
337

MICROPROCESSOR-CONTROLLED SOFT-DECISION DECODING OF

ERROR-CORRECTING BLOCK CODES.

R.M.F. Goodman* B.Sc., Ph.D.

A.D. Green*, B.Sc.

Summary:

Soft-decision decoding offers a means of bridging the performance gap
between a block error-control system that uses hard-decision bounded-

distance decoding, and one that uses maximum-likelihood decoding.

Existing algorithms, however, tend to be complex in terms of hardware

requirement. This paper presents a new class of soft-decision decoding

algorithms, based on error-trapping decoding, which have a simpler hardware

requirement in exchange for coding gain and ~ecoding delay trade-offs. In

addition, a microprocessor-controlled implementation of these algorithms is

described, and decoder performance and trade-offs under Gaussian noise
conditions are investigated.

1. Introduction:

A soft-decision binary block decoding scheme is one in which the
demodulator assigns a 'confidence' value to each output bit, in addition to
the 'hard' binary 0 or 1 decision. In practice this involves replacing the
one bit hard decision device at the demodulator output with a J bit
analogue-to-digital converter. The confidence information can then be used

to improve the decoding process in such a way that the probability of
decoding error, or the decoding delay, is reduced.

The increase in coding gain (over that achievable with hard-decision) that

can be expected by using soft-decision decoding depends on a number of
factors. These include the number and spacing of the quantisation levels,
the decoding algorithm used, and the channel characteristics. It has',
however, been shown (ref.l) that for the additive white Gaussian channel

with optimu~spacing infinite-level quantisation the maximum coding gain is

lower-bounded by about 2dB. Fortunately, the degradation involved in using
the much more practical equal-spacing, 8-level quantisation is only about

O.ldB, and even optimum-spacing 3-level quantisation only degrades by about

ldB. In addition, it has been shown (ref.2) that for both the Gaussian and

Rayleigh-fading channels the performance of a soft-decision decoder

approaches that of the optimum maximum-likelihood decoder. In the case of
the Gaussian channel this implies a coding gain improvement over hard-
decision of 3dB at high signal-to-noise ratios.

The main objection to the use of soft-decision block decoding algorithms

has been one of hardware complexity. This is because in addition to
having to handle J bits instead of one bit, existing algorithms assume that

for the particular code in use, a bounded-distance hard-decision decoder

capable of correcting errors (or errors-and-erasures) is already available.

Also, most existing algorithms operate iteratively and this raises the

question of decoding delay as well as implying complex control and
computation hardware. The algorithms proposed in this paper, however, are

designed to work with a syndrome generator, which is a much simpler item of

hardware to implement than a full hard-decision decoder for a multiple-

error-correcting code. Two algorithms are proposed, one of wbich operates

*Department of Electronic Engineering, University of Hull

338

iteratively, and one which is non-iterative. For the Gaussian channel, the
latter case implies a sacrifice of coding gain for speed of decoding, whilst

the iterative algorithm enables a performance approaching that of maximum-

likelihood decoding to be achieved, but at the price of increased decoding

delay. The algorithms also have an inherent burst-error-correction
capability. This means that the amount of coding gain sacrificed will be
worst under Gaussian noise condittons, but much smaller for a diffuse

burst-noise channel such as the H.F. radio channel.

The algorithms were designed for use on a narrowband H.F. link operating at

a maximum throughput rate of 1 Kbit(sec. At this relatively slow speed a
mixed hardware/software implementation is feasible, and the problem of

providing a comprehensive control and computation facility was solved by
using a microprocessor. The system as implemented uses a standard

Intel 8080A microprocessor to control a fast hardware syndrome generator.

The flexibility of stored program control not only enables different

variations of the algorithms to be easily implemented on the system by
simply changing program P.R.O.M.s, but also means that the system is not

dedicated to one particular code, thereby enabling channel-adaptive

algorithms (ref.3) to'be easily implemented if required.

This paper develops in the following way. Firstly, the basic concepts of
soft-decision decoding are outlined. Hard-decision error-trapping

decoding is next reviewed, and then the soft-decision algorithms are

introduced. Finally, the microprocessor implementation of the algorithms

is described, and system performance results under Gaussian noise
conditions are presented and discussed.

2. Soft-Decision Decoding:

Given an error-control system operating with an (n,k) binary block code,

let us assume that the soft-decision demodulator quantises each output
digit y. (1< i < n) to 2J = Q levels, so that the estimate of the received

1- - -

binary digit is given by the soft-decision J bit byte: [Yi] = [YlY2..YJ]i.

Under noise-free conditions [y .] is assumed to be either all-zero or
1-

all-ones depending on whether 0 or 1 was transmitted. The first bit of

[y.] is the hard-decision estimate, and the remaining J-l bits give an

1-

indication of the confidence of that estimate. The confidence of the hard-

decision may be defined as the J-1 bit byte:

[ci] = [clc2..cJ-l]i' where [ci] = [clc2..cJ-l]i = [Y2Y3'.YJ]i if Yl = 1,

and [ci] = [clc2..cJ-l]i = [Y2Y3..YJ]i $ [lll..lJ-l] if Yl = O.

Thus the confidence of a particular digit can vary from [ci] = [OOO..OJ-l]

(least confident, nearest to the hard-decision 0/1 boundary), to

[ci] = [lll..lJ-l] (furthest away from the boundary). Alternatively, we

may consider that the demodulator output soft-decision digit [y.] gives an
1-

estimate of the soft-decision noise digit [n.] which has been added to the
1-

transJI1itted digit [xi] by the channel. Thus [ni] = [nln2..nJ]i = [YlY2.'YJ]i

if [~i] = [OOQ..OJ]' or [ni] = [YlY2..YJ]i $ [lll..lJ] if [xi] = [lll..lJ].

The value of the noise digit in levels can therefore lie between 0 and

(Q-l), and a noise value of ~ (Q/2) causes a hard-decision error.

339

We may now form an estimate of the error-correcting capability of an
(n,k) block code in the soft-decision sense. If the minimum distance of
the code is dh then in the soft-decision sense codewords are

~ds = (Q-l) x dh soft-decision levels apa-rt, and therefore the

bounded-distance guaranteed soft-decision error-correction capability of

the code is the largest integer satisfying t < [(d -1)/2]. In order tos - s

see the improvement obtained from soft-decision bounded-distance decoding,

consider the (15,7) dh = 5 cyclic code, and assume Q = 8 level quantis-
ation. The hard-decision bounded distance error-correction capability of

this code is th ~ [(dh - 1)/2] = 2 errors per block. For soft-decision

d = 35, and therefore correction can be guaranteed for a total of 17 or
s fewer level errors per block. The smallest number of level errors that

constitute a hard-decision bit error is Q/2 = 4; the most probable pattern

of 4 hard-decision errors therefore has a soft-decision weight of only
4 x 4 = 16 levels which is within the soft-decision bounded-distance
capability of the code, and can therefore be corrected. Thus at high
signal-to-noise ratios where the probability of >17 level errors per block
is extremely small, the (15,7) code behaves as if it had an error-
correction capability of 4 (hard) errors. In general, at high signal-to-
noise ratios, soft-decision decoding of an (n,k) code enables up to
(dh-l) errors to be corrected.

Given an (n,k) block code the optimum method of decoding is maximum-
likelihood decoding, which for the Gaussian channel is equivalent to

minimu~distance decoding. A minimu~distance hard-decision decoder

attempts to find the codeword x nearest in terms of Hamming distance to

the received word y. That is, mthe codeword x which satisfies
n

min [E (y.lBx.)]
. 1 1. 1.

1.=

Similarly, a soft-decision minimum-distance decoder attempts to find the
codeword at minimum soft-decision distance (minimum number of level errors)

from the received word. That is, the codeword x which satisfies
n

min [E [y.] IB [x.]].
. 1 1. 1.

1.=

In both the hard-decision and the soft-decision cases sub-optimum bounded-
distance decoding can be implemented with a consequent loss in coding gain.

In this case the decoder tries to find a codeword within the bounded-
distance correction radius (hard or soft) of code, and if no such codeword

can be found the decoder refuses to decode. The advantage of implementing

bounded-distance decoding is that it may enable the decoding time of an
iterative decoding algorithm to be reduced.

The obvious way of implementing soft-decision minimum-distance decoding

would be to compute the soft distance between the received word and all 2k

codewords, and then choose the codeword at minimum soft distance from the

received word. This is clearly impractical if k is at all large. Two
more practical classes of algorithm that have been proposed are successive-

erasure decoding, and error pattern testing.

Successive erasure decoding (ref.4) assumes the existance of a decoder

which is capable of correcting both erasures and errors. The method is
iterative and involves successively erasing (i.e. treating as an erasure)

the least reliable digits in the hard-decision estimate of the received

340

word, and at each step decoding the altered word with the errors and

erasures decoder. A set of tentative codewords is thus produced and the
codeword at minimum soft distance from the received wOTd is chosen as the

estimate of the transmitted codeword. The number of decoding trials is
(dh-1)/2 which is not excessive, but coding gain is lost because of the

effective three level quantisation. Also, the errors-and-erasures
decoder is in practice difficult to implement.

Error pattern testing (ref.2) assumes the existance of a hard-decision
minimum-distance or bounded-distance decoder. The method is iterative

and involves perturbing the hard-decision estimate of the received word

with a set of locally generated test error patterns and decoding the

perturbed sequence with the hard-decision decoder. The set of tentative

codewords produced is then tested against the received word, and the code-

word at minimum soft distance from the received word is chosen as the

estimate of the transmitted codeword.. A performance approaching that of
maximum-likelihood decoding is achievable on the Gaussian channel if all

error patterns of weight d-1 or less are tested, but this involves an
.. .

exceSS1ve number of tr1a1s.

The algorithms presented in this paper assume only the existance of a

syndrome generator and are consequently less complex to implement than
the above algorithms. Sub-optimum decoding is possible in one trial, and

the coding gain lost depends on the burstyness of the channel. The maxi-
mum loss in coding gain is for the Gaussian channel. Optimum decoding
can be achieved by using the iterative algorithm but the number of trials
can be excessive if the channel is not bursty. It is also possible to
trade coding gain for a reduction in the number of trials when using the
iterative algorithm, and this trade-off is examined in section 6.

3: Hard-Decision Error-Trapping Decoding:

Given a t-error correcting (n,k) cyclic code with generator polynomial
g(x), the syndrome s(x) of a hard-decision received word h(x) can be

written h()
s (x) = remainder [~)], and depends only on the

error pattern e(x), and not on the actual codeword transmitted. We may
thus write e(x) = q(x) g(x) + s(x). If the errors in e(x) are all
confined to the n-k parity check positions of h(x), that is

n-k-1
x ,..,x,l, then q(x) = 0 and e(x) = s(x) and the error pattern is
identical to the syndrome. If the errors are not confined to the n-k

parity position of h(x) but are confined to ~ n-k consecutive positions
(including the cyclic end-around case) then these errors appear in the n-k

parity positions of some other word h'(x) which is a cyclic permutation of

h(x). The syndrome of h'(x) thus equals the original error pattern
cyc1ic1y shifted. Fig 2 shows the syndrome generator for an (n,k) cyclic

code, which can compute the syndrome of a received word in n shifts, and
because of the cyclic property of the syndrome, can compute the syndrome

of a i-place cyclic shift of h(x) in a further i shifts. The operation

of the generator can be explained as follows. Firstly, feedback is

suppressed by the inhibit gate, and the (n-k) stage register is loaded
in (n-k) shifts. Feedback is then allowed, and after a further k shifts
the syndrome of h(x) is in the register. If the weight of the syndrome is
~t it is assumed that e(x) = s(x). If the weight of the syndrome is >t
the generator starts to shift again with the input suppressed and feedback
applied. After i shifts the syndrome of an i-place cyclic shift of the

received word is contained in the register, and can be tested for a

syndrome weight of ~t, which would indicate that the error pattern has

been trapped. If, after n shifts the syndrome weight never goes down to t

341

or less then either (1) a detectable but uncorrectable error pattern has
occurred, or (2) the error pattern is not trappable in (n-k) consecutive

positions.

Provided that most error patterns of weight t or less can be trapped in
(n-k) consecutive positions for a given code then error trapping is an

efficient and simple means of decoding. If not, much of the power of the

code is wasted. However, error trapping is useful in providing a simple

sub-optimum burst-and-random decoding method. In this case the decoder

tries to find a syndrome of weight <t but also notes the shift which
gives the syndrome of shortest burst length. If, after n shifts the
syndrome weight does not go down to ~t, the decoder chooses the shortest
burst as the error pattern.

~.- ~~ft-~esis!on Er~or-Trapping Decoding:
4;1.Algo~~th~1. This algorithm performs non-iterative sub-optimum

m1nimum-distance decoding, and the steps are as follows:

1. Calculate the syndrome s(x) of h(x) using the syndrome generator.

2. Assuming that the tentative error pattern is given by
e(x)=[OOO..Oks(x)], calculate the soft decision weight of the error
pattern.

3. Shift the syndrome generator once to calculate s'(x) and repeat 2.
4. After n shifts choose the tentative error pattern that gives the

lowest soft-decision weight as the actual error pattern.

The above operation can be referred to as one 'trial' and is complete in
k + n syndrome generator shifts.

In general, the soft weight of an error pattern is given by:
n

r [y.(x)] ~ [e. (x)] ~ [h. (x)]
. 1 1 1 1
1=

where h.(x) is the hard-decision estimate of y.(x), and this implies
1 1

that n additions of J bit soft-decision numbers are required at each
shift. In fact, significantly fewer additions are required by implement-
ing the following method. Firstly, let us define the basic soft error

(B.S.E.) of the received word y(x) as the soft distance between y(x) and

h(x).
n

Thus (B.S.E.) = r [c.], that is, confidence complemented. The soft
. 1 1
1=

weight of e(x) is then given by:

le(x)1 = (B.S.E.) + r [(2 x c.) + 1]
s . 1

1
= (B.S.E.) + r [2 x c.] + (syndrome weight)

. 1
1

where i only takes the values corresponding to l's in s(x). As the
B.S.E. is a constant, it need not enter into the minimu~distance

computation, and therefore for algorithm 1 the number of additions

performed at each shift is only equal to the number of non-zero bits in

s(x), plus one. Also note that 2 x c. is simply obtained by a single
shift of c.. 1

1

The increased coding gain (over hard decision) achievable with algorithm 1

depends on whether or not the most probable error patterns of weight
<Cd-I) are trappable. This is increasingly true the more bursty the
channel, so that worst case performance occurs for the Gaussian channel.

,

342

r l
~I I

tU

~I I

~I aJ I

:I: 1-0 ~

I aJ 0 . ~
I'1:j S +.J < 0

al l 0 tU . 1-0 It/J 1-0 1-0 ~ +.J
'~

I '1:j aJ . ~
I~ ~ ~ Q 0

tU >. aJ Co)
.~I U) C-' I

CJ

~I I

U)J ,

S
aJ
+.J
t/J

+.J >.
1-0 U)
0>... p.. g:o

.., 1-0 ~ '1:j ~ .
.. o. ~. +.J ~

s< tU 0 =']
aJ.. p. CJ

~~ ~ ~ aJ

0 Q

1-0

U) ',0
U) t/J

~ t/J

~ aJ

CJ

0
~ 1-0

W p.

~ ~

>' 1-0 CJ
U) +.J 0 .~

1-0 +.J ~

0 0 tU
co < p.. ~

I 0 ='
co p.. +.J '1:j ~

0 ;::l =' £co p. 1=1 .
~ aJ 00

H Q .~

~

,---,- ---,..- - ~--- 1

I I
E-I aJI . I,., p. ':r I. ~'- tU 0"

I ~. E-I I. < 1-0I Q' 1-0 aJ
I. U) aJ'1:j 9

I :>. p.tU I~ tUaJ
aJ p..~

I CJ I
tU

I ' ~ ~ "'
1+.J j tUl-o }

~

I 1-0 aJ
IaJ aJ +.J

d .r:. ~

eI p.H I ':

0 .~

";1)1 , ~ I

> 1-0 s p.. 1-0
all . 0 tU aJ I

Q i ~ +.J1-o +.J

I ..~ 00 ~ I

,. 0 ~ 0

I . 0 1-0

I~ ~ p..

I '-' I

I I

L - - - - - - - - - - - - - - - - ,- - - - "2.:.: .;2 - J

,.

,

,

343

4.2 Algorithm 2 In order to achieve reasonable soft-decision coding gains

when a significant proportion of the most probable error patterns of weight
<Cd-I) are not trappable, as for example with high rate codes on the
Gaussian channel, it is necessary to use algorithm 2 which is iterative,

and can either take a bounded-distance or minimum distance form. The

steps in the bounded-distance form are as follows:

1. Execute one decoding trial, as with algorithm 1, and if a syndrome

is found which gives a tentative error pattern whose soft weight

<t , accept the syndro~as the error pattern.

2. lfsno such syndrome is found another decoding trial is initiated.

Invert the hard decision estimate of the least confident digit in the

received word and assume maximum confidence for this digit.

3. Decode this altered hard-decision estimate, testing for a syndrom~

that gives an error pat tern whose soft weight is < (t - r I [y.] t:D [h.] Is)

where the summation is over all inverted bits - s i 1 1

(in this case 1). If suchasyndrome is found the syndrome plus the

inverted bit equals the error pattern.

4. If no such syndrome is found, further decoding trials are executed,

with decreasingly probable single or multiple bit inversion patterns

being used at each trial.
5. If no such syndrome is found by the time all trials have been

executed, the decoder chooses the minimum soft weight error pattern

encountered in the trials.

The number of trials required to decode a given block thus depends on the

actual error pattern which occurred and is upper bounded by

~

(~) for 0 < i < d - 1 -t , where t is the guaranteed error-trapping
1 1 - - t t

correction power of the code. However, increasing numbers of trials only
occur with decreasing probability, so that on average a maximum of only a ,

few trials per block are in general needed. The number of trials required

by algorithm 2 can be reduced (at the expense of coding gain on the
Gaussian channel) by imposing constraints on the maximum number of trials.

For example, only single bit inversions may be tried. In this way the

number of trials can be reduced without much loss in coding gain if the

channel exhibits both burst and random-error characteristics.

5. Microprocessor Imp1ementatio?:

5.1 System Hardware. The decoding system is based on an Intel 8080A eight-

bit microprocessor (~P), and uses the commercially available standard

SDK-80 microprocessor development kit, with lK of R.A.M. The system
block diagram is shown in Fig.l, and outlines the parallel buss

structure of the SDK-80 microcomputer. Each block is connected to the

system buss which consists of 8 data lines, 16 address lines, and
6 control lines through which all the internal system signals pass. The

system falls into three basic sections as outlined below.

Firstly, the development section allows the input and editing of

programs, and the output of performance statistics. Thus algorithms
1 and 2, and any variation of these, can be implemented by designing the
suitable software. The second section consists of the basic microcomputer

elements : ~P, memory, and input/output ports. The third section contains

specia1ised hardware and consists of two units: a fast syndrome generator

and the direct memory access (D.M.A.) controller.

The syndrome generator is shown in Fig. 3, and is of the type shown in
Fig. 2, with the added refinement that syndrome weights are calculated.

I

344

Fig. 2 Syndrome Generator

Feedback
Inhibit

... +

h(x)

s(x)=

.

Fig. 3 System Syndrome Generator

f

b:31"!!.J r

Control and Address and." j:, i"1 i Address Decode Control Signals
.,it sh1" its .

LOg1C,{

Control Signals

SyndromeParallel to Syndrome Generator Weight

serial 24 bits As Fig.2 Counter
Converter

I - I I weight

h(x) s(x)

.

",I '\" ,:1., !; 'tb~bbs9rl:1
). :c, j

345

In addition, the syndrome generator is generalised, that is, not
dedicated to a particular code, and can be set up by the ~P to operate
in any code that has n < 256, and (n-k) < 24. The syndrome generator

is provided with input and output ports which are organised as locations
of memory, thus enabling the ~P to read or write directly to it. The
input port consists of two 8-bit registers. One is for the hard-decision
estimate of the received block which is input in groups of 8 bits to this
register, and then automatically shifted into the syndrome generator.

The second register is used when an existing syndrome is to be shifted
i places with feedback operating, and the shifts are automatically
initialised on receipt of the value of i in this register. The output
port consists of four 8 bit registers, one of which contains the
syndrome weight while the other three contain the syndrome, which can be
up to 24 bits long. The syndrome generator operates at a serial clock rate
of 9.2l6MHz, thereby enabling data to be input at a rate of 1 byte per ~s,
which is as fast as the R.A.M. can be accessed, and is fast enough to make
iterative algorithms a feasible proposition. Thus as far as the software

is concerned syndromes are quickly calculated by simply writing to the
appropriate memory location. The time taken to calculate thc: syndrome

and syndrome weight from receipt of the last byte of input data is in the

worst case equivalent to one machine instruction which means that as far

as the ~P is concerned the syndrome is available 'instantly'.

The D.M.A. controller enables the direct transfer of data from the input

port to memory, and of corrected message digits from memory to the output

port. The system will operate with or without D.M.A. control, but in the
latter case the ~P operates under interrupt control and channel through-
put rates are reduced.

5.2 Storage Format.

The demodulator outputs a parallel 4-bit quantised estimate of the

corresponding channel digit, which takes values between 0000 and 1111.
A simple hardware converter enables the estimate .to be sent. to the input
port in one of three formats, depending on which one mj.nimises the

software execution time for the particular algorithm in use. These are:

straight quantised binary; most significant digit as hard-decision,

plus three bits confidence; and hard-decision plus confidence-

complemented. These input soft-decision digits are then stored in memory

and organised as two full (including hard decision) values per 8 bit byte,

and 8 hard-decision bits per byte. Thus 8 channel-digit estimates

require 5 bytes of storage. The storage duplication for hard-decision
bits is designed to reduce software ex~cution time, as the need to separate
hard from soft information is eliminated.

The storage area allocated to the input data depends on the amount of
R.A.M. available, which can be easily expanded to 64K. The storage area
is used in a cyclic order to provide an automatic buffer capability. The

hard and soft data are organised in separate streams in such a way that
a two place right shift of the eight least significant bits of the soft-
decision byte address gives the address of the corresponding hard-

decision byte. Programs can be developed in R.A.M., without having any

effect other than reducing the data buffer area, and later transferred
to P.R.O.M., for program continuity during power-off.

5.3 System Operation and Data Movements.

The organisation of internal data movements depends on whether or not
D.M.A. is being used. Without D.M.A., input data transfers operate

under interrupt control, the demodulator causing an interrupt signal

.
346

"

Fig. 4 Performance on the Gaussian Channel t';

Uncoded Transmission

"

1 " ... "'Of "

0 ',~'j ':ii.)"", v..:
!) , 0 't ~~, ;. ; "'::-' j ' ,) v,'"'.. ..,- - "...c ..\. .

'jjlj 9.1111\;1 1!1gl'3W ::J.;jlo)".~t

'1irJT .Spc..r 21I(i ~~ 01 ':!Li

"'-;~-rr"N'" " d '""" ,"'1 "tn~?! I (' P 10 '.Q".""""" '""~.,',', "..ilJ.~ -..,
.,; t, '1 ~~

J ' ~ '\ ~ ~ c "

1 ~ "; ~; J ~ ; ~.",".".F ..IJ '" J"'.,., ,,"'.I. ...",jl.-

"BB,)'\ Ii, aflIiJJx".ro?;l£ ~;v"r:16~)tr

$'1., 89mO.,t,.'1'(8 b9f1J'3::JnO::1 3.1

1s:)oI y~r:j;:::;~m '" :t,;':::rqqt;

'OJ 1 j n~i; :!IV! ::!ffiQ '1 ba'{,~~ bn£:..

jiJ~) [£: vi 1Jt:;q ;:' "~J j 8'10\-,;

Output

B.E.R.

(23,11)b

Eb No (dB)

J

347

when one (machine) byte of soft-decision data is ready. In this case the
~P, which may be executing the decoding algorithm on a particular block,

must as a matter of priority service this interrupt before proceeding with

program execution. Input data is then moved to the accumulator and then

into memory, after which the ~P can continue. Similarly, output transfers

move data from memory to accumulator to output portt and are made as a

matter of priority if the input buffer storage area is in danger of

overflowing. This may entail suspending or terminating the decoding of a
difficult-to-decode block, in order to prevent buffer overflow. In

general, the system can operate without D.M.A. at the required lK bits/sec

with no danger of overflow if relatively short codes (n < 24) and non-

iterative algorithms are used.

When operating with D.M.A. the demodulator signals the D.M.A. controller

that a byte of data is ready, at which point the ~P is held and the
D.M.A. controller takes control of the system buss. The transfer of

data is then made, and the ~P is released. Input transfers made in this

way take about 900 ns, but this does not mean that the ~P is actually

held for this length of time. By implementing cycle-stealing, data
transfers are synchronised with a part of the machine cycle during which
the ~P does not require the use of the system buss. Data transfers made

in this way will hold the ~P for a maximum of 1 machine cycle (488ns) and

may often not cause any loss of ~P time. With D.M.A. any of the codes

which the syndrome generator can handle are decodable at a channel bit

rate of lK bits/sec, although with long codes iteratively-decoded at high

error rates, buffer overflow may occur if ~nly lK of R.A.M. is used.

6. Performance Results:

The performance of the algorithms and microprocessor system has been
investigated for Gaussian noise conditions, as this represents the worst

case. Binary antipodal signalling with equal-spacing l6-level quantisa-

tion and matched filter detection is assumed.

If the (single-sided) noise power density is given by N , the signal-to-

noise ratio for the Gaussian channel is ~en by y = E~N, and the bit

probability of error is given by p = Q(/2YbR), where 0

Yb = Eb/N = y/R is the normalised signal- to-noise ratio per information

b~t, and oR is the inverse of the bandwidth expansion (code rate). Note

that all performance curves are plotted versus E /N to ensure a valid

comparison between different coded systems, and get~een coded 'and uncoded

transmission.

Three different codes are considered, these are the (7,3) dh = 4 code, the

(15,7) dh = 5 code, and the (23,11) dh = 8 code. Fig. 4 plots output bit

error rate (B.E.R.) versus Eb/No. The curve for the (7,3) code shows a

coding gain of 1.6 dB over uncoded transmission at an output BER of 10-5,

and this is only 0.3 dB less than that achievable with maximum likelihood

decoding (MLD). Algorithm 1 is used in this case, showing that most

p.atterns of (d-l) = 3 errors or less are trappable with this code. In

general, the probability of output block error (PBLK) for algorithm 1
can be overbounded by

PBLK ~ PMLD + Frob [non-trappable error pattern].

Three curves are given for the (15,7) code, Curve (15,7)a shows the
performance of algorithm 1. In this case coding gain is being
sacrificed because all patterns of a given weight(w) are only trappable
for w.:: tt = 2 < (d - 1) = 4. Curve (15,7)b shows the performance of

348

Fig. 5 Soft Coding Gain

(7,3)

2.0

dB

f\

, ,

(15,7)c

(23,11)a

(15,7)a

output block error rate

10- 10- 0- 0-5 10-6

Fig. 6 System Channel Throughput Speed

K bi ts/ sec ['C'T~~ i'

(7,3) no D.M.A.

--(23,11)a

(lS,7)a
D.M.A.

(15,7)b

(lS,7)c

1

3 4 5 6 7 8 9 10
Eb/No (dB)

.

"
.

, 349

algorithm 2 when the maximum number of trials is constrained by restrict-
ing inversions to those bits having the same least probable confidence

level. Curve (15,7)c has a looser restriction on the maximum number of
trials in that all single bits with a non-maximum confidence value are

successively inverted in order of decreasing confidence. Curves (15,7)a/c

thus establish a trade-off between coding gain and number of trials.
Finally, curve (23,11)a shows the performance of this code under similar

constraints to (15,7)c. In this case much of the code power is being

wasted as shown by curve (23,ll)b, which estimates the maximum-

likelihood bit error performance of this code from the union bound
n-l

P

b . t ~ ~ x P MLD ~ ~ r W. Q (/2i E-)N
b)N). Thus, in order

1. 23 23 i=8 1. 0

to approach more closely to this bound an increase in the number of

iterations is required.

Fig. 5 plots soft coding gain (that is, the increase in coding gain over

hard-decision bounded-distance decoding) versus output block '~rror rate.

The largest improvements are noted for cod~s in which the number of

trappable error patterns of weight ~ (d-1) is significantly larger than

the number of patterns of weight ~ tho

Fig. 6 plots the achievable channel bit throughput speeds versus Eb/N

for the microprocessor system. The lowest speeds occur for the 0

longer iteratively decoded codes at high channel error rates.

7. Discussion:

Two new soft-decision algorithms have been presented in this paper.
Useful coding gains are achievable on the Gaussian channel, and these

are expected to be even greater for a burst-and-random channel. The

microprocessor controlled decoding system which has been built and
tested with Gaussian noise is capable of implementing these algorithms

at a rate well above the required IK bits/sec, at low channel error
rates. When using long codes at high channel error rates however, the

possibility of buffer overflow exists. The degradation in output bit

error rate is not as great as might be expected however, because the

coding gain provided by most codes is small at high channel error rates.
In addition, the use of latest-generation microprocessors can increase

operating speeds by a factor of 2 to 3 times.

8. References:

1. Wozencraft, J.M., and Jacobs, I.M.: Principles of Co~~nicatio~
Engineering., Wiley, New York, 1965

2. Chase, D.: 'A Class of Algorithms for Decoding Block Codes with
Channel Measurement Information'. IEEE Trans., IT-18, 1972.

3. Goodman, R.M.F. and Farrell, P.G.: 'Data Transmission with Variable-

Redundancy Error Control over a High-Frequency Channel'.

Proc. lEE, Vol.122, 1975.

4. Forney, G.D.: 'Generalised Minimum Distance Decoding'.

IEEE Trans., IT-12, 1966.

