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SOFT-DECISION THRESHOLD DECODING OF CONVOLUTIONAL CODES

R.M.F. Goodman*, B.Sc., Ph.D.

W.H. Ng*, M.S.E.E.

Sunnnary

Existing majority-decision threshold decoders have so far been limited to

hard-decision decoding only, with a consequent loss in coding gain. In

this paper a new method for implementing soft-decision majority threshold

decoding of convolutional codes is introduced and explained. The method

is illustrated by describing soft-decision decoders for a simple random
error-correcting code, and also for a more complex diffuse random-and-

burst convolutional coding scheme.

1. Introduction

Binary convolutional codes have been shown to exhibit extremely good error-

control properties under both Gaussian and burst noise conditions. In the
case of the additive white Gaussian channel, there are several powerful

convolutional decoding schemes (sequential decoding, Viterbi decoding) that

yield high coding gains (5dB at a sink bit error rate of 10t-5).

Unfortunately, the hardware complexity of such schemes is high, as the

decoders are essentially large special-purpose computers. In addition,

the burst-noise performance of these powerfu+ schemes tends to be

~isappointing in comparison with convolutional code systems designed
specifically for burst-error correction.

The system designer is therefore often interested in convolutional decoding

schemes that sacrifice a few dB of coding gain in order to achieve low

hardware complexity with reasonably good burst and random error perform-

ance. For example, on the H.F. radio channel. Threshold decoding is one

method of achieving this aim.

Majority-decision threshold decoding (ref.l), is in terms of hardware, one

of the simplest convolutional decoding schemes possible, and is applicable

to a wide range of time-varying and fading channels. However, because the

scheme is not optimum, some coding gain is lost.

In this paper we present a soft-decision majority threshold decoding scheme
that improves on the performance achievable with existing hard-decision

decoders, thereby making up some of the lost coding gain, whilst still

retaining the inherent hardware simplicity of threshold decoding. It has

been shown (ref.2) that the maximum increase in coding gain that can be

achieved by us"ing soft-decision is about 2 dB for infinite-level quantis-
ation, and that the degradation involved in using equal-spacing 8-level

quantisation (as asummed in this paper) is only 0.2 dB. ~ve therefore
expect a maximum improvement of about 1.8 dB for soft-decision majority

threshold decoding when compared with existing hard-decision decoders.

In this paper we firstly outline hard-decision majority threshold decoding
and then introduce our soft-decision scheme using a simple constraint

length 2 code as an example. Next we describe our general method for
soft-decision decoding of multiple error-correcting codes, using a diffuse

random-and-burst error-correcting scheme as an example.

* Department of Electronic Engineering, University of Hull.
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c' = x
t t

CHANNEL - ~:Q~
Xt Xt Xt Xt-l

one 1 delay

Ct = Xt EB Xt-l

Fig. 1 - A simple convolutional encoder where g = 11 01

2. Hard-decision majority threshold decodi?g

A single-generator systematic convolutional code is one in which each

information digit is encoded into V code digits (giving a message through-

put rate of l/V), the first of which is the unchanged information digit.

In general, such a code is generated by a K segment generator sequence

g = g(l) g(2) g(4) ... g(2K-l), where K is the constraint length of the
code in segments, and each segment contains V digits. For simplicity, we

restrict our discussion in this paper to rate one-half codes.

Let us consider a rate one-half systematic code with constraint length

K=2 segments, to review the basic hard-decision majority threshold decoding

technique. The encoder for this single code is shown in Fig.l, and consists

of only a single one-bit delay element and a single modulo-2 adder (exclus-

ive-OR gate). Given a sequence of information digits x = ... Xt-l Xt
Xt+l ..., where t denotes the time unit of the information digit Xt' each

information digit is encoded into two code digits c~ and c~. c~ = Xt is

the unaltered information digit Xt ,and c~ = Xt-l m Xt is a parity

check sum based on the present information digit Xt and the K-l = 1

previous information digits. For serial transmission the coded digits are

sent to the channel in order c' c" by appro priate action of the switch.t t
The encoder/decoder configuration for this code is shown in Fig.2. On the

left of the diagram, the information digit Xt is encoded into c~ and

C' t '; in the middle, two noise digits n' and n" corrupt the coded digits
t t

c~ and c~ respectively; on the right is the decoder which realises the

(hard-decision) single-error-correction capability of the code. The

decoding action is explained with reference to the six points, a, b, c,

81' 82' and fi~-l. The six points are interpreted as follows:

a = x $ n'
t t

.. b = Xt-l m n~-l
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c = x @ x @ n"
t t-l t

51= a 6} b @ c = (Xt @ n~) ~ (Xt-l @ n~-l) @ (Xt @ Xt-l @ n~)

5 2= (x l @n tl
l )@(X t 2 @nl 2 )@(x 1 II) x 2 @nll 1) t- - - t- t- t- t-

nl = 1 if 5 = 5 = 1
t-l 1 2

0 otherwise

by cancelling information digits, 51 and 52 become:

5 = nl 6} nIl 6} nl
1 t t t-l

5 1m" mI (1)
= n wn wn

2 t-l t-l t-2

and it can be seen that the two parity check equations 51' 52 are

orthogonal on the noise digit nl 1. Thus if a single error occurst-
anywhere in the 5 digit span covered by the orthogonal check sums, the

only case when 51 = 52 = 1 is when n~-l = 1. In the decoder, the AND
gate sends an estimate n~-l of n~-l to cancel the noise digit n~-l

from the rece.ived digit (Xt-l 6) n~-l)' anp thus produce an estimate

x 1 of the transmitted digit x 1. From equation (1) it can be seent- t-
that if more than one error occurs in the 5 digit span covered by {51' 52}'

then the error correction capabili~y of the code is exceeded and the decoded

digit Xt-l may be in error.

The decoder described above can be improved by the use of feedback. This

is because if we are concerned with decoding Xt-l at the present moment,

then Xt-2 has already been decoded. We therefore have available an

estimate of the noise digit n~-2 before we decode Xt-l. Therefore 52

n' t

,- - - - - i -
ENCODER c' I I a b DECODER Xt-1

t I
I I

, I

1 ,

Xt Xt-11 CHANNEL I FEEDBACK t' _
11 I ,-- ---

I I
I I S
1 I 2

c" I , c
t I I

-- --I

n"t "AND" Gate
Fig.2 - A simple hard-decision majority threshold encoder/decoder
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can be simplified by feeding ba~k n~-2 to cancel n~-2 in equation (1).
. h S "" '01" 01' "'-,We may then replace S2 w~t S2 = 2 ~ nt-2 = nt-l w nt-l w nt-2 w nt-2.

If the estimate n~-2 is correct, that is n~-2 = n~-2' then S2 = n~-l m
n"

1 . This means that provided the previously decoded digit was correct,
t-

the decoder check sums {Sl' S2} only span 4 digits, and can therefore

correct a single error anywhere in 4 digits as opposed to 5 digits in the

previous case. A decoder that makes use of past decisions to simplify

S2 to S2 is called a feedback decoder, whilst a decoder that does not use

past decisions is called a de£inite decoder.

In general, if it is possible to form a set of 2e parity check equations
which are orthogonal on a specified noise digit, then it is possible to
build a hard-decision majority threshold decoder which can correct any
combinations of e or fewer errors over one constraint span. Figure 3
shows the encoder/decoder arrangement for a triple error-correcting rate

one-half (24,12) majority decoder which has K=12, and an effective
constraint length of 22 digits within which 3 or fewer errors can be
correc~ed. This decoder can achieve a coding gain of 1.85 dB at a sink
bit error rate of 10t-5 on the binary symmetric channel (which is compar-

able to the (23,12) perfect Golay code), and can be built with only 16

standard integrated circuits (which is much less than that required to

decode the Golay code).

3. Soft-decision majority threshold deocding

In this section we introduce our new method for soft-decision majority

threshold decoding. Our basic approach is to derive a modified set of
,

orthogonal check sums {Si} which can be used to estimate each noise digit

in the soft-decision sense.

Firstly, let us assume that each received digit is quantised into Q = 8

levels, and can therefore be expressed as a 3 digit binary number, or the

BCD equivalent. For example, [000] = 0, [001] = 1, [010] = 2, ... [111]

= 7. The Xt are therefore expressed as [000] when Xt = 0, or [111)

when x = 1, in the soft-decision sense. The noise digits are expressed
t

in a similar manner but can take any intermediate value between 0 and 7,

that is, 0 = [000) < [n' .] < [111] = 7, where the square brackets indicate
- t-J -

a quantised or soft-decision noise digit. Note that the most significant

digit of a quantised digit is the hard decision digit itself. For example

[n' .] = [010] implies n' . = 0, and [n' .] = [110] implies n t' . = 1.
t-J t-J t-J -J

Let us define dh to be the hard-decision minimum distance between the two

halves of the initial code tree. The guaranteed error-correcting capabil-

ity of the code over K segments is then eh digits where eh is the

largest integer satisfying eh ~ (dh - 1)/2. The simple code used in

section 2 has dh = 3, and is therefore a single error-correcting code.

In the soft decision sense, the minimum distance of.a code is given by
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d = (Q-l) x dh ' and its error correction capability is e soft-decisions s
digits, where es is the largest integer satisfying es ~ (ds - 1)/2.

The simple example code therefore has d = (8-1) x d h = 21, and e = 10.
s s

Therefore, the relative error-correction capability

(error:;c~rre~tio~ c~p~bil_ity)- .. . ..

(Q-l) x (No. of coded digits involved in the decoding decision)

is increased from [Cdh-l)/2]/4 = 0.25 for hard-decision, to

[(d -1)/2]/(7x4) = 0.36 for soft decision.
s

We may now write the soft~decision orthogonal check sums for our example

code by modifying equation (1) as follows:

S * = [n'] + [nIl] + [n' ]

1 t t t-l
S*= [n' ]+[nll] (2)

2 t-l t-l '

where feedback has been used to produce S2*. We may then let the

estimated noise digit a~-l = 0 if Sl* + S2* - [n~-l] ~ (ds-l)/2 = 10;

or let a~-l = 1 if Sl* + S2* - [n~_~] > 10. That is, we assume that the

estimated noise digit a' l is 1 only when the 4 soft-decision noise

t-

digits involved in the check sums have a total soft-decision weight of

greater than (d -1)/2 = 10. Before we can implement this scheme, however,

s

we need tQ derive the actual soft-decision levels of each of the 4 noise

digits involved in the decoding equations (2). At this point the

fundamental difference between hard and soft decision is revealed. This

is that we cannot directly obtain the quantised noise digits, because any

decoder can only quantise received digits and not noise digits. The noise

digits therefore have to be obtained by a process of estimation as follows.

Refer to Fig. 2. The soft-decision received digit at point a is [x ~ n'].

t t

As we use 8-level quantisation the information digit x is estimated as:
t

let Xt = 0 if [Xt ~ n~] ~ 3, or let Xt = 1 if [Xt ~ n~] ~ 4. Then, the

estimated noise digit [a~] is derived from the following equations:

[a~] = [Xt ~ n~] if [Xt ~ n~] ~ 3, or [a~] = [Xt] ~ [Xt ~ n~] if [Xt ~ n~]

~ 4. In a similar manner, the received digit [x 1 ~ n' 1 ] at point b in
t- t-

Fig.2 is used to give the estimate x

1 , and [a' 1 ] is derived from this

t- t-

estimate. From the receiv~d digit [Xt ~ Xt-l ~ n~] at point c, and from

the estimates of X
t and x 1 , the estimate of nt' is derived as:

t- t

[a~] = [Xt ~ Xt-l ~ n~] ~ [Xt] ~ [Xt-l]. Therefore, the value of Sl*

can be calculated by taking the sum of the values for the three noise

digits [a~], [a~-l] and [a~]. Similarly, the value of S2* can be

obtained, and a decision on a

1 taken. t-
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Fig. 4 shows the soft-decision threshold decoder for the rate one-half

code used above, and the following example illustrates its operation.

Let us assume th"at Xt = Xt-1 = 0, that the noisedigits are [n~-l] =

[101], [n~-l] = [100], [n~] = [001], [n~] = [000], and that the decoder has

not accepted arty previous decoding error. Note that as n~-l = n~-l = 1,

a hard-decision decoder would decode Xt-1 = 1 thus giving a decoding error.

Using the following soft-decision procedure, however, Xt-1 can be

decoded correctly.

(1) Because the received digit [Xt ~ n~] = [001], we let Xt = a and

[11~] = [Xt ~ n~] = [001].

(2) Because the received digit [Xt-1 ~ n~-l] = [101], we let Xt-1 = 1

and [11~-1] = [Xt-1] ~ [Xt-1 ~ n~-l] = [010]

(3) Because the received digit [Xt ~ Xt-1 ~ n~] = [000], we let [11~] =

[x ] ~ [x
1 ] ~ [x ~ x 1 ~ n'

t '] = [111].

t t- t t-

Finally, [11~-1] = [Xt-1] ~ [Xt-2] ~ [Xt-1 ~ Xt-2 ~ n~-l] = [Xt-1] ~

[Xt-1 ~ n~-l] = [111] ~ [100 ] = [all], and all the noise digits are

determined.

(5) By using ordinary addition:

8 * = [11'] + [11'
1 ] + [11"] = [001] + [010] + [111] = 10,

1 t t- t

and 8 2 * = [11'
1 ] + [11" 1 ] = [010] + [all] = 5

t- t-

(6) The value of 81* + 82* - [11~-1] is then 10 + 5 - 2 = 13 which is

greater than (ds - 1)/2 = 10, and therefore indicates 11~-1 = 1.

This however contradicts our assumption of Xt-1 = 1 which gave [11~]= [010].

Thus x

1 = a and the hard-decision received digit x
1 ~ n

t l is t- t- -

corrected by the modu1o-2 addition of 11~-1. Note that by assumming

Xt-1 = 0, and recalculating steps 2,3, and 4, we have [11~-1] = [101]

[11~] = [000], and [11~-1] = [100]. Thus 81* = 6, 82* = 9, and 81* + 82*

- [11'

1 ] = 10, there is no contradiction in 11'

1 , and therefore X
t 1t- t--

is correctly decoded as Xt-1 = o.

For a simple soft-decision decoder described above the value of 81* + 82*

- [11' 1] can be calculated and the estimate of 11'
1 indicates directlyt- t-

whether or not a contradiction exists in the original assumption Xt-1.

With a multiple error-correcting code there are more than two

orthogonal check sums and it is not convenient to directly derive the

value of Xt-1. In these cases our method involves the decoder computing

the value of 81* + 82* - [11~-1] for both cases Xt-1 = 0 and Xt-1 = 1.
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The decoding decision is then based on which assumption gives the smaller

value of Sl* + S2* - [n~-l]' A more complex decoder illustrating this

point is outlined in the next section.

4. Soft-decision diffuse thre~hold decodi?g

In general, most real channels are time-varying and subject to bursts of

errors. Diffuse convolutional coding is one method of providing burst-

and-random error-correction capability, and is most suitable for a channel

in which the bursts are diffuse. That is, one in which (relatively) low

density bursts occur on a noise background whose random error rate is

relatively high.

Fig.S shows a hard-decision diffuse convolutional coding system that uses

majority-decision threshold decoding. The system is rate one-half., b-dif-

fuse, and double error correcting. By assuming that all previous decoding

decisions were correct, it is possible to form four check-sums orthogonal

on the noise digit n~-3b-l as follows:

S - I iii I iii I iii I iii IIt - nt w nt-b w nt-2b w nt-3b-l w nt ~
S Q) g = n I Q) n I Q) n'l Q) nIl

t-l t-b-l t-l t-3b-l t-l t-b-l
S = n' Q) n' ~ nIl

t-2b-l t-2 -1 t-3b-l t-2b-l

S = n' Q) n'l

t-3b-l t-3 -1 t-3 -1

This code corrects any pattern of two or fewer scattered errors among the

11 received digits involved in the orthogonal check sums, as well as any

burst of length b = 2b or less, given a guard space of 6b + 2 digits

between bursts (ref.3).

Following the general procedure outlined in the last section we may now

develop the soft-decision diffuse convolutional coding scheme, with some

extra modifications. Our basic approach is to calculate the algebraic sum

of four soft-decision noise sums which are orthogonal on the information

digit Xt-3b-l' for both the assumptions Xt-3b-l = 0, and Xt-3b-l = 1.

The algebraic sum of the noise sums is given by:

S. = [ftll] + [ft" Q) nIl] + [nIt ] + [nIl]
~ t t-l t-b-l t-2b-l t-3b-l '

where i = 0 if we let Xt-3~-1 = 0, and i = 1 if Xt-3~-1 = 1. The

decoding decision depends on the value of So and Sl: We decode

Xt-3~-1 = 0 if So ~ Sl or Xt-3~-1 = 1 if So~ Sl'

The soft-decision decoder for this code is shown in Fig. 6, and the

decoding proc~dure is explained as follows:
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(1) From the received digits [X t $ n t'], [x 1 $ n' 1], [x $ n' ]
t- t- t-~ t-~

and [Xt-2~ $ n~-2~] , we estimate each corresponding information digit

Xt' Xt-l' Xt-~' and Xt-2~' by taking the hard-decision estimate of each

most significant bit.

(2) The value of So is found as follows. From the four received digit

sums:

[rt] = [Xt ~ Xt-~ ~ Xt-2~ $ Xt-3~-1 ~ n~]

[rt-l] = [Xt-l $ Xt-3~-1 ~ n~-l ~ n~-~-l]

[rt-2~-1] = [Xt-2~-1 ~ Xt-3~-1 ~ Xt-4~-1 $ Xt-5~-2 $ n~-2~-1]

[rt-3~-1] = [Xt-3~-1 ~ Xt-4~-1 ~ Xt-5~-1 ~ Xt-6~-2 $ n~-3~-1]

The previously estimated information digits x, x 1 , x A' x
2 A; t t- t-u t- u

and the previously decoded digits Xt-4~-1' Xt-5~-1' Xt-5~-2' Xt-6~-2:

the following four noise digit sums can be derived.

S(l) = [rt] $ [Xt ~ Xt-~ ~ Xt-2~] = [n~]

S (2) = [r ] $ [x ] = [n" $ n" ]
t-l t-l t-l t-~-l

S(3) = [rt-2~-1] ~ [Xt-2~-1 ~ Xt-4~-1 $ Xt-5~-2] = [n~-2~-1]

S(4) = [rt-3~-1] ~ [Xt-4~-1 $ Xt-5~-1 ~ Xt-6~-2] = [n~-3~-1]

Hence, S = L S(j), for j = 1 to 4.
0

(3) The value of Sl is given by Sl = L S(j) $ [Ill], for j = 1 to 4.

(4) We decode x

3 A 1 = 0 if S < Sl ' X 3 A 1 =1 if S > Sl .t- u- 0 - t- u- 0

5. Conclusions

In this paper we have introduced a new method for soft-decision majority

threshold decoding of convolutional codes. The method consists of
determining two check sum weights, and the decoding decision is based on

the smaller of these two weights. The use of threshold decoding thus

enables the advantage of increased coding gain to be realised without
undue increase in complexity. Although two check sum weights have to be

determined, as opposed to one with hard decision, the increase in
decoding time is minimal as the two sums are obtained by merely inverting

the estimated output digit.
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