hard
decision.

5.2 Software Structure

The input of data from the input interface takes place under interrupt
control, there being 4 interrupts required per 8 channel digits, to input
the 5 bytes of information. For hard-decision decoding, only one interzupt
per 8 channel digits is required.



375

The storage area allocated to the input data depends on the amount of RAM

available, which can be easily expanded to 64K, and is used in a cyclic

order to provide an automatic buffer capability. In the case of hard-

decision the location of the buffer input and output is tracked by two

pointers which are incremented modulo the size of the buffer area. In
the case of soft-decision the hard and soft data are organised in separate

streams in such a way that the address of both sets of information bear a

constant relation to each other, so that again only two pointers are

needed.

Blocks are then processed according to the algorithms described in. section

4. In addition as processing carries on a check is kept on the state of

the buffer. Also, input interrupts occur which must as a matter of prioTtt¥

be serviced. Corrected message bits are then output as they become

available, although this could proceed in synchronism with input interrupts

if output buffering is used.

The storage requirements for implementing the algorithms described are

between one-half and 1K of ROM for program, and 256 bytes of RAM for hard-

decision buffer storage, and program variables. Soft-decision requires a

correspondingly larger buffer area. As far as programming is concerned,

the need for high speed processing has led to the programs being written
very much 'in-line'. That is, subrouting and looping have been removed as

much as possible from the time-critical sections of the programs, in order

to keep overheads to a minimum.

6. Performance Results

The performance of the hard and soft-decision permutation algorithms has
been investigated on the microprocessor system under conditions of Gaussian
noise. Binary antipodal signalling with equal-spacing 16-level quantis-

ation and matched filter detection is assumed. The bit probability of

error for the Gaussian channel is given by the Q-function as:

p = Q (12~/NoR), where No is the single-sided noise power density, Eb is

the energy per information bit, and R is the code rate. Note that all

performance curves are corrected for rate, that is, plotted versus Eb/No,

to ensure a valid comparison between coded and uncoded transmission.

Figure 5 shows the performance of the (23,12) Golay code using hard-
decision decoding with both software only, and mixed software/hardware

implementations. Under offline decoding conditions, it can be seen that

the full hard-decision performance of the code is obtained. When a buffer

limit of 32 blocks is introduced this same performance can be obtained at

data throughput rates of 6.5 bits/sec in the case of a software only

implementation, and 18k bits/sec in the case of a mixed software/hardware-

modules implementation. The effect of increasing data throughput, which is

to degrade the coding performance, is also shown. The degradation occurs

because of the decoder action taken when the number of blocks in the buffer

exceeds 32. Under these conditions the decoder simply outputs data blocks

without decoding at all, until the number of blocks is below the limit.

The degradation is not significant for rates below 9.5K bits/sec (software),

and 23K bits/sec (mixed). The degradation gets progressively worse with

increasing data throughput, and is quite severe at 18K bits/sec (software)

and 32K bits/sec mixed, for low signal-to-noise ratios. Note that the

actual size of the buffer is 64 blocks, and the performance degradation
could be reduced if a bigger buffer was used, with a more complex buffering

algorithm.

Figure 6 shows the performance of the (23,11) expurgated Golay code using
soft-decision mixed implementation decoding. When the full 10 perms are

used it can be seen that the code's performance is only about O.4dB worse

than the optimum maximum-likelihood decoder (M.L.D.). Furthermore,



~

376

restricting the maximum number of perms to 5, and 2 (as is used in hard-
decision) degrades the code's M.L.D. performance by 0.9dB and 1.5dB
respectively, at a user error rate of 10-5. Also shown are the maximum

throughput speeds that can be achieved at various signal-to-noise ratios,
without any performance degradation. Operation above these speeds will

involve a rapid degradation resulting in a performance curve similar to

those in figure 5. That is, a curve which degrades from the point at
which the operating speed exceeds the maximum speed indicated. However,

degradation could be made more gradual by resorting to hard-decision
decoding, rather than simply outputting undecoded blocks, when the buffer

limit is exceeded.

7. Discussion
J:t has been shown that, even at poor signal-to-noise ratios, the 8080A
microprocessor decoding system as built can achieve the theoretically

predicted coding gains at speeds of the order of 20K bits/sec for hard-
decision, and lK bit/sec for soft-decision, by using permutation decoding
on the (23,12) and (23,11) Golay codes. At hi8h signal-to-noise ratios
much faster speeds can be achieved. Given the present system, soft-

decision throughput speeds could be increased by reducing the number of
quantising levels to 8, thus reducing the number of bytes per channel bit
transferred into the processor; or by operating the input under D.M.A.
control, thus freeing the processor of input duties at the expense of more

hardware.

The use of latest generation processors, however, together with program
optimisation could be expected to increase throughput speeds and/or
reduce implementation package count further. In particular, the 9080 is
available in a version approximately twice as fast as the 8080A used.

Alternatively, the 8085 makes possible the implementation of the hard-
decision software-only program with a total of 5 packages, and would be
1.3 times as fast as the present system. In general, the maximum through-
put rates obtainable with the present generation of general purpose 8 bit
microprocessors would not be much more than twice those obtained with the
existing system. The use of 16 bit processors, however, in particular
the Plessey MIPROC would give speed increases of about ten times, and
would be necessary if it were required to decode longer and more power-
ful codes. The only way to achieve even further speed increases would
be to base a system on a bipolar bit-slice microprogrammable microprocesocr,
such as the 2900 series. Such a system would enable structure to be
specifically tailored to the decoding task and would probably realise
speed increases of one or two orders of magnitude, but at the expense of
greatly increased complexity (30-40 chip implementatio~ and developmenttme.

8. References

1. Wozencraft, J. M., and Jacobs, I. M. : Principles of Communication
Engineering, Wiley New York, 1965.

2. Heller, J. A., and Jacobs, I.M. : 'Viterbi Decoding for Satellite and
Space Communication', Linkabit Corporation, 1971.

3. Chase, D. : 'A Class of Algorithms for Decoding Block Codes with
Channel Measurement Information', IEEE Trans., IT-18, 1972.

4. MacWilliams, F. J. : 'Permutation decoding of systematic codes',

B.S.T.J., 1964,43.

5. Goodman, R. M. F., and Green, A. D. : 'Microprocessor-Controlled Soft-
Decision Decoding of Error-Correcting Block Codes', IERE Conference

Proceedings, No. 37, Loughborough, 1977.


