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Abstract

In this paper we describe a technique for automatically learning rules from network
management databases. Our motivation for this is to alleviate the knowledge acquisition
bottleneck inherent in developing expert systems for integrated network management. We
outline our ITRULE rule induction algorithm, show how useful rules can be extracted
from trouble ticket and alarms databases, and show how these rules can be automatically
loaded into a standard expert system shell, thus virtually instantly producing a prototype
expert system.

1. INTRODUCTION

As part of an on-going collaborative project (NETREX) between Caltech and Pacific
Bell aimed at producing real-time expert system modules [1}, we have been faced with
the problem of developing rules via the traditional techniques of knowledge acquisition.
This is a very time consuming process in terms of human resources, particularly expert
availability. We have therefore investigated various automated knowledge acquisition
techniques aimed at speeding up this process. In particular we have been concerned with
the automated induction of rules from network management databases. These databases
include trouble ticket databases, alarms databases, and topology databases. This area
of learning from examples is referred to as machine learning, and a number of statistical
and neural network algorithms exist that enable rules or correlations between data to be
learned. In this paper we outline our approach to automated rule induction via our own
algorithm ITRULE (Information Theoretic Rule Induction). The ITRULE algorithm
possesses a number of significant advantages over other algorithms in that the rules that
are generated are ranked in order of informational priority or utility. It is thus an easy
matter to directly load the rules into a standard expert system shell (such as NEXPERT),
utilize an inferencing scheme based on these rule priorities, and have a working expert
system performing inference in a matter of minutes. We have implemented the ITRULE
suite of programs on a number of platforms (Sun, Mac, PC), and linked these into a
number of expert system shells (NEXPERT, KES). This approach means that the expert
system developer can “instantly” generate and run a tentative expert system with little
.domain expertise. This “bootstrap” expert system can then be used to refine the rules
in conjunction with the domain expert in a fraction of the time of traditional “cold”
question and answer knowledge acquisition techniques.
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2. RULE INDUCTION AND UTILITY MEASURES

The motivation for defining rule utilities arises from the desire to provide a more quanti-
tative and rigorous theory for both rule induction (acquisition and learning of rules) and
rule-based inference (reasoning using the learned rules).

Let us consider the problem of induction first. The desire to transform such databases
into a condensed set of rules demands as a prerequisite the ability to rank rules in some
manner. Hence we arrive at the need for a clearly defined rule-preference measure or a
rule utility.

Previous work in this area has focussed on either qualitative rule modeling (e.g., Michalski
[2]) or else has artificially restricted the nature of the solution to that of a classification
or decision tree, usually via the ID3 algorithm or its variants (e.g., Quinlan [3]), or the
CART algorithm [4].

It is worth emphasizing that our approach is fundamentally different from these clas-
sification and tree-oriented approaches. The problem we are trying to solve is that of
generalized rule induction. In fact classification is a special case of our approach. In
essence, generalized rule induction involves the induction of rules relating all attributes
and is not just restricted to symptom-class rules. In this manner a model using such a
rule set can in principle reason towards any prescribed goal or attribute from any given
initial conditions. We feel that this level of generality is a requirement in many domains
where the system must exhibit common-sense reasoning. Classification-oriented rule sets
(including tree structured rule sets as a special case) do not possess this generality. In do-
mains where the inputs (observable data) and outputs (the goal or class) do not change,
a predetermined hierarchy of rules is an appropriate solution, and indeed decision trees
have proved remarkably efficient for many such problems {5).

However in some domains, such as network management, all the evidence or attribute
variables may not always be observable, i.e., we can only observe a subset of the attributes
for any given problem instance. For example, it may not be possible to conduct a
particular device test because of the network fault, and we may have to “reason around”
the unavailable test. In these circumstances decision trees are severely limited. The
ability to deal with such variable inputs is a reasonable requirement of an intelligent
reasoning system. In summary, our approach to rule induction can be viewed as a more
general and direct method than previous work in this area.

The second motivation for the idea of rule utilities originates from the desire to improve
the modeling of rule-based inference, in particular the aspect of conflict-resolution or
control. Conflict resolution techniques as previously developed in the literature have
been primarily qualitative rather than quantitative in nature. While this approach is well
motivated it leads to a brittleness and domain-specificity when applied to real problems.
By defining a fundamental measure of rule utility, which is in some sense theoretically
correct, we can implement a very general and implicit control scheme that automatically

incorporates both forward and backward chaining as implemented in most expert system
shells.

3. THE ITRULE INFORMATION THEORETIC APPROACH

Consider the problem of quantifying the utility or goodness of a particular rule, where a
rule is considered to be of the form

If Y =y then X = z with probability p
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For our purposes we may treat Y and X as discrete-valued or categorical attribpts.
Expressions of the form Y = y are attribute-value assignment stalements, where y is an
element of Y’s alphabet. Note that ¥ = y can be a conjunctive Left Hand Side (LHS),
ie. A = a & B = b. The probability p is simply the conditional probability p(zly), that
is, the probability of the rule right hand (RHS) side given that the rule left hand side is
true. While acknowledging that other parameters such as certainty factors or likelihood
ratios are often used, we consider the conditional probability as the most basic and well-
established rule-belief parameter. Note that we are primarily interested in probabilistic
rules, that is, there is an implicit uncertainty in the rule.“Factual rules” where p = Oorl
are a special case of the theory. This belief parameter p alone is not sufficient to measure
a rule’s utility. Clearly the utility must be influenced by such factors as the probabnh!.y
oY = y) which reflects the average probability that the left-hand side of the rule will
evaluate to true, i.e., that the rule will fire.

Let us adopt an information theoretic approach to this problem and define the information
which the event y yields about the variable X, say f(X;y). Based on the requirements
that f(X;y) is both non-negative and that its expectation with respect to Y equals the
Shannon average mutual information J(X;Y), Blachman [6] showed that the only such
function is the j-measure, j(X;y). More recently we have shown that j(X;y) possesses
unique properties as a rule information measure [7]. In general the j-measure can also
be interpreted as a special case of the cross-entropy or binary discrimination {Kullback
{8]) between the LHS and RHS probability distributions. We further de_ﬁne J(X;y) as
the average information content where J(X;3) = p(y)5(Xiy). J(Xiy) simply yvengh'ts
the instantaneous rule information j(X;y) by the probability that the left-hand side will
oceur, i.e., that the rule will be fired. A rule with high information content must be both
a good predictor and have a reasonable probability of being fired, i.e., p(y) can not be
too small.

The J-measure is then the basis of our rule utility measure in that it defines the average
number of bits of information in the Shannon sense that we obtain when the rule is “fired”.
The final step in developing the general utility measure is to incorporate a cost term c{y)-
This allows us to incorporate the subjective cost of measuring the LHS variables. The
final utility measure used is then U(zy) = J(X;y) - (v)- This utility measure can then be
considered a “goodness” measure relative to the “best” rule.

4. THE ITRULE ALGORITHM

We have developed a suite of algorithms collectively called the ITRULE algorithm [9]
which uses the J-measure to derive the most informative set of rules from an input data
set. The algorithm takes as input a sample set of features vectors where each of the
features is discrete-valued.

As output the algorithm produces a set of Kk probabilistic rules, x:anked. in order of
decreasing utility. The parameter K may be user-defined or determined via statistical
significance tests based on the size of the sample data set available.

For each right-hand side of interest the algorithm begins by first considering first-order
general rules, i.e., rules with a single variable on the left-hand side. It the{l proceeds
to search for more informative higher order rules which are specialized versions of the
original rule, by adding terms to the left-hand side in a depth-first manner. The search
ts made highly efficient by using information theoretic criteria to guide the search a_nd
constrain the search space. A ranked list is kept so that new rules may be compared with
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the utility of the rule currently in the Kth position in the list. Rules which exceed this
threshold are inserted in the list, those that are not are rejected.

ITRULE uses information theoretic search criteria and small sample statistics to very
quickly come up with a candidate set of rules. Furthermore these rules are directly output
into the format of the expert system shell in use (NEXPERT, KES in our case) to give
an almost instant prototype expert system.

The ITRULE software also has facilities for both manual and automated rule editing,
in order to optimize the set of rules to a number of user selected criteria, for example:
accuracy, simplicity, lowest cost, self-consistency, etc. In addition, the ITRULE soft-
ware implements a number of routines for processing continuous attribute data (such as
time) into categorical data as required by the algorithm. These routines are manual,
information theoretic, statistical, and neural network inspired. Thus for example given
a particular time attribute, ITRULE can indicate that it makes sense to categorize the
attribute’s values into bins of < 5mins, < 30mins,and > 30mins.

§. RULE-BASED INFERENCE WITH UTILITY MEASURES

The utility measure associated with each rule is then used in the expert system shell
to perform conflict resolution. For example in NEXPERT a priority value is associated
with each rule, and after collecting candidate rules which can fire (their LHS’s are true)
the rule with the highest priority is actually fired. ITRULE associates two utility values
with each rule: one for forward chaining based on the j-measure, and one based on the
J-measure for backward chaining. In this way ITRULE provides a complete “instant”
prototyping system for an expert system shell.

6. EXAMPLES USING NETWORK MANAGEMENT DATABASES

We now describe some of the applications of ITRULE to analyzing network management
databases within the Caltech - Pacific Bell collaboration. In Figure 1. we show an
ITRULE analysis of a Pacific Bell Network Management trouble ticket database. The
database logs trouble reports on a large (25,000 terminals) distributed data network. The
number of trouble reports on such a large network run into the hundreds per day. In
this case the ITRULE analysis is being used as a data summarizing tool and the rules
are being very effectively used for the benefit of humans trying to understand the way
in which troubles are closed out, and how long it takes to do so. The top half of figure
1. shows a small portion of the trouble ticket database (the actual historical database
is of course huge). The trouble database (and the input format that ITRULE needs)
is in the form of a spreadsheet where each line is a trouble record. The attributes (or
fields) of the database refer to the equipment ID, the tests that were made in isolating
the trouble, who the trouble was referred to, the final close out category, and who fixed
the fault. The middle portion of Figure 1. shows the attributes which correspond to
the data fields above them. Note that most attributes are categorical, apart from “time
- down” which in the raw data is a continuous variable. This attribute was manually
categorized by Trouble Center experts who were interested in resolution times of greater
or less than one hour. The ITRULE process was directed to produce rules about how
long it took to close out troubles, and who actually fixed the problem. The lower part of
Figure 1. shows a portion of the ITRULE analysis, giving the 13 most informative rules
extracted from the data. The first numeric entry in each rule line is the probability p, the
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“correctness” of the rule. The last entry is the utility measure (equivalent to the relative
J-measure in this case). The rules reveal the fundamental statistics of trouble closeouts
in a very human readable way. For example, rule 2 shows that if faults are software
based they almost always fixed by the highly skilled testers, alternatively, rule 8 shows
that the simpler one terminal call-fail problems are often fixed by the less technically
specialized trouble call screeners (usually by reseiting the control unit - which is revealed
in a rule further down the list). Rule 11 reveals that if there are hardware problems
with 4540A terminals then these take over an hour to fix (they involve a referral and
a site callout). Note that within the context of this trouble ticket domain rule 1 is an
“obvious” rule. When troubles have been referred to the OCS group, then if that group
solves the problem they also always fix the problem. The ability of ITRULE to extract
these “obvious” rules is of great benefit when bootstrapping a prototype expert system.
One of the biggest problems with the conventional technique of interviewing experts is
that they have difficulty adjusting themselves to describe the elementary rules of their
domain, that is the 2+ 2 = 4 type rules. These rules are therefore often laborious to
extract, however, the ITRULE approach easily finds these rules.

We now show a more complex example in which ITRULE is used to analyze a time varying
network alarms database. The objective is to automatically develop rules for a higher level
expert system whose output is a (real time varying) prioritized list of the most important
network alarms. This alarms list is then presented to the network administrators and
gives a real time picture of the most important problems in the network. In order to
achieve this we need an expert module that understands the relation between line alarms,
so that when presented with the latest alarms evidence it can predict the likelihood of
other related alarms occurring, and thus compute a postulated severity measure for each
alarm that has occurred. For example, if we can learn that the occurrence of a particular
sequence of alarms usually indicates that a serious outage may occur in the near future,
thus affecting a large number of users, we can assign a high priority to fixing the detected
alarms. The top part of Figure 2. shows a small portion of the raw alarms database. Note
the volume of alarms, approximately one every 30 seconds - it is impossible for any human
to get an overall picture of the network from such volumes of data, or to understand the
relation between alarms. This raw data is then preprocessed into a the spreadsheet form
(as in Figure 1.) suitable for ITRULE input. To do this we consider the behavior of each
network Line over a period of several hours. The attributes of the problem are than the
number of alarms, the number of stations with alarms, and the actual alarm types, etc.
Each example (row) in the input spreadsheet (not shown) thus refers to the history of
a particular line in terms of the type of alarms experienced over the observation period.
The lower half of Figure 2. lists the attributes used, and gives an ITRULE analysis of
the alarms data, showing a portion of the most important rules. Note that we are not
interested in human readability here - just in automatic rule production. The binary
value 1 indicates the occurrence of a particular alarm. Note again the “obvious rule”,
rule 1, which indicates that if a CU fail occurs then a CU restoral will occur soon after.

Figure 3. shows a NEXPERT display of the alarm rules. These rules were generated
by ITRULE as in Figure 2. and saved in a NEXPERT loadable file. The alarm expert
system shown was generated in a few minutes, and is ready to perform inference. The
top screen in Figure 3. shows a portion of the rule network, showing the complex alarm
inter-relations. The lower left portion of Figure 3. shows an overview of the several
hundred rules generated by ITRULE. The lower right shows a rule being displayed in the
NEXPERT rule editor.
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Figure 1. Trouble ticket analysis using Itrule
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RAW ALARMS STREAM:

DATE TIME NODE 1ID CONDITION

10/28,10:19:45 D2 TO061 POL RES 41507 g
10/28 10:19:40 DO TO049 LINE FAIL 040 0
10/28 10:19:40 DO TO000 LINE CONDITION ERROR 040 02 &
10/28 10:19:40 D1 T049 LINE FAIL 270

10/28 10:19:40 D1 TO000 LINE CONDITION ERROR 270 02

10/28 10:19:40 D2 T049 LINE FAIL 457

10/28 10:19:40 D2 TO00 LINE CONDITION ERROR 457 02

10/28 10:19:34 DO T013 EBCDIC STATUS *4050* 01914

10/28 10:19:34 DO TO08 CAL FAIL NAK 01914

10/28 10:19:00 D2 TO00 BINS 0549,EMBN 1518,MG/M 1554,MRAT 0021
10/28 10:18:00 D3 TO00 BINS 0602,EMBN 1548,MG/M 1371,MRAT 0022
10/28 10:17:45 D3 T010 CAL 'RES 64A00

10/28 10:17:00 D1 T000 BINS 0575,EMBN 1531,MG/M 2088, MRAT 0034
10/28 10:16:45 DO T049 LINE FAIL 024

10/28 10:16:44 DO TO052 LINE OUT 02A

10/28 10:16:31 D2 TO010 CAL RES 45710

10/28 10:16:19 D2 T010 CAL RES 4570A

10/28 10:15:54 D2 TO010 CAL RES 45702

10/28 10:14:18 D3 TO011 CU 00 FAILED 64A

10/28 10:14:00 DO TO0O0 BINS 0522,EMBN 1550,MG/M 2024, MRAT 0030
ATTRIBUTES:

#stats . w/alns 4alms f#unique, alms

CAL.RES CU.01.FAIL CU.00.RES

EB.ST:C250-prntr.cvr EB.ST:4050-dev.nav LINE.MOD. INOP

AHP .E(FACS) .LINK.OK T060 15

POL.RES LINE.OUT EB.ST:40C2-tx.err

CAL.FAIL.DC CAL.FAIL.NAK INTR.NODE,LNK,.FAIL

TO18 CAL.FAIL.NR INTR.NODE.LNX.OK

TO48 LINE.FAIL POL.FAIL.DC

RULES: IF AND THEN UTILITY

1 CU.01.FAIL 1 CU,.00.RES 1 1000
2 CU.00.RES 1 CU.01.FAIL 1 857
3 CAL.FAIL.NAK 0 CAL.FAIL.NR O CAL.RES 0 710

4 CAL.FAIL.NAK 0 EB.ST:4050-dev.nav 0 645

5 EB.ST:4050~dev.nav 1 CAL.FAIL.NAK 1 597

6 CAL.RES 0 CU.00.RES 1 CAL.FAIL.NAK 0 570

7 f#alms underl0 #stats.w/alms 1 556
8 CAL.RES 0 EB.ST:4050~dev.nav 0 CAL.FAIL.NAK 0 549

9 CAL.RES 0 INTR.NODE.LNK.OKO #unique.alms 2 491
10 CAL.RES 0 LINE.MOD.INOP 0 #unique.alms 2 489
11 #stats.w/alms 1 $unique.alms 2 #alms underl0 476
12 CAL.FAIL.NAK 1 CAL.FAIL.NRO EB.ST:4050-dev.pav 1 457
13 4alms underl0 #unique.alms 2 455
14 #stats.w/alms >1 CAL.FAIL.DC 1 #unique.alms 4+ 441
15 #stats.w/alms 1 CAL.FAIL.NAK 0 4alms underi0 416
16 #stats.w/alms 1 EB.ST:4050-dev.nav0 #alms underl0 413
17 #funique.alms 3 CAL.RES 1 CU,01.FAIL 0O 413
18 CAL.RES 1 EB.ST:4050-dev,nav0 CAL.FAIL.NR 1 410
19 #unique.alms 2 #stats. w/alms 1 385
20 CU.00.RES 1 EB.ST:C250-prntr.cvr0 EB.ST:4050-dev.nav 0 382

Figure 2. Alarms analysis using Itrule
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