
Information-Theoretic Rule Induction

Rodney M. F. Goodman and Padhraic Smyth
Department of Electrical Engineering

California Institute of Technology, 116-81

Pasadena, California 91125

1 Background and motivation incremental learning (e.g., in decision tree design the
entire tree algorithm must be re-run) while symbolic

The problem of induction or "learning from ex- algorithms often incorporate incremental learning as

amples" can roughly be divided into two distinct cat- a basic mechanism. On the other hand, symbolic
egories, namely the symbolic manipulation approach techniques cannot handle noise in the instance data

and the statistically-oriented approach. Within each very well (due to the implicit assumption of a

category exist a variety of theories and techniques for deterministic mapping) while the statistical approach

inductive inference. The better known symbolic tech- inherently takes account of such noise. It is worth
niques include Mitchell's version spaces algorithm [1] noting at this point, that in the light of the above

and the AQ11 algorithm of Michalski [2]. Statistical of the remarks we can interpret the recent learning
techniques for induction have primarily evolved from framework introduced by Valiant [6] in the following

classical pattern recognition theory and embody such manner: Valiant's work extends the symbolic approach
principles as non-parametric statistical estimation to the extent that the learning of the function
(e.g., the CART algorithm by Breiman et al. [3]) and F is modelled probabilistic ally. However this is
information-theoretic ideas (e.g., the work of Quinlan fundamentally different to the statistical approach

[4] and Goodman and Smyth [5]). which learns a function which is itself probabilistic and

Induction can be viewed as a search for hypotheses so, unfortunately, the results obtained using the Valiant

(restricted to some hypothesis space) to account for a framework are not directly applicable to statistical
set of instances or examples which are often assumed algorithms.

to be restricted to some instance space. The general Production rule systems are a good example of
learning problem consists of being given positive and symbolic algorithms which are based on cognitive

negative instances of some concept and trying to find science and yet which might benefit from statistical

a hypothesis in the hypothesis space which "best" techniques. While such systems have seen widespread

describes this concept. Let v be any positive instance in application in recent times, there remain many

the instance space for some concept. The fundamental fundamental limitations, such as the knowledge-

difference between the two inductive approaches lies acquisition bottleneck in obtaining the rules and the

in the fact that symbolic algorithms try to find a many problems which occur when trying to control

deterministic mapping, or a Boolean function F, from the behaviour of large rule sets. We believe that
the instance space to the hypothesis space, to describe the lack of a quantitative well-defined "rule-preference
the concept, i.e., we seek an F such that F(v) = 1 for measure" is the root cause of many of these problems.

all v. The statistical approach, however, tries to find Such preference measures are required both to rank

a probabilistic mapping, or a probability distribution, hypotheses during induction (cf. Michalski [7]) and
between the two spaces, i.e. prob(F(v) = 1) ~ to resolve conflicts during rule-based inference control.

1 - 8, where 8 is some inherent function of the given Rule-preference measures based on symbolic techniques

hypothesis space, 0 :5: 8 < 1. alone are non-robust. Hence, we recently proposed the

St t . t . al t ch . t asil d al .th J-measure [8] as an information-theoretic alternative
a 18 IC e mques canno eye WI. .

to existIng approaches. The J-measure quantIfies the
information content of a rule or a hypothesis. In this

. This work was supported in part by Pacific Bell and paper we will focus on the properties of the J-measure
Caltech's Program in Advanced Technologies, sponsored by as it relates to induction from a cognitive science
Aerojet General, General Motors and TRW viewpoint, i.e., we will investigate how the mathematics
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supports the theoretical inductive mechanisms of demonstrate the appropriateness of this choice. In
generalisation and specialisation (information-theoretic an intuitive sense, the average measure relates to the

aspects of the measure are treated in [8]). Following the average value of the rule information content, while the

theoretical discussion, we define the ITRULE algorithm instantaneous measure can be used to rank rules after

which uses the newly-proposed measure to learn an the event Y = !/ has occured.

optimal set of rules from a set of instances and we

conclude the paper with an analysis of experimental 3 Ranking hypotheses using the J-
results. measure

.. We examine the nature of the J-measure as a

2 The InformatIon content of a rule basic preference measure among competing hypotheses.
We propose to use the following simple model of a There appears to be a general consensus that the

rule, i.e., two primary criteria for evaluating a hypothesis
are simplicity of the hypothesis and goodness-of-fit

H Y =!/ then X = z with probability p (Angluin and Smith [9], Gaines [10] and Michalski

[7]). The problem is to combine these two criteria
where X and Y are two attributes (dimensions in into a single measure 80 that the hypotheses can be
the instance space) with "x" and "y" being values in ordered. Let us interpret the event X = z as the

their respective discrete alphabets. For our purposes concept F(fJ) = 1 to be learned and the event (possibly
we may treat X and Y as discrete random variables. conjunctive) Y = !/ as the hypothesis describing this

We restrict the right-hand expression to being a concept.

single value assignment expression while the left- The J-measure is the product of two terms. The

hand side may be a conjunction of such expressions. first, p(Y = II), is the probability that the hypothesis

Intuitively we can view the two random variables as will occur and, as such, can be interpreted as a measure

being connected by a discrete memoryless channel. of simplicity. (Angluin and Smith [9] also mention this
The channel transition probabilities are simply the idea, the more probable a hypothesis the simpler it

conditional probabilities between the two variables. should be). The second term is j(XjY = II). This
A rule is equivalent to the occurence of a particular quantity as defined in equation (1) is equal to the

channel input event. cross-entropy of X with the variable 'X conditioned

As we have shown in detail elsewhere [8], the on the event Y = II'. Cross-entropy is well known as a

j-measure is a particular formula which we defined goodness of fit measure Qetween two distributions (cf.

for calculating the information we receive about the Shore and Johnson [11]). It can be interpreted as a

variable X given the event Y = II, or I(XjY= II). We distance measure where 'distance' corresponds to the

define the j-measure as amount of information required to specify a random

variable. It is frequently used to find the conditional
. (X. Y = ) = ~ ( I ) 1 (~ ) ( 1 ) distribution which most closely agrees with the original

J, !/ L., P z!/ . og ( ) d. .b . Th . if d 1 .f hz p z lstn utlon. e cross-entropy 18 zero an on y 1 t e

two distributions are exactly equal. For our purposes
and henceforth we refer to j(XjY= II) as the instanta. we must be very careful to interpret what we mean by

neous information while the afJerage information con- goodness-of-fit. In the probabilistic manner for which

tent is defined as the problem is defined we have an a priori value for

p(X = z) = p(F(fJ) = 1). This represents our
J (XjY =!/) = p(!/) . j (XiY = II) (2) best probability estimate as to whether an arbitrary

instance fJ is contained in the concept or not, without
Note that this measure is an average in the sense any hypothesis. By introducing a hypothesis we now
there is an implicit assumption that the instantaneous have an a posteriori value, p(F(fJ) = llY = II).
information from the other "Y -terms" is zero, which Without loss of generality we can assume that
is consistent with the cognitive science approach
to production rules where essentially we can only p(F(fJ) = llY =!/) ?; p(F(fJ) = 1) (3)

draw inferences about certain events and not others.
The concept of afJerage information is important for since otherwise we can define F(fJ) = 0 as the

induction and so J(Xj Y = II) (henceforth to be hypothesis of interest. The measure attains its

referred to as the J-measure) is the measure we use maximum value (for a given F and Y) if and only if
to rank hypotheses for induction (as opposed to the
instantaneous measure). In the next section we will p(F(fJ) = llY =!/) = 1, (4)
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whereas the measure is minimised if and only if where a = ~~.!1, i.e., if the fractional increase
in simplicity is greater than the fractional decrease in

p(F(tI) = llY = Y) = p(F(tI) = 1), (5) cross-entropy.
. h h h .. b h d Let us consider a very simple example of

I.e., t e ypot eslS IS no etter t an a ran om

I . t . C . d I .

th t . l d .b d ,. b bil ' . In d . genera ISa Ion, onsl er a ru e m e rep I e omaln
guess ase on a prIorI pro a Itles. terme late

h '
h th t. , W IC says a

a postenorl values, 1 < p(F(tI) = llY = Y) <

p(F( tI) = 1), provide a monotonic measure of the If is.snake is true and habitat is desert

information-theoretic distance between the uncertainty
h I . .

h b b . l .f th d .th t th h th ' d t en no. egs IS true WIt pro a Ilty 1
0 e ran om guess WI ou e ypo esls, an

complete specification, Given two hypotheses, Y = Y

h b( ' k ) b( I ) 0 3d Z d . '

th t I f lit were pro Is,sna e = pro no. egs = .,

an = z, an assuming WI ou OSS 0 genera y . .

th t (X -
IY - ) 0 5 th ' t ' I b prob(habitat = desert,ls.snake) = 0,2, and we

a p - x - y > ., en I can easl y e
I . th O tshown that genera ISe IS 0

j(Xj Y = y) > j(Xj Z = z) (6) If is.snake is true then

no.legs is true with probability I,

if and only if

We find that J, = 0.52 > J. = 0.46 bits, where J,

p(X = xlY = y) > p(X = xlZ = z). (7) and J. are the information contents of the general and

more specialised version, respectively,
In this sense j(Xj Y = y) clearly corresponds

S . an t .

pecI sa Ion:

to a goodness of fit measure, Hence we can

Th ' t h ' . d t fi h th d .
. IS ec mque IS use 0 re ne ypo eses an IS

conclude that the J-measure possesses approprIate
t .

II th ' t f Ii t . , th t.. , essen la y e OppOSI e 0 genera sa Ion m a a
propertIes for orderIng hypotheses as It trades-off a

d "

Ii . t . t d d ff ~ . .

. ..

( - ) . ecrease m sImp CI y IS ra e -0 lor an Increase m
sImplicIty component, p Y - Y ,wIth a goodness-of-fit

d r fi ' r b tt h th ' ,

t .(X Y ) goo neSS-Ol- t m return lor a e er ypo eSlS, I.e., a
componen ,J j = Y , higher preference measure. We will see later how the

4 Generalisation and specialisation ITRU~E algorithm employs specialisation to discover

using the J-measure an optImal set of hypotheses, Let J, and J. be the
N .. h J b information contents as defined earlier, Consider an

ext we InvestIgate ow our -measure can e ,..

I I .

hd I H II d al [12] d fi example m the ammal domaIn. The genera ru e mlg t

use to generate new ru es, 0 an et. e ne b

the basic operations for the induction of new rules e

as condition-simplifying generalisation, instance-based If has.wings is true
generalisation and specialisation.

h fl . .

h b bil ' 0 9

t en can. y IS true Wit pro a Ity .
Condition-simplifying generalisation:

The basic principle at work here is that rules which and the more specialised version might be

have irrelevant conditions on the left-hand side, can
drop these conditions to become better rules, In a more If has.wings is true and is.penguin is false

formal sense, the operation increases the simplicity of then can,fly is true with probability 1.0

the hypothesis. In a good generalisation scheme this

increase in simplicity is traded-off against a change It is not intuitively obvious which rule is better on the
in goodness-of-fit in order that the overall hypothesis average. If we specify prob(can,fly = true) = 0,27 and

preference measure is increased. Consider that we have prob(has.wings = true) = 0,3 then we find that J. =

a rule with the joint event Y = y, Z = z as the left- 0,47 bits and J, = 0.38 bits, i.e., the more specialised

hand side, where y # z. If we drop the condition Z = z rule is better. Without a quantitative measure, such as
then we have the J-measure, it would be very difficult to rank rules

in this fashion.

p(Y = y) > p(Y = y, Z = z) (8)

Instance-based generalisation:

so that the simplicity component of the more general Instance-based generalisation proceeds not from rules
rule is always greater. In general, the generalisation but from examples. Most induction algorithms
step will only increase the J-measure if (statistical methods in particular) use this technique

as the fundamental rule-generation mechanism. In our
j(Xj Y = y) > a.j(Xj Y = y, Z = z) (9) discussion so far we have used probabilities without
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indicating where these probabilities were obtained, learn multiple hypotheses for multiple concepts - so
Theoretically there is an implicit assumption that these we need a method for ranking hypotheses not only for

probabilities are "true" probabilities which translates the same but also for different concepts, The J-measure

into a practical assumption that they are estimated allows us to do exactly this, Automatic rule induction
from frequency counts on very large samples of data, for expert systems is but one application of this idea,

When large sample data is available (as for example where we need not only classification rules but also

in vision problems) then we would like to use the rules linking intermediate concepts,

maximum-likelihood estimator for p, namely The ITRULE (Information-Theoretic Rule Induc-

tion) algorithm takes as input a set of feature vectors
p = ..!:. (10) (where the N features are restricted to being discrete-

N valued) and it produces as output a set of K probabilis-

, , tic rules, The rules are the K most informative rules

as an estImate for the true p (where r IS the number '
I bl f th d t k d b th J' , , aval a e rom e a a as ran eye -measureof successes m N random trials), However If there (th t K ' d fi d b th ) As ' e parame er IS e ne y e user, preVI-

are very few samples we would prefer to use a more , " ,

, h ' h ' t ously mentIoned, the rules are restricted to conjUnctIve
conservatIve tec mque suc as a maxImum en ropy ' th I ft d ' gl , th' expreSSIons on e e ,an a sm e expressIon on e
estImate, ,

hth f ' , h ' h rig ,We propose t e use 0 a pomt estImator w IC
Th al ' h I th h h l' t ' t' . . . . e gOrIt m cyc es roug eac lea ure m urn

mterpolates between an mltlal estImate and the , ht h d 'd It k k d I' t f th K. lik l .h d . h I . as a rig an SI e. eeps a ran e IS 0 e
maxImum e 1 00 estImate as t e samp e sIze . l' t . I d t ' d t th t . t. .. . most mlorma Ive ru es e ermIne up 0 a pom.
mcreases. We belIeve technIques such as thIS are an

Th . l' ' t t f th Kth I .. d. ., . . e InlOrmation con en 0 e ru e IS use as a
Important step m brIdgmg the gap between symbolic .. . d t . h th t. . '. runnmg mInImum to e ermIne weer or no newand statIstIcal approaches, The estImator we use IS I h Id b . t d . th I' t F h l' tru es s ou e Inser e m e IS. or eac lea ure

a + r + 1 the algorithm must find all possible left-hand sidep = a +.B + N + 2 (11) expressions which yield,rules ~i.th greater informatio.n
content than the runnIng mInImum. The search IS

where a and .B are parameters of an intial density constrained considerably using information-theoretic
and can be obtained from initial subjective estimations bounds on specialising the J-measure [15],
[13], The use of this estimator effectively introduces .
a sample-size dependent noise term with the desired 6 ExperImental results

effect that the information content of the rule (J- We have implemented the ITRULE algorithm

measure) increases with sample-size, together with comprehensive data manipulation tools,

We have clearly shown that that the J-measure sat- into a software package that runs on Macll and SUN

isfies the basic requirements of an induction measure as workstations. In this section we show sample outputs

defined by Holland et al, [12], i.e., it supports the basic of the algorithm, using published statistical data on
inductive mechanisms of condition-simplifying general- mutual funds [16],
isation, instance-based generalisation, and specialisa- Figure 1 shows a set of typical raw data on

tion, mutual funds, Each line is an instance of a fund,

. and each column represents an attribute of the fund.
S The ITRULE algorIthm Attributes can be numerical or categorical. From this

We have introduced elsewhere [14] the notion of raw data a second set of data is produced to serve
generalised rule induction. This is is the particular as the input to ITRULE (Figure 2). The expert

learning problem we address in this paper, i.e., the has a significant say in this process which serves to
problem of discovering an optimal set of rules from a both categorise numerical data, and select attributes
set of instances. Most previous work in the area of of interest, Numerical data is categorised using two
learning has concentrated on single concept learning techniques. First, the expert can identify "obvious"
or classification, e,g., decision trees. However in categorisations. For example, the 5 year return can
data-driven applications such as rule-based expert be compared with the Standard and Poor's 500 index,
systems a more flexible approach is desirable. For ("S&P", above/below). Second, the software uses a

example, decision trees are necessarily restrictive in maximum entropy algorithm to automatically identify

representation and do not easily handle missing or statistically significant categorisations. The expert can
uncertain information, Generalised rule induction accept this advice or modify the value to make the
is more general than single concept learning or categorisation more meaningful,
discovering classification rules. In essence we wish to The ITRULE software then processes this table
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Fund Type 5 V.., diver- Bela 8ull Bear Smks Largest Distributed Distributed Net Dillri- Portfolio Total

Return% Illy (Bisk;Markel Market % Hokjing Dividends C8p Ga;ns Asset bulions as Turnover Assets

Perfom Per/om. er Ihare r Ihare Value S % of NAV Rate % M

Be8nc»d 135.6C 0.88 D 87 information 0.5 6.07 37.27 17.63 34 414.6

Grow1t1 32.5C 1.05E 8 81 ~nufaclure 0.11 0 12.4g 0.88 200 16
Grow1t1&lncome 883A 0.g6C D 821;nancial 0.16 0.41 11.g2 4.78 127 26.

Agress~e -24.4A 1.23E E 850il 0 0.6 6.45 8.30 161 64

Grow1t1&lncome 172.2 E 0.58 A 8 73 officeequlp 0.52 0.84 13.64 8.87 31 112.
Growlh&lncome 80.4 A 0.58 D 8 88 computerl 0.45 2.2 13.7 18.34 64 76

Grow1t1 52.78 0.86E D 85alrlinel 024 0 8.72 2.75 54 11.

Be8nc»d 143.8C 0.718 8 51 material I 0.66 0.7 1303 10.44 23g 19
Agre..~e 81.78 1.24C E 100l8chnoioeY 0.04 1.8 811 22.69 218 96

Grow1t1 105.4 A 0.898 D 88 _rgr 0.55 3.21 13.62 27.61 20 253

Grow1t1 83C 0.91C 8 84drugl 0 0 27.44 000 8 39

Grow1t1 1489A 09A E 871;nanclal 05 58 32.4 1944 37 4529

Figure 1: Part of initial data set

Fund Type 5 Year diver- Bela 8ull 8ear ~ Dislrlbutions Portlolio Total
Relurn% lily (Risk) Markel Markel S1~ Turnover ~s

Perlom Perlom >90% Rate

8a1anced below average underl p poor ~ high low large

~ Growth below average overl poor p ~ low high Imall

mUt8J Growth&lncome below high under1 a_age poor ~ low high Imall

Agressive below high overl poor poor r- low high small

Growth&lncome 8X7/9 low under1 p p ~ low low large

:8.:>11&..~~ Growth&lncome below high under1 poor P r- high low small
? Growth below high underl poor poor r- low low small

,'t~"'. Balanced 8X7/9 average under1 p P ~ low high large

Agressive below high overl average poor r- high high small
Growth below high under1 p poor r- high low large

Growth below average under1 average P r- low low am all

-1111"1,.\ Growth eolle hi h under1 oor ~ hi h low ler e

,:t Figure 2: Quantised data

IF AND THEN p(x/y) p(y) p(x) j(X;y) J(X;y)

1 5yrRetum aboveS&P Bull...J)erf good 0.9660.3110.5110.754110.23461

2 Bull-Ferf good Bear...J)erf NOT ~or 5yrReturn aboveS&P 0.2420.3560.6890.607430.21597

3 Bull-Ferf NOT good 5yrReturn belowS&P 0.978 0.489 0.689 0.40940 0.20015

4 5yrReturn belowS&P Assets small Bull-Ferf NOT good 0.1590.4780.511 0.390090.18638

5 Bull-Ferf good Bear-Ferf good 5yrReturn aboveS&P 0.1670.1890.6890.843340.15930

6 type NOT A Bull-Ferf good Assets large 0.7860.4560.4560.329600.15015

7 diversity NOT low Assets large Bull-Ferf good 0.8750.3440.511 0.432740.14906

8 Bear-Ferf NOT ~or Assets large 5yrReturn aboveS&P 0.2690.2780.6890.535370.14872

9 Beta over1 Bear-Ferf poor stocks>900/. yes 0.111 0.1890.611 0.786860.14863
10 type NOT G Bull-Feri good 5yrReturn aboveS&P 0.2860.3000.6890.49371 0.14811
11 Beta over1 Bear-Ferf poor type A 0.7220.1890.2440.727790.13747

12 type NOT A Assets large Bull-Ferf NOT ~or 0.0250.4330.2670.315280.13662

13 type NOT A Assets large Bull...J)erl good 0.8250.4330.511 0.310500.13455

14 Bull-Feri poor Assets small 0.0800.2670.4560.495540.13214

15 type NOT A Bull-Ferf good 5yrReturn aboveS&P 0.3810.4560.6890.288890.13161
16 stocks>90% no Assets large Bull-Feri good 0.8480.3560.5110.364390.12956

17 type NOTGI Bull-FerfNOTgood Assets small 0.1390.3890.4560.331540.12893
18 Bear-Ferf NOT ~or Assets large Bull-Ferf good 0.8850.2780.5110.459740.12771
19 Bull-Ferf good stocks>90% no 5yrReturn aboveS&P 0.3610.3890.6890.326760.12707

20 Assets large Bull-Ferf good 0.8100.4560.511 0.278040.12666

Figure 3: ITRULE rules
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to produce a set of rules. The rules are ran'ked in 4. J. R. Quinlan, 'Learning efficient classification pro-
order of decreasing information according to the J- cedures and their application to chess endgames',
measure. The K most informative rules are output Machine learning: an artificial intelligence ap-

where K is specified by the user. The user can also proach, R. S. Michalski,

specify the maximum order of the rules, that is, the J. G. Carbonell and T. M. Mitchell (editors), Palo
maximum number of left hand conjunctives. Figure 3 Alto, CA: Tioga, 1983.

shows a portion of the ITRULE output for the mutual 5. R. M. F. Goodman and P. Smyth, 'Decision tree
fund data set (th.e transition probabilities as listed may design from a communication theory standpoint,'

correspond to either xly or .fly). Several points of accepted for publication in IEEE Transactions on

interest emerge. We note that "obvious" rules appear, Information Theory.

confirming that the algorithm is on the right track. For 6. L. G. Valiant, 'A theory of the learnable,'

example, "if the performance in a Bull market is good Communications of the ACM, vol.27, no.ll,

and the performance in a Bear market is good then pp.1134-42.

the 5 year return is better than S&P500." We also see 7. R. S. Michalski, 'Pattern recognition as rule-guided

that a rule does not have to have a very high transition inference', IEEE Transactions on Pattern Analysis

probability to be in the set. Rules such as rule 20, "if and Machine Intelligence, PAMI-2, pp.349-361,

the fund assets are large then the 5 year return is better 1980.
than S&P500" are interesting in that they represent 8. R. M. F. Goodman and P. Smyth, 'An information-

new hypotheses which have been discovered in the data. theoretic model for rule-based expert systems,' to

The potential application of ITRULE for automated be presented at the 1988 International Symposium

knowledge-acquisition is clearly demonstrated even in on Information Theory, Kobe, Japan.
this quite simple example. 9. D. Angluin and C. Smith, 'Inductive inference:

. theory and methods,' ACM Computing Surlleys,

7 ConclUSIon 15(9), pp. 237-270.
In this paper we have clearly demonstrated 10. B. R. Gaines, 'Behaviour/structure

the applicability of the recently proposed J-measure transformations under uncertainty,' Int. J. Man-
for induction from both a theoretical and practical Mach. Stud. 8, pp. 337-365.

standpoint. In the early sections of the paper 11. J. E. Shore and R. W. Johnson, ' Axiomatic

we developed an interpretation of the measure as derivation of the principle of maximum entropy

a hypothesis preference criterion which trades off and the principle of minimum cross-entropy,' IEEE
simplicity and goodness-of-fit. We followed this Transactions on Information Theory, vol.IT-26,

by investigating how the measure supports the no.l, Jan 1980, pp.26-3.7.
basic inductive mechanisms of generalisation and 12. J. H. Holland, K. J. Holyoak, R. E. Nisbett,

specialisation. Finally we described the ITRULE P. R. Thagard, Induction: Processes of Inference,
algorithm and gave a practical example of its use. Learning and Discollery, Cambridge, MA: MIT

We can conclude that the relatively simple idea of Press, 1986.

the J-measure can support inductive procedures very 13. I. J. Good, The estimation of probabilities: an
well and is an interesting application of a statistical essay on modern Bayesian methods, Research

technique which takes into account the theoretical monograph no.30, M.I. T. Press, Cambridge: MA,
aspects of induction. 1965.
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