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Abstract

In this paper we outline an convolutional code de-
coding algorithm which is capable of efficiently decod-
ing long convolutional codes. Our particular interest is
in using such an algorithm in conjunction with concato-
nated Reed-Solomon decoding to provide very high cod-
ing gains for deep space telemetry applications. In the
paper we outline the decoding algorithm and the hard-
ware neccessary to implement a fast megabits/second
decoder. The hardware consists of a VLSI path gener-
ator chip (PGC) which operates in conjunction with a
path search (PS) processor.

1. Introduction

Concatenated coding, with an inner convolutional
code and a Reed-Solomon outer code, is known to pro-
vide excellent performance for high error rate channels.
In order to make best use of the received information,
the convolutional decoder should be minimum distance,
use soft decision techniques and have a long constraint
length. The Viterbi algorithm can satisfy the first two
requirements; but the decoder complexity grows expo-
nentially with constraint length, limiting the maximum
decoder gain. In this paper we look at the VLSI im-
plementation of a technique which allows much longer
constraint lengths with soft decision decoding.

The decoding algorithm utilized in this paper is due
to Ng, Goodman and Winfield (Refs 1-8]. The algorithm
is maximum likelihood although it can operate in a sub-
optimum mode to increase throughput speeds. The al-
gorithm uses a sequential decoding approach to avoid an
exponential growth in complexity. In addition, the dis-
tance and structural properties of convolutional codes
are used to considerably reduce the amount of searching
needed to find the optimum path when a back-up search
is required. The decoder does this in two main ways.
First, a small aet of paths called permissible paths are
utilized to search the whole of a subtree for the better
path, instead of actually using all the paths in the given
subtree. Second, the decoder identifies which subset of
permissible paths should be utilized in a given search
and which may be ignored, because they cannot possi-
bly result in a better path. In this way many unnecces-
sary path searches are completely eliminated. Because
the decoding effort required by the decoder is low, and
the decoding processes simple, the algorithm opens the

possibility of building high-speed long constraint length
convolutional decoders with optimum performance.

The use of the effort reduction techniques, makes
control of the algorithm a fairly complex operation.
But, by ox{}{ implementing the main computational el-
ement in VLSI, the control can be left to a micropro-
cessor. The resulting ‘path generator chip’ (PGC) is
capable of decoding at 20 megasegments/second: where

one segment is a 3 bit quantization of a received data
and parity bit. The chip is also capable of encoding at
20 megabits/second.

The PGC is composed of two serial-parallel Ga-
lois field multipliers, a number of registers and a small
amount of multiplexers and exclusive-OR gates to con-
trol the flow of data. The chip continues to operate at
its maximum speed, until an error is encountered. It
then interrupts the control processor, so it can decide
whether the chip has taken the wrong path. If the pro-
cessor decides, from the information the PGC provides,
that an error is possible, it halts the decoding while it
checks to see if the chip needs to be reprogrammed to
the ‘best path’.

2. The Decoding Algorithm
2.1 Code Properties

Let us introduce some of the distance and structure
properties of single-generator convolutional codes that
are utilized in the decoding algorithm.

A single-generator convolutional code is one in
which each message digit is encoded individually into V'
code digits, where V is a positive integer, giving a max-
imum information rate of 1/V. The V coded digits for
each message digit depend on both the present message
digit and the N — I previous message digits, where N is
the constraint length of the code in segments. The code
can be represented by its tree structure, the branches of
which can be extended indefinitely from any node. Each
branch has one segment of code digits associated with
it, and the code digits of the two branches stemming

from an arbitrary node are always ones-complements of
each other.

The encoding operation is one of selecting a path
through the tree in accordance with the message digits.
At each node the upper branch is taken if the message
digit is a gero, and the lower branch is taken if it is a
one.

Consider, for any node in the infinite tree, all the
paths that extend b segments forward from that node.
The resulting subtree is referred to as a truncated tree,
or b-unit, and is divided into two half-trees depending on
which branch was chosen at the first node. The initial
code tree (S) is the k-unit stemming from the very first
node, and is divided into the upper-and lower-half initial
code trees (Sp and S, respectively).

We may now summarize several useful properties of
these codes.

(a) The code is a group code. That is, if w and v’
are two equal-length code paths, belcnging to the intial
truncated tree S, it implies that there is a path z such
that z = w ® w' is within S.



(b) If w and «' are paths in opposite halves of any
b-unit, then z = w @ w' 18 a code path in the lower-half
snitial code tree ;.

c) The distance between the two half trees of any
b-unit is defined as the minimum Hamming distance be-
tween pairs of paths, one from each half tree.

(d) Combining properties (b) and (c) above, we can
state that the minimum distance between half trees of
any b-unit is equal to the weight of the minimum-weight
path in ;. We can then define a distance function df.)
such that d(b) is the minimum distance between half
trees of any b-unit, and depends only on b, and not on
the b-unit chosen. The guaranteed error-correcting ca-
pability of any b-unit is then T'(b), where T'(}) is the
largest integer such that T'(b) < [d(b) — 1]/2.

2.2 The basic decoding strategy

Consider the notation:
v the received sequence, which differs from the trans-
mitted sequence due to errors
w the tentatively decoded sequence, a path in the code
tree which is the decoders’s tentative version of the
transmitted sequence
t = w @ v the test-error sequence, which has ones in the
positions where w and v differ
t; the sequence consisting of the last b branches of the
sequence I.

Our basic decoding strategy is then as follows. We
always seek a code path w which is at minimum distance
[t| from the received sequence v. In other words, a w is
accepted to be the decoded sequence if and only if for
all other paths w' in the corresponding truncated tree,
w has minimum test-error weight. That is

tf=lvev<|vey =

We define the basic branch operation (BBO) to be
the decoding action of a single branch forward extension
which selects the latest segment w, of w. Whenever a
decoded path w is accepted as being the minimum dis-
tance path, the decoder shifts out the earliest segment
of w, which is assumed to be a correct representation of
the corresponding segment of the transmitted sequence,
and shifts in the newly received segment v, of v. The
BBO then selects w;, to be the segment closest in dis-
tance to v;.

For the half-rate code, the BBO results in a w; that
always has a test-error weight |t;| = |w, @ v,| < 1. Thus
|t1] is either @ or 1. If we assume that the new seg-
ment w; results from the extension of a path that has
minimum test-error weight, the following are implied.
Firstly, if |t,|=0, the new path is guaranteed to have
minimum test-error weight, and the decoder returns to
the BBO. Alternatively, if Jt;| = 1, it is possible that
there exists some other path w' with smalYer test-error
weight || = jw' @ v| < |t|, and we are faced with a
search to find it.

2.3 Searching for the better path

Let us assume that the decoder needs to search the
b-unit which spans the last b segments of the code tree,
for a w' with smaller test-error weight. We use a proce-
dure based on property (b) of Section 2.2. This states
that ' can be directly derived by the modulo-2 oper-
ation w' = w @ z, where z is a truncated path in the
lower-half initial code tree. Also,

t=vov=uwdzdv=Ii0z

and so if w and w' are in opposite halves of a b-unit we
can derive the test-error weight of w' by direct modulo-
2 addition of ¢ and the b-segment path z. This is still
a cumbersome process, however, if all paths in the b-
unit have to be used to search for w'. However, we
have derived many conditions which the z must satisfy
because of the code structure [1-8]. This serves to re-
duce the z required to search the b-unit to a very small
number in most cases of interest. The reduced set of
paths needed to search the b-unit are called permissible
paths, (PPs), and denoted by P.. For example, using
a particular ] rate code with good distance properties
we find that over six segments there are only three per-
missible paths which satisfy the conditions on P. These
are Py = 31, P = 32201 and P(s) = 310101. It is
therefore possible to search the entire 6-unit without
back-up, by making only three test-error weight com-
parisions based on Ft’l =|te P|.

Fig. 1. Shows the decoder correcting a 12 segment
24bit) received sequence which contains four errors.
he effort is only 12 BBOs and four path map oper-

ations.

8. The Soft-Decision Algorithm

Soft-decision decoding gives an asymptotic coding
gain of 3db over hard decision, and our algorithm easily
extends to cover this. We assume that 8-level quanti-
gation is sufficient to recover most of coding gain loss,
and henceforth all bit quantities are assumed to be rep-
resented by a 3bit soft vector where hard 0 = {000] and
hard 1 = rlll]. All distance metrics and path weights
are now assumed to be soft weights, where the soft dis-
tance between a hard 0 and a hard 1 is 7 soft levels.

The decoding algorithm operates in a similar man-
ner to the previous hard version. I the latest segment
has a non-zero hard decision test error weight then a
search via the stored permissible paths is required to
find a path with a better lower soft test error weight,
if one exits. A penalty of operating in the soft-decision
mode is that more permissible paths must be stored
than in the hard-decision case. However, note that this
is ROM complexity not RAM. For example, the code
used has a hard distance of 9 over 16 segments (32bits},
giving an asymptotic soft correction power of 9 bits over
this constraint length, and this requires 112Kbits to
store the 5000 PPs needed. A length 25 (50bits) decoder
gives 11 bit correction, and asymptomatically requires
92Mbits of ROM path storage. These storage figures are
not excessive by modern ROM standards. Also, many
high weight PPs can be omitted with minimal effect
on the decoder output bit error rate, thus avoiding the
exponential growth in storage requirement. [6]

The soft-decision decoder would not be feasible if it
had to search through all the stored paths every time
a non gero [¢;| occurred. By utilizing the distance and
structure properties of the code we have found several
techniques to significantly reduce the amount of search-
ing the decoder needs to do. Firstly, we can calculate
the maximum possible improvement in soft error weight
before starting the search. Thus if a particular path
mapping achieves this improvement, we can immedi-
ately abandon the search. Secondly, not all PPs of each
length must be tried in the attempt to find the better
path. In fact for a given path length b only PPs of
length b below a certain weight need be tried to achieve
the seeked for test error weight improvement. The num-
ber of these paths at length b depends only on |t;] the
soft weight of the test error sequence over the last b
segments. Thus whenever the decoder needs to search
for a better path by trying PP mappings from b = 2 to



b=DECL (Decoding Constraint Length), the |t;| is first
calculated and this is used to directly identify (address)
the subset of paths that have to be tried.

Consider the following example. Assume the all-
gero sequence was transmitted and we are now on a path
that gives us a soft test error sequence ¢ = 00 04 01 00
01 00 40 40 61 00 40 in octal, containing 5 bard errors
and a total soft error weight of 25. The maximum im-
provement in soft error weight is 1 soft leve), because of
the weight 4 latest segment. The following table shows
the weight of the test error sequence |t;| over the last b
segments, together with the upper bound on PP weight
|Py| and the number of PPs at this weight.

[t B #|P]
4 - -
11 -
15 4
19 §
19 §
20 -
20 - -
21 - -
0 25 7 3
1 28 7 3

- e !

- O 00 -3 O O W O

The table shows that only 10 PPs need be searched
to find the better path in this case. This is an order of
magnitude less than the total number of PPs of length
between 2 and 11, which is 197. In fact the 1 level
improvement occurs on the third trial mapping, ie the
second PP mapping of length 5, and the search termi-
nates.

4. Decoder Hardware

A decoder based on the ideas above has two distinct
processes: the ‘path generator’ (PG) which implements
the BBO and the ‘path searcher’ (PS) which will at-
tempt to find a better path (one with less soft error
weight) than the one the PG is currently following.

Figure 2 shows a simplified systems diagram for de-
coding the contents of a buffer. The PG takes the next
three bit (eight level) quantizations of data and par-
ity on every Cl1 clock cycle, outputing the decoded data
value of the data received in the N +1°th previous clock
cycle. The PG will need to stop when the BBO is un-
able to follow a path without causing an error in the
hard decision values. The PS then tries to find a better
path, and if it does it loads this new value into the PG
which is then allowed to continue with the next BBO.

The use of effort reduction techniques in the PS,
makes control a fairly complex operation. It is there-
fore best implemented as a dedicated microprocessor
capable of doing simple but fast arithmetic and look up
operations. However, the PG chip greatly simplifies the
PS operation by the inclusion of a comparitor and sum-
mer. These enable both the sum of the current segment
test error weights, and the test error weight reduction
resulting from a permissible path mapping, to be rapidly
calculated in a segment serial manner. Both PG and PS
are clocked by C2 during this process and interact in the
following way. Firstly, the PS accesses the weight of the
latest segment of the test error sequence from the PG
sum output, in order to determine the maximum weight
reduction possible. Secondly, as the search proceeds, at
each segment of backup the PG presents the PS with
the total weight of the test error sequence of that num-
ber of segments. The PS then performs its lookup of the

PPs appropriate to that particular search length, based
on the total test error reduction. The PS then presents
these one at a time, in a segment serial manner, to the

PG for testing. If the path is found to reduce the total
error weight, but not give the maximum reduction, this
PP is tagged by the PS which carries on searching for
a better reduction. When the PS is satisfied no better
path can be found, the PP giving the best reduction (if
one was found) is represented to the PG which performs
the mapping. The PS then signals the PG to resume the
BBO.

Figure 2 shows a block diagram of the PG chip
which is capable of doing the BBO at 20 megaseg-
ments/second (clock C1): where each segment is a three
bit quantization of the received data and parity bits.
The registers, multipliers, summer and comparitor all
operate serially. The registers and multipliers are N
bits long, where N is the constraint length in segments,
and are clocked by either C1 or C2. The error registers
are actually two dual shift registers moving data in op-
posite directions: one clocked by C1 (the main register)
and the other by C2 (the test register). The latter is
loaded with the contents of the former when LD goes
high.

During a BBO, three bit data and parity values are
loaded at DI (d2,d1,d0) and PI (p2, p1, pO) respectively.
The most significant bit of the data, i.e the hard decision
value d2, is pushed into the data register. Initially we
assume this hard data value is correct. Therefore, the
data error (DE = 2, ¢l, €0) is the bitwise exclusive-OR
sum of the received data, with this hard value. That is:
€2 = d2@d2 = 0; el = d2@dl, 0 = d2&d0. In order to
calculate the parity error (PE = f2, f1, f0), assuming
the hard data value is correct, we must recalculate the
parity based on our current path. To do this we use two
Galois Field multipliers (GFMs) operating in GF(2).
Both GFMs are based on a fast systolic design with
no global data lines and one operand hardwired as the
generator polynomial.

The data error register stores a three bit quanti-
gation of the data error weight, corresponding to each
of the N data values stored in the data register. The
most significant bit of these N — 1 (we always assume
that the latest hard data value is correct) values are fed
into the lower GFM. The result of this multiplication,
together with the result of the top GFM (which recalcu-
lates the parity, based on the N last hard data values),
are XORed to calculate the expected hard value of par-
ity. The recalculated parity (q) is used to calculate the
PE: f2=q@®p2; f1=q@®pl; fO0=q& p0. If the most
significant bit of the PE is high (f2 = 1), then it is pos-
sible there is a better path. Therefore f2 is used to stop
the PG chip, at the end of the current C1 clock cycle,
and start the external PS (via the ERROR signal).

In order to ensure the minimum total test error
weight, DE and PE pass through a further XOR gate,
where the signals can be conditionally inverted before
being stored. K the total error weight (S = s3 82, sl,
80), calculated by the adder A, is greater than seven;
then the total weight can be reduced by assuming the
hard value of data was in error (instead of the hard
value of the parity, which is the default). With CH low
the most significant bit of the result (83), controls the
XOR gates to achieve the desired conditional inversion
operation.

While the new error weights are being calculated,
the corrected data is simultaneously being fed out. This
decoded output is evaluated by XORing the N + I'th
data value with the most significant bit of the N + 1’th
data error value. Also note that, if the EN/DE signal is
high, the output is simply the output of the top GFM.



That is, the encoded output of the d2 sequence.

If the ERROR line goes high, there is a possibility
that there is a better path. Therefore, the PS must
assume control of the PG, after the PG has completed

its current cycle. The PS first takes LD high to load the
main data and parity error registers into their respective
test registers, and clear the comparitor and summer.
After b clock cycles of the C2 clock, the SUM output will
give the accumulated sum of the test error weight over
the last b segments. The PS can store these values and
use them to tell whether it needs to look for a new path
based on stored threshold values. If it does, it will again
bring LD high and feed the P-PATH and D-PATH lines
with the first possible new path (PP1}, one segment at
a time. The DIFF signal then outputs the difference
between the total test error weight of the current path
(t), and that of the new path (t & PP1) in a segment
by segment manner.

If PS needs to instruct the PG to perform a mapping
it restarts C1, sets DIR and CH high and reloads pl, in
reverse order with zeros filled in to make it length N,
into P-PATH AND D-PATH. Because CH is high, the
G logic routes these latter two signals to the XOR gates
in front of their respective error registers. Since DIR is
also high the other input to the XOR gates will be the
output of the error registers. The overall effect is thus
to change the error path ¢ to (t & PP1).

The decoder as outlined above can operate at
Megabit speeds. These are of course average speeds
and an input buffer is needed to compensate for differ-
ing path search times. However, at output error rates
of 10-5 the average number of PPs searched per search
is less than one. Also, unlike other sequential decod-
ing schemes the maximum number of paths searched is
always finite.

4. Conclusions

In this paper we have outlined our convolutional
code decoding algorithm, and the hardware neccessary
to build a fast decoder. At present we are developing the

Path Generator Chip and decoder techniques to decode
a 1/2 rate code over decoding constraint lengths of 50
to 100 bits. This should give coding gains greater than
the length7 1/2 rate Viterbi decoder, and operate at
Megabit speeds.
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