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Mapping Vector Decoding

An algorithm with the features:

. Adding codewords

. Computing weights

. Making decisions based on values of one bit

. Full Minimum Distance Decoding

. Soft Decisio~ Applications

Motivation: Produce a "simple" algorithm which takes advan-

tage of the weight structure of the code to reduce complexity.

Sufficient to describe:
- Continued Division (Farrell)
- Permutation Decoding (MacWilliams)

- Information Set Decoding (Prange)

- Covering Polynomials (Kasami)

- Zero Neighbors Algorithm (Levitin & Hartmann)
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. Features:

(i) Add deterministic code vectors to received vector

(ii) Add code vectors to the operand word if weight reduction

can be achieved

Description in terms of 'Standard' Array:

Rows are cosets; we have increasing weight across a row.

'Standard' Array for (6,3) Single-Error-Correcting Code

000000100101110010001011011100010111101110111001
100000000101010010001110011001101011111100110111
010000100010001100000111101001110101011011111110
001000000011010100100110110001101101111010011111
000100100001011000010011101010110110001111111101
000010110000001001010101101100100111011110111011
000001100100001010010110111000110011011101101111
101000000110010001001101011010100011110100111111

. Feature (i) adds codewords till we have 101 in the infor-
mation positions (mapping to shaded words)

. Feature (ii) seeks to find a mapping from the operand word

to a word of lower weight in the coset.
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Zero Neighbors Algorithm

- A word r is in the domain of a codeword (r E D ( c )) iff

d(r, c) ~ d(r, Ci) for all codewords Ci.

- A word r is in the domain frame of a codeword (r E B ( C ))

iff it is not in the domain of the codeword, but is distance

one from a word which is in the domain of the codeword.

Definition. The set of zero neighbors is the minimum set of

codewords for which every word in the domain frame of the zero

codeword is in the domain of at least one of the zero neighbors.

Suppose r ~ D(O)

Form a chain of descendants r, . . . , Xi+l, Xi, . . . , o.
Let Xi be the first word in the chain in D (0) .

=> Xi+l E B(O)

=> Xi+l E D(n) for some n E No

=> d(r, n) ~ d(r, Xi+l) + d(Xi+l, n)

< d(r, Xi+l) + d(Xi+l, 0)

== d(r,O)

The zero neighbors comprise a set of low weight codewords.

For the Golay code, the zero neighbors are the minimum weight

words.

Comparison with general model:

. ZN A makes extensive use of the second feature

. No use is made of first feature

. Minimum weight codewords are necessary
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Covering Polynomials

An extension of error trapping in which we guess parts of the

error pattern in such a way that the unguessed part becomes

trappable.

The set of covering polynomials is the minimum set such that

there is at least one polynomial in the set which agrees with

E( x) or a cyclic shift of E( x) in the k information positions for

all coset leaders E(x).

Example: For the Golay code, every untrappable error pattern
is .a cyclic shift of a pattern which has only a single 1 in the
first k positions, in either the sixth or seventh bit. Thus the
covering polynomials are X16 and x17.

Equivalently, we do the following:

- Compute syndrome

- Check if s ( x) + Pi (x) is a coset leader for all Pi ( x )

- Compute 'shifted syndrome'

- Repeat second step using shifted Pi (x)'s

Comparison with general model:

. First feature is used (computing syndromes)

. Insist on immediate reduction in weight to coset leader
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Permutation Decoding

Apply a set of code-preserving permutations. Error pattern is
permuted, and may then be trapped. For example, let x ~

Tx = x2. If first bit of r(x2) is a one, subtract g(x). Shift left

cyclically and repeat.

Equivalently, leave r(x) as it is. If first bit is a one, subtract
T-lg(x) = g(xCn+l)/2). Shift left cyclically (n+l)/2 places and

continue.

In general, for any permutation 1r, we subtract the codewords

1r-lg(x),1r-lxg(x),... ,1r-1Xn-lg(x) at the appropriate loca-

tions.

Example: For the Golay code, the permutations x ~ x, x ~

x2, X ~ x4, and x ~ x12 are sufficient (with cyclic shifts) to

trap all error patterns of weight ~ 3. Thus the codewords

g(x), g(X2-1), g(X4-1), and g(x12-1), with their cyclic shifts, are

sufficient to decode the Golay code.

Comparison with general model:
. Applies first feature extensively
. Does not use second feature
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Continued Division

10100110111) 011110111101111000000000
001010001010111
000000010001011
00000000010110111
00000000000010001011
000000000000000000101101111

etc.

Motivation:
. Very simple implementation

. Possible 'data compression' features
- Generate required words on-line

- Generate required words only

Questions:
For how long do we divide before we get repetition?

Under what conditions do we get the coset leader?

Is it possible to decode by picking one dividing word?
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- Clearly, continued division by g( x) corresponds to error

trapping, with a few extra 'bonus' patterns detected.

Suppose we divide by c(x) == i(x)g(x), where c(x)lxn ~ 1.

Then c( x) is the generator of a cyclic subcode of C. Continued

division by c( x) corresponds to error trapping in the subcode

C'. Error trapping detects error patterns of burst length ~

n - k. If the transmitted codeword is in the subcode, dividing

by c(x) will produce error patterns of burst length ~ n - k +

deg i(x).

Weight Reduction Mechanism

We receive

r(x) == C(x) + E(x)

== a(x)c(x) + b(x) + E(x)

== a(x)c(x) + E'(x)

Three situations are possible when we begin division by c( x):

- r ( x) is a coset leader in C'

- r( x) is not a coset leader in C' but no word of lower weight

in the same coset has burst length ~ n - k + deg i( x)

- r (x) is not a coset leader in C' and there are words of lower
weight in the same coset with burst length ~ n- k+deg i( x)

Strategy:

Take a number of words Ci(X) which all divide xn - 1. Divide

r(x) by Ci(X) for one cycle after the syndrome. On getting

a weight reduction, treat the new word as r(x) and repeat.

Finally, store the codewords necessary to map from the output

of the first step to the coset leader.
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~ The stored mapping codewords must include the minimum

weight words not contained in any of the subcodes. It seems

that most of the other required words will be of low weight.

Division by a 'non-cyclic' word

We divide by c(x) and assume that deg E(x) < deg c(x). We

produce the (subcode) syndrome and continue dividing. After

one cycle, we will have added a word (a codeword in the main

code) to the syndrome, and during continuing cycles we will

have added other codewords.

We have

Sl(X) == xnso(x) mod c(x)

and after i cycles, Si(X) == xinso(x) mod c(x)

=> So (x) + .Bi(X) == xinso(x) - a(x)c(x)
=> .Bi(X) == (x in - 1)So(x) - a(x)c(x)

=> .Bi(X) == (xin - 1)So(x) mod c(x)

We get repetition when .Bi(X) == O. If (So (x), c(x)) == 1, this

means that c(x)lxin - 1, and then

. ord c(x)
1,==

(ord c(x),n)
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Example In the (23,12) Golay Code, continuous division by
i(x)g(x), where i(x) is any primitive polynomial of degree 10,
will eventually produce the coset leader if neither the received
word nor the error pattern is a multiple of i ( x ) .

Proof: We get the syndrome So,o(x). The next n -1 words are

SO,i == So,o (x )mod c( x), and all these must be relatively prime

to i( x) also. In at least one of these words (actually, most of
them) deg E(x) < n - 2. By our analysis above, the number

of cycles taken to get a repetition is ord c ( x) / (ord c ( x ) , n) =
1023/(1023,23) == 1023. But this is the number of codewords

of degree < c(x) which are not multiples of i(x) so at some
stage we have added Si,j(X) + E(x) to get E(x).

Corollary: Continuous division of the 'real' syndrome of a re-

ceived sequence by (xlO + x3 + l)g(x) or (xlO + x7 + l)g(x)
will always produce the coset leader unless E( x) == xj i( x) for

1 ~ j ~ 12.
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Comparison of Methods:

Method Description Word Additione

Permutation Mapping vectors are various 92 (40)

Decoding permutations of the generator

Covering Mapping vectors comprise 69

Polynomials minimal set of differences

between coset leaders and

shifted syndromes

Zero Neighbors Mapping vectors comprise 253

Algorithm minimal covering of domain

frame of zero codeword

Continued Mapping vectors are differences N / A

Division between subcode coset leaders

and coset leaders
Mapping Vector Generalized method ~ 40

Decoding

Conclusions:

. Implementationally simple algorithm has been presented

. Sufficient to describe many other methods
. A new decoding algorithm (in Continued Division) has

been outlined

Future Research
. Investigate Continued Division algorithm further

. Produce enhanced combined algorithms for

Quadratic Residue codes

. Include soft decision applications


