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Introduction

In this paper we address the problem of probabilistic inference in a rule-based inference net. Rule-based inference is
based on a set of probabilistic rules of the form

If Y = y then X = x with probability p ,

where Y and X are discrete random variables, with y and x being elements of their respective alphabets. Y may be a

conjunction of basic propositions, Y 1 = Yl,..., Y k = Yk, but X = x is restricted to being a simple proposition. Consider

that we have N such random variables, including Y 1, . . . , Y k and X. In this sense any given rule set characterises to some

degree of accuracy the joint probability distribution of the N variables. We have recently introduced [1] a measure for the

information content of a rule, called the J-measure, i.e.,

J(XjY = y) = P(Y)LP(xIY).log(~ ( IY ) )) (1)
% P Y

which can be interpreted as the discrimination between the hypotheses that the variable X is dependent, or independent, of

the event Y=y. The ITRULE algorithm [2,3] uses the J-measure to induce the most informative set of probabilistic rules,

based on sample data.

The primary goal of this paper is to investigate the appropriate theoretical equations for Bayesian updating using

probabilistic rules, and then to analyse carefuly what assumptions and techniques can be used to render the updating

practical. Our results may be interpreted as a quantitative demonstration of the recent assertion that probabilistic rule-

based systems lack semantic modularity [4], i.e., we show clearly that rule transition probabilities in any knowledge base

are, in general, dynamic rather than static. We propose a maximum-likelihood type of updating algorithm to minimise the

effect on inference of such probability changes.

Basic concepts of rule-based updating

We begin by considering singly connected inference structures, where rules correspond to links, and nodes correspond

to propositions of the form X= x. We define the notion of a source, S = 8, which is a proposition whose probability has

been determined via the external environment, i.e., a reference point from which to propagate a posteriori probabilities.

A posteriori probabilities with respect to the source proposition s are denoted by the subscript 8, e.g.,~W ~~ that

P.(x) # p(xls) unless P.(s) = 1. In this sense we are dealing with the general case of uncertain evi~. In 13]we~~e
that

P. (his) = p(hls) (2)

or that transition probabilities emanating directly from the source are invariant to changes at the source. More generally

we find that

p.(h1,...,hnlel,...,ek,s) =p(h1,...,hnlel,...,ek,s) (3)



so that any transition probability conditioned on s is invariant to changes in s. The corollary to this statement is more

interesting: in general we have that

p,(h1,...,hn,slel"..,ek) !p(h1,.."hn,slel"..,ek) (4)

and in particular,
p,(hle) ! p(hle) . (5)

This result states that rule transition probabilities are liable to change depending on changes in probabilities of propositions

which are not directly linked to either the consequent or antecedent propositions, This means in turn that the use of static

rule transition probabilities in a rule-based expert system represent an assumption on the part of the system designer unless

those probabilities are 0 or 1, i.e" they are facts.

The general updating equation (for updating a conditional probability) is of the form

p,(hle) = h'.~ + o,.!:.=~ (6)

p,(e) p,(e)

where

h'=p(h,els)=p,(h,els) and S=p(h,els)=p,(h,els), (7)

i,e., 0" and S do not depend on p, (s), they only depend on a priori probabilities. However the presence of higher-order terms

on the right-hand side leads to the fact that to update a transition probability based on k prior pieces of evidence requires

probability information up to order k + 2, a requirement which is generally impractical.
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Figure 1: singly-connected inference net

Practical alternatives

Among the possible alternatives for reducing the complexity of equation (7) we conclude 13] that the widely-used

conditional independence, or partial Markov, assumption of the form

p(elh,s) = p(elh) /~---"'~--~,~8)

is the most appropriate, Note that equation (8) is the so-called "weak" form of conditional independence and, hence, does

not suffer from the inadequacies of the stronger "PROSPECTOR-type" assumptions (involving h) as analysed by Johnson

15] among others. The conditional independence assumption effectively renders the transition probabilities static provided

they are in the same "direction" as the source probability propagation (forward propagation). For probabilities on backward
propagation paths the rule transition probabilities are liable to change. Hence in Figure 1 the probability p,(hlel) = p(hlel)



if (8) holds, while p.(hle2) t p(hle2) in general whether (8) holds or not. Failure to keep track of the latter case implies

that the system is not modelling context, with a consequent degradation in inference capabilities. For example a system

based on backward chaining may over-estimate the relevance of e2 in a given context, e.g., after s has been determined.

Problems and solutions due to multiply connected networks

It may be argued that, for uncertain reasoning, multiple-paths from evidence to hypotheses are more realistic than

single-paths and, in addition, are more powerful if used correctly. Considering multiple paths from evidence to hypotheses,

we find that the requirement for point-valued a posteriori probability estimates makes the problem particularly difficult.

Relaxing this requirement to that of having lower bounds on the probability of each proposition and its negation makes

it much more straightforward to handle multiple paths. In [3] we describe an interval-valued inference system based on

bounding. For updating the a posteriori probability of a single hypothesis based on multiple pieces of evidence which are

directly linked to the hypothesis, we use a maximum-likelihood type of updating rule, defined as follows:

t(h) = m.ax {p(hlei).p(ei)} (9)

l~.~n

f(h) = m.ax {p(hlei).p(ei)} , (10)
l~.~n

where the ei, 1 ~ i ~ n, are the propositions (possibly conjunctive and by no means mutually exclusive) which are directly

connected to h. t(h) and f(h) are lower bounds on p(h) and p(h) respectively. In a sense we are choosing the most likely

event, of the events we know, in the probability space defined by the set {h, e1,..., en}. If this "most likely event" does

not have a very high probability then the inference is cautious. On the other hand if the event has a high probability then

both p(ej) and p(hlej) must be near 1. In particular, if p(ej) and p(hleJ') are both 1, the inference is certain and facts are

being propagated. We note in passing that Pearl has recently proposed (independently) a scheme quite similar in spirit,

namely, MPE or "most probable explanation" [6].

Inference involves a trade-off. Stronger inference statements allow us to be more decisive, but these statements may not

always be correct. The maximum likelihood equations seem an appropriate compromise. If p(hleJ') = 1 then the updating

rule is provably correct, since the transition probability corresponds to a fact and is invariant to any changes to other

propositions. However when p(hleJ') < 1 then the statement that

p(h) > p(hlej)p(ej) (11)

may not be true. Returning to our earlier notation, we see that the correct statement to make is that

p(h) > P{el,...,e", i;tj} (hlej)p(eJ') . (12)

Of course P{el,...,e,,}(hlej) is our old friend, the unobtainable updated conditional probability. The transition probability

from eJ' to h may be affected by the probabilities of the other ei.

We introduce the following notation. We have a proposition h, and n evidential propositions e1,..., en. For any

proposition ej, let OJ be a variable whose distribution is defined as the joint probability distribution of EI'.. ., EI'.. ., ED,

J. t 1, i, n, where each EI is defined as a variable taking values in the alphabet {ei, t'i}. In words, OJ is defined as the joint

variable of all the evidential propositions except for ej. We denote Ee' or Eo, as the sum over all elements

C Oiihe ~;;h~"e\of the alphabe
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of EJ or OJ respectively. Using this notation, the correct updating equations are

p(h) = Poi (hleJ' )p(ej) (13)

= (~p(hlej,oj)poj(ojleJ') )p(ej) (14)

1

rather than the ML equation given by equations (9) and (10). The ML equation will be in error whenever

p(hleJ', OJ) < p(hleJ') (15)



given that oJ' and eJ' are both true. This occurs on average with probability p(oJ" eJ')' Define the set W to be the set of

component events of OJ such that equation (15) holds, i.e., W = {oJ' : p(hlej, oJ') < p(hlej)}. Hence we define the average

error T as the size of the error multiplied by the probability of its occurrence:

T= (L (p(hlej) -p(hleJ.,oJ')).p(oJ'lej) )p(ej) . (16)

ojEW

T is a measure of the average error in using the ML equations for updating. Obviously we would like T to be small if

possible.

Theorem:

We have

T ~ (p(hlej) (1- p(hleJ')) ) .p(ej) (17)

~ O.25p( eJ') (18)

The proof of this result is given in [3]. From this theorem we see that as p(hleJ')' the initial rule transition probability

(not updated), approaches 1, the bound on the error goes to zero. This is a consequence of the fact that the closer p(hleJ')

is to 1 initially, the less susceptible it is to changes in the probabilities' of other propositions. As mentioned earlier, for the

special case of p(hleJ') = I, it is invariant to change. The bound is attained if and only if all of the p(hlej, OJ) (for OJ E W)
are equal to zero. Such zero terms, or even near-zero terms, have the interpretation that p(iileJ" OJ) = 1- p(hleJ" oJ') must

be near 1 and hence, either such terms will either be represented explicitly as rules, or if not, their overall probability of

occurrence, p(ej, oJ" ii) must be quite small. Using ITRULE to generate the rules in the network helps to keep T small,

for if no rules exist for terms like p(hleJ.,oJ') in the definition of T, then either p(hlej,oj) ~ p(h) or else p(eJ.,oJ') is very

small. In either case the contribution to the error T should be small. Hence in the context of using rule-sets as generated

by ITRULE, the bound on T is conjectured to be considerably larger than the actual value of T in practice.

Conclusions and future directions

The focus of our technique is rule-based or event-based reasoning rather than the more common variable-based reasoning.

We have coupled the learning and inference phases in an implicit manner, such that the learning (via ITRULE) promotes

the accuracy of the inference scheme (maximum likelihood) being used. Incorporating the ML equations into a practical

inference algorithm will require further work on conflict resolution, non-monotonic reasoning, etc.
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