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Abstract

Across a variety of scientific, engineering, and business applications it has become
commonplace to collect and store large volumes of data. For example, NASA has
warehouses of data collected from inter-planetary scientific missions, most of which
cannot be processed or examined at present because there simply are not enough
scientists and statisticians to sift through it all. On the other hand, we have at our

disposal previously unimaginable amounts of computational power due to advances

in VLSI technology. Hence, it seems obvious that the development of computation-
intensive techniques which explore large databases is a major research challenge

as both data volume and computing power continue to increase. In this paper we

consider the problem of generalized rule induction from databases and provide an
overview of our recent work on this topic using information-theoretic models. In
generalized rule induction we seek the best predictive rules relating all, or any subset
of, the domain variables. This approach is particularly useful for initial analysis

of large sets of discrete and/or categorical data, allowing, for example, important

causal dependencies to become apparent. We describe the necessary information
theoretic and probabilistic foundations for this approach, defining the information

content of a probabilistic rule. Given these basic tools we then show how they

can be incorporated into a powerful learning algorithm called ITRULE, and we

discuss the practical applications of this algorithm to problems such as exploratory
data analysis, identification of causal models, and knowledge acquisition for expert
systems. In our conclusion we discuss some general research issues which remain

to be addressed in this field.
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9.1 Introduction

The emergence of electronic and magnetic storage media as convenient and af-
fordable methods to store large amounts of data has led to the coining of phrases
such as "the information revolution." The popular notion appears to be that the

widespread availability of information will considerably accelerate man's technical

progress, this new age being a modern-day equivalent of the industrial revolution

of the last century. With the continued progress in increasing the information ca-

pacity of both storage media (e.g., high density VLSI memory chips, optical discs)
and transmission media (e.g., optical fibers), one can only predict that the volume

of electronic data will continue to grow at a phenomenal rate.

Yet, despite the progress in handling this information from a hardware stand-

point, progress in using the information continues to lag far behind. One of the

primary reasons is the sheer quantity and volume of the data. Simply put, there is

not enough manpower to analyse and examine the typical large corporate database.

For example, in the telecommunications industry at present, there exist very so-

phisticated networks which automatically report a vast array of traffic information,

data on module failures, system performance analyses, etc. These reports are au-

tomatically "logged," in turn, on a database system, as a historical record of net-

work operations. However, although the databases contain a wealth of information

in terms of system performance and fault diagnosis, they are often too complex

to search manually. Another familiar example is the automatic scanners used at

checkout counters in modern-day supermarkets. This "scan data" is automatically

recorded and used for market research purposes. The volume of data available over-

whelms what was previously a manual market-analysis task. This general trend is

extremely common across a variety of disciplines.

The premise of this volume is that the automated analysis of such large databases

is obviously necessary and worthwhile. While the lofty goals of knowledge discovery

are worthy indeed, we must nonetheless begin our research at a more concrete

level. In this chapter we are going to look at what seems like an innocously simple
problem:

Given a database described in terms of discrete and/or categorical at-
tributes what are the best rules which characterize the data?

We begin by defining the problem in more formal terms, defining and justifying the
necessary probabilistic pre-requisites underlying our approach. We then examine

the idea of quantifying the quality of a probabilistic rule, and demonstrate the

notion of rule information content. In addition we devote some attention to the
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problem of robustly estimating probabilities directly from data. Armed with these

basic "tools of the trade" we can begin to address the problem described above,

that of finding the most informative rules from a data set. In particular we describe
the ITRULE algorithm which uses computation ally intensive search techniques to

search the data for the rules of greatest information content. The workings of the

algorithm have been reported in detail elsewhere (Smyth and Goodman, 199Gb),

hence, the focus here will be more on the applications of the algorithm and the

types of problems and data to which it is best suited" We conclude by discussing

open problems and research issues.

9.2 The probabilistic rule representation

We define a probabilistic rule as an if-then statement to the effect that if proposition
y occurs then there is a probability p that proposition z is true and a probability

1 - p that proposition i is true. It is convenient to define the probability p as the

conditional probability p(zly). Hence our probabilistic rule corresponds to a simple

statement regarding the conditional probability of one event given another. While

other methods of representing uncertainty have been proposed and are in common

use (such as fuzzy logic (Zadeh, 1965), and certainty factors (Adams, 1976)), stan-

dard probability theory remains the established and preferred uncertainty model

due to its theoretical foundations and proven utility.

Letting X and Y be discrete random variables, then z and yare letters from their

respective discrete alphabets (as a notational convenience we adopt the convention

that p(y) stands for p(Y = y), etc., as is customary in discussions of this nature). A
common situation is where X is the class variable, and Y is a composite variable of

several discrete or categorical attribute variables. In this manner our probabilistic

rules would be classification rules of the form:

If (Y 1 = Yl and Y 2 = Y2) then X = z with probability p

Why should we look for rules at all, and probabilistic ones at that? The rule-

based representation plays a central role in most theories of knowledge represen-

tation, going back to the early work of Chomsky (1957), the cognitive production

rule models of Newell and Simon (1972), and the more recent work of Holland et

al. (1986). While the debate continues regarding the virtues of competing cog-

nitive models (such as connectionism) there can be no denying the utility of the

rule-based representation, i.e., whether or not we believe that rules are truly part

of human reasoning processes they provide a practical and convenient mechanism
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by which to explicitly represent knowledge. For example, witness the proliferation

of rule-based expert systems as a practical software engineering paradigm.

So why add probabilities to our rules? There are two ways to answer this.

The first answer is that although production rule systems have their roots in logic,

our perception of the real world tends to be couched in uncertainty. For example,

most successful rule-based expert systems tend to add uncertainty measures to

their rules, albeit often in an ad hoc manner. So the first answer says that by

necessity we need to use probability to deal with real-world problems. The second
answer to the question, that of an information theorist, is more dogmatic. Simply

put, probabilistic models are a generalization of deterministic models, and, as such,

provide a much more expressive and powerful mathematical language to work with.

A layman's interpretation of this statement might be that any system which uses

probability correctly can always do better than a similar system which has no

concept of probability.

Hence, probabilistic rules are a simple and useful technique for knowledge rep-

resentation. While there exist far more sophisticated knowledge representation

schemes, it seems more appropriate that we should begin work on automated knowl-

edge discovery at a fairly simple level. As we shall see later, even the discovery of

simple probabilistic rules in data can reveal a wealth of hidden information.

9.3 The information content of a rule

Given a set of probabilistic rules we will need to be able to compare and rank the

rules in a quantitative manner, using some measure of "goodness" or utility. The

approach we propose is to define the information content of a rule, using ideas

from information theory. Information theory can be considered a layer above pure
probability theory - typically, given a set of defined probabilities we wish to cal-

culate various information-based quantities. Traditionally, information theory has

a distinguished history of providing elegant solutions to communications problems,

originating with Claude Shannon's pioneering work (Shannon, 1948). The relation
between communication theory and inductive inference is quite appealing. With

communication systems we are involved in the efficient transmission and reception
of information from point A to point B. In inductive inference, we are effectively

at point B, receiving a message (the data) via some sensory channel, from the en-

vironment (point A). In particular, unlike communications applications, we do not

know what "code" is being used or what the noise characteristics of the channel

(measurement process) are. For example, in classification, we may be trying to
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infer the value of the class variable, given related attribute information. In effect,
the attributes form a code for the class, which is then corrupted by measurement
noise. Even in the presence of perfect information (no measurement noise), the
class may be coded ambigously by the available attributes, i.e., there may only

exist a probabilistic (rather than deterministic) mapping between the attributes
and the class, due to the presence of unmeasured causal variables. For the classifier

design problem we have used this analogy to improve our understanding of decision
tree design techniques (Goodman and Smyth, 1988a, 1990) and, in a more gen-
eral sense, the powerful technique of inductive inference via Minimum Description

Length Encoding (Rissanen (1989), Quinlan and Rivest (1989) ) is also motivated
by this communications problem analogy.

Hence, it seems clear that information theory should provide a theoretically sound
and intuitively practical basis for our problem of finding the best rules from given
data. The first task is to define the information content of a probabilistic rule,
where we remind ourselves that a probabilistic rule is defined as

If Y = y then X = z with probability p

We have recently introduced a measure called the J-measure for precisely this pur-
pose (Goodman and Smyth, 1988, Smyth and Goodman, 1990a), defined as

J(X;Y = y) = P(Y)(p(ZIY).log(~) + (1-P(zIY».log(~i::~~¥))

This measure possesses a variety of desirable properties as a rule information mea-
sure not least of which is the fact that it is unique as a non-negative measure which
satisfies the requirement that

L J(XjY = y) = I(X;Y)

y

where I(X;Y) is the average mutual information between the variables X and Y as

originally defined by Shannon (1948). This states that the sum of the information

contents (of a set of rules with mutually exclusive and exhaustive left-hand sides)

must be equal to the well known average mutual information between two variables.
The interested reader is referred to Smyth and Goodman (1990a) for a detailed

treatment of the various mathematical properties of the measure. We note in

passing that other measures of rule goodness have been proposed, such as that of

Piatetsky-Shapiro (1990). who proposes the use of p(y)(p(zly) - p(z». Measures

such as this, based directly on probabilities, will tend to assign less weight to~
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rarer events compared to measures such as the J-measure which use a log scale
(information-based). To a large extent, such "information-based" and "correlation-
based" measures in practice often rank rules in a similar order - however, the J-
measure's relation to Shannon's average mutual information makes it more desirable
from a theoretical point of view.

Intuitively we can interpret the J-measure as follows. Let us decompose the

J-measure into two terms, namely p(y) and j(X;Y = y) where

. (P(XIY) ) ( 1 - P(xIY)) )J(X;Y = y) = p(xly).log ~ + (1 - p(xly)).log (1 - p(x))

The probability term p(y) can be viewed as a preference for generality or simplicity

in our rules, i.e., the left-hand side must occur relatively often in order for a rule to
be deemed useful. The other term, j(X;Y = y), is familiar to information theorists
as a distance measure (namely, the cross entropy) between our a posteriori belief
about X and our a priori belief. Cross entropy is a well-founded measure of the

goodness-of-fit of two distributions (Shore and Johnson, 1980 ). Hence, maximizing
the product of the two terms, J(X;Y = y), is equivalent to simultaneously maxi-

mizing both the simplicity of the hypothesis y, and goodness-of-fit between y and

a perfect predictor of X. There is a natural trade-off involved here, since typically

one can easily find rare conditions (less probable y's) which are accurate predictors,
but one has a preference for more general, useful conditions (more probable y's).
This basic trade-off between accuracy and generality (or goodness-of-fit and sim-
plicity) is a fundamental principle underlying various general theories of inductive
inference (Angiuin and Smith (1984) , llissanen (1989)).

Symptom A Symptom B Disease x Joint Probability
no fever no sore throat absent 0.20
no fever no sore throat present 0.00
no fever sore throat absent 0.30
no fever sore throat present 0.10

fever no sore throat absent 0.02
fever no sore throat present 0.08
fever sore throat absent 0.03
fever sore throat present 0.21

Table 1: Joint probability distribution for medical diagnosis example

An example of the J-measure in action will serve to illustrate its immediate appli-

cability. Consider the three attributes shown in Table 1, along with their associated
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joint probability distribution. The data is supposed to represent the hypothetical

distribution of patients arriving into a doctor's office. In practice we might have a

large sample of patient data available, in which case the joint distribution shown
in Table 1 might be an estimate of the true distribution. The attributes "fever"
and "sore throat" represent whether or not a patient exhibits these symptoms at

present, while "disease x" is some mysterious illness which each patient actually

will or will not develop at some point in the future.

We are of course interested in predictive "symptom-disease" rules, of the variety
a medical practioner might use in the course of a cursory diagnosis. Note that

from Table 1 alone, or indeed from the original sample data, it would be very

difficult to manually detect the most informative rules. In Table 2 we list the

rule conditional probability p(zly), the left-hand side probability (p(y», the cross
entropy j(X;Y = y), and their product J(X;Y = y) for each of 6 possible rules.

Rule Rule Descriptjon p(xiY) p(y) j(X;y) J(X;y)

1 jf fever then di"ea"e x 0.875 0.4 0.572 0.229
2 jf "ore throat then di"ea"e x 0.5285 0.7 0.018 0.012
3 if "ore throat and fever then di"ea"e x 0.9 0.3 0.654 0.196
4 if "ore throat and no fever then not di"ea"e x 0.75 0.4 0.124 0.049
5 jf no "ore throat and no fever then not di"ea"e x 1.0 0.2 0.863 0.173
6 jf "ore throat or fever then di"ea"e x 0.5625 0.8 0.037 0.029

Table 2: Hypothetical predictive 'symptom-disease' rules and their information

content

The three best rules, as ranked by information content, are 1, 3 and 5, in that

order. Rule 5 is a perfect predictor of a patient not having the disease, however

it only occurs 20% of the time, limiting its utility. Rules 2, 4 and 6 are of limited

predictive value because for each rule the conditional probability is relatively close
the prior probability of the right-hand side. Hence, the information content for each
is low. If we used cr~s entropy (j(X; y) as the ranking criterion (and ignored the

probability p(y» rule 1 would only rank third. When p(y) is taken into account,

rule 1 provides the best generality/accuracy trade-off with the highest J -measure

of 0.229 bits of information.

In practice, since rule 3 is a more specialized form of rule 1, with lower information
content, it serves no practical purpose and would be eliminated from a simple model.
Hence, a practioner might choose to remember only rules 1 and 5 from this set,
and seek information regarding other symptoms if neither of these rules' conditions
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are met (prior to making a diagnosis). This simple hypothetical example serves
to illustrate the utility of the J-measure. The next step is to automate the rule

finding procedure, i.e., to define an algorithm which automatically finds the most
informative rules.

9.4 The ITRULE rule-induction algorithm

Let us formally define the generalized rule induction problem once again, in the
context of information content:

Given a set of K discrete (and/or categorical) random variables (called

features or attributes), and a set of N sample vectors (i.e., instances or

samples of the attributes, perhaps a database), find the set of R most

informative probabilistic rules from the data, where probabilistic rules

consist of conjunctions of attribute values on the left-hand side, a single

attribute-value assignment on the right-hand side, and an associated

conditional probability value. Calling one of the attributes the "class"

and simply deriving classification rules is a special case.

A cursory glance at the literature on machine learning will confirm that there

are many flavors and varieties of rule-induction algorithms. A significant number

of these algorithms are based on symbolic, non-statistical techniques, for example

the AQ15 algorithm of Michalski et al.(1986). While such learning algorithms

provide useful qualitative insights into the basic nature of the learning problem, we
believe that a statistical framework is necessary for any robust, practical learning
procedure, in particular for real-world problems. Many rule-induction algorithms
which use a statistical basis fall into the tree-based classifier category, for example
the well known 1D3 algorithm (Quinlan, 1986) and its variants. These algorithms
derive classification rules in the form of a tree structure. The restriction to a
tree structure makes the search problem much easier than the problem of looking

for general rules. Quinlan has more recently proposed the C4 algorithm (Quinlan,

1987) which prunes back an original1D3-like tree structure to a set of modular rules.
Clark and Niblett (1988) described the CN2 algorithm which produces a decision-
list classifier structure, allowing arbitrary subsets of categorical events to be used
as tests at intermediate nodes in the list. Both of these techniques, and almost
all related algorithms, are strictly classifiers, and all use some form of restricted

rule structure (tree, decision list) allowing the search algorithm to use a divide-

and-conquer strategy in searching the data. The only vaguely similar approaches
to the problem of genem/ized rule induction of which we are aware is a Bayesian
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approach presented by Cheeseman (1984) and the ENTAIL algorithm of and Gaines
and Shaw (1986) which is based on fuzzy logic measures rather than probability
theory. In addition, in this volume, Piatetsky-Shapiro (1990) describes an approach
which looks at generalized rule induction for strong rules, where "strong" is defined
in the sense of having rule transition probabilities near 1.

The problem of generalized rule-induction is quite difficult. One cannot partition
the data in a simple divide-and-conquer manner, making the search for rules consid-

erably more computationally demanding than tree induction. We have developed

an efficient algorithm for the problem, namely the ITRULE algorithm (Goodman

and Smyth, 1988b,c, 1989, Smyth and Goodman, 1990b).

The input to the algorithm consists of the data (a set of N discrete and/or

categoric-valued "attribute vectors"), R (the number of rules required), and 8,

the maximum size of the conjunctions allowed in the rules where 1 $: 8 $: K -

1. The algorithm returns as output the R most informative rules, up to order

8, in rank order of information content. The "order" of a rule is defined as the
number of conjunctions on the left-hand side of the rule. In addition, the user can

supply a constraint matrix (size K x K) of left-hand side/right-hand side attribute

combinations, where an entry of "1" indicates that that combination is not to be
considered among the candidate rules, and a "0" entry the opposite. The default
value for the matrix is the identity matrix. This constraint matrix is a simple
technique to restrict the focus of attention of the algorithm to rules of interest to
the user. For example, this allows one to enforce causal constraints or to implement
the special case of classification rules for a specific attribute.

The algorithm operates by keeping a list of the R best rules found so far as it

searches the rule space. It considers in turn each of the possible first-order rules for
each possible right-hand side, calculates their J-measure and includes them in the
rule list if their information content is greater than that of the Rth best rule found

so far. The J-measure calculations are made based on estimates from the data of

the various probabilities involved. This estimation step is a critical element of the

algorithm and is described in more detail in the Appendix. A decision is then made
whether or not it is worth specializing the rule further. Specializing the rule consists
of adding extra conditions to the left-hand side. The key efficiency of the algorithm
lies in the fact that it uses information-theoretic bounds to determine how much

information can be gained by further specialization (Smyth and Goodman 1990a,b).
If the upper bound on attainable information content is less than the information
of the Rth rule on the list, the algorithm can safely ignore all specializations of

that rule and backs up from that point. In this manner it continues to search and
bound until it has covered the entire space of possible rules.
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The worst-case complexity of the algorithm is exponential in number of at-

tributes. More precisely, for K m-ary attributes (i.e., attributes which can take

on m values), the number of possible rules to be examined by the algorithm is

R = Km( (2m + 1)K-l -1)

where m = 1 for the special case of binary attributes. However this worst-case

scenario can only occur if the attributes are all entirely independent of each other

(so that none of the bounds take effect) and the size of the training data set is

significantly greater than 2K (so that one is not limited by small-sample estimation

effects). In practical situations, the combination of bounds and small sample bias

ensure that th~ algorithm rarely searches any rules of order much greater than 3 or
4 - in Smyth and Goodman (1990b) we have shown empirical results validating

this effect on Well-known data sets. The size of the data set N is only a linear factor
in the complexity, i.e., doubling the size of the data set will cause the algorithm

to take roughly twice as long to run. A more significant practical limitation is the

alphabet size m. In speech and computer vision problems, m can be quite large,

for example, for the text-to-phoneme mapping problem (Sejnowski and Rosenberg,

1987) m = 26. A practical approach to this problem is to limit allowable order s

of the rules to say 2 or 3, a sub-optimal but necessary fix.

9.5 Applications of the ITRULE algorithm

The ITRULE algorithm is ideally suited for problems with a large number of

discrete-valued or categorical variables whose interaction is poorly understood, i.e.,
where there is little prior domain knowledge. In particular, domains characterized

by non-linear relationships are particularly well-matched by the probabilistic rule

representation. Applications of the algorithm can be characterized into four basic

categories:

,.

1. Exploratory data analysis: The algorithm is perhaps most useful for gen-

erating an initial understanding of dependencies among variables, causal re-

lationships, etc. In practice this tends to be very useful to get a "feel" for the

data. One of the early succesful applications of ITRULE was to a financial

database describing the characteristics and performance of a variety of mutual

fund investment companies averaged over a five-year time period (Goodman

and Smyth, 1988c). The algorithm extracted a number of interesting (and

previously unknown) general domain rules.
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2. Knowledge acquisition for expert systems: The probabilistic rule out-
put can be used directly as the knowledge-base for an expert system. Hence,

one can use ITRVLE to automate the rule elicitation process, circumventing

the often inefficient manual knowledge acquisition methodologies. Indeed,

even when no database is available, one can in principle use expert-supplied
case studies as a synthetic data set. We have routinely used the algorithm

to produce rules from data for various commercial rule-based shells - the

ability to go directly fro~ta to a working expert system is particularly

powerful, allowing for rapid pl-ototyping of a system and iterative improve-

ment by adding new attributes and rerunning the induction. Goodman et

al.(1989) report an application of this technique to the development of expert

systems for telecommunications network management and control.

3. Rule-based classifiers: By running the algorithm to find only classification

rules, the resulting rule set forms a hybrid rule-based/probabilistic classifier.
This classifier, which has achieved excellent classification performance in em-
pirical tests (Smyth et al., 1990a), uses appropriate conditional independence
assumptions to cpmbine rule probabilities into an estimate of the class prob-
ability. In addition, the equivalent log-likelihoods or "weights of evidence"
(for each rule which contributes to the estimate) can be used to construct an

explanation of how the classification decision was arrived at, providing the

basis for a decision support system.

4. Identification of Markov chains: By interpreting state transitions in a

Markov chain as probabilistic rules, the algorithm can be used to estimate

Markov chain structure from data. For example one can infer general pre-

diction and performance rules for complex engineering systems directly from

a system simulation (Smyth et al. 1990b). In addition, for speech and com-

puter vision problems the technique shows considerable potential for detecting

high-order components of Hidden Markov Models, Markov Random Fields,

etc.

As an example of the output of the algorithm we show in Table 3 the 8 best rules
obtained for the congressional voting records database as described by Schlimmer

(1987) (and available publicly from the V.C. Irvine Machine Learning database).~
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Rule Rule Description p(xly) p(y) J(X; y)

1 if po/itic8:repub/ican then ph.Y8-freeze:ye8 0.980 0.387 0.428

2 if phY8-freeze:ye8 and 8yn-fue/8:no then po/itic8:repub/ican 0.967 0.318 0.363

3 if phY8-freeze:ye8 then po/itic8:repub/ican 0.913 0.407 0.361

4 if contra-aid:no and crime:ye8 then el-8a/v-aid:ye8 0.994 0.380 0.355

5 if contra-aid:no then e/-8a;/v-aid:ye8 0.983 0.410 0.353

6 if phY8-freeze:no then'politac8:democrat 0.988 0.568 0.352

7 if e/-8a/v-aid:no then contra-aid:ye8 0.986 0.478 0.332

8 if phY8-freeze: ye8 and mx-mi88i/e:no then e/-8a/v-aid:ye8 0.994 0.355 0.330

Table 3: The 8 best rules from the congressional voting database

The algorithm was run with s = 2 (maximum rule-order of 2) in order to keep

the output simple. The database consists of voting records from a 1984 session

of the U.S. Congress. Each datum corresponds to a particular politician and the

attributes correspond to the party affiliation of the voter plus 16 other attributes
describing how they voted on particular budget issues such as aid to the Nicaraguan

contra's, freezing physician's fees, aid to EI Salvador, synthetic fuel funding, etc.

Because of the probable imposition of party-line voting on many of the issues, this
domain is characterized by very strong rules, i.e., predictive accuracies in the high

90% region. We can see from the table that there are redundancies, rules of near

equal information content which have similar left-hand sides for the same right-hand
side, differing perhaps by an extra term. An obvious extension of the algorithm

is to refine this original rule-set by removing such redundancies - an initial such
"rule-pruning" algorithm is described in Smyth et al. (1990a).

The ITRULE algorithm has been implemented in the C programming language

on both Sun and Macintosh computers. We have run the algorithm on many of the

other data sets which are publicly available in the U. C. Irvine database, Quinlan's

chess end-game database (Quinlan, 1979), Sejnowski's text-to-phonemes database

(Sejnowski and Rosenberg, 1987), and a variety of various character recognition

problems. Various other projects, for both engineering and business applications,

are currently underway. In general there is not much to be gleaned from asking

how the algorithm performed in terms of rules produced on a particular data-set,

since, by definition, the rules produced are the R most informative up to order

s. More important is the question of how practically large can s be? This is

of importance if the structure of the dependencies is high-order, e.g., for certain
types of Boolean functions such as parity. In practice when running the algorithm
to look for discrete-time Markov chains the data vectors are created by successive

\
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windowing of the time sequence system states. The size of this window effectively

defines the maximum amount of memory we are able to model with the rules. If, as

in the text-to-phoneme example mentioned earlier, the number of possible states at

each time step is large, then practical considerations limit the amount of memory

(maximum rule-order) we can look at. In general, however, for most applications

there are no such constraints.

The algorithm is not directly suitable for domains characterized by continuous

variables with regular functional relatio

~ lsh. s, e.g., polymomial relations between

real-valued. vari~bles. However, this rest,ri~ti ? results !rom the c~oi~e of hypothes.is

space (conjunctIve rules) - the under! g informatIon theoretIc Ideas should In

principle be applicable to more general representations. Bridging the gap between

continuous variables and symbolic representation techniques remains an open re-

search issue, although, in practice, direct quantization of continuous variables (in

an appropriate manner) rarely causes major problems. In addition, since the prob-

ability estimation procedure underlying the algorithm effectively assumes that the

data is a true random sample, data sets which do not obey this assumption are not
directly suitable for this technique, e.g., time-series data.

9.6 Future directions in learning from databases

It is worth making the general point that more cross-disciplinary research between

computer scientists, information theorists and statisticians is needed. Statistics in

particular must playa basic role in any endeavour which purports to infer knowledge

from data. One might say that statistical models are a necessary but non-sufficient

component of knowledge discovery. Historically, statistical theory has developed as

a means for testing hypotheses in a controlled experiment scenario. The founding

fathers of the field typically worked with pencil and paper with relatively small data

sets where each datum was painstakingly collected in a well-characterized sampling

methodology. Data was expensive and analysing it was a purely manual operation.

In contrast, many domains at present are characterised by vast amounts of data

which has been collected in a manner far removed from ideal random sampling

techniques, and which can be analyzed in any number of ways in an automated

manner. In essence the rules of the game have changed, and when applying statis-
tical theories it is worth keeping in mind the original context in which they were

developed.
It is interesting to note that early applications of computer algorithms in the

1960's in the statistical field led to controversy over whether or not such techniques
"

\
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were in fact "fishing" for theories where none really existed (Selvin and Stuart,
1966). This is an especially important point where the number of attributes and

the number of data samples are of the same order. Essentially, if one keeps applying

different hypothesis tests to the same data set, it becomes more likely that one will
accept a false hypothesis, i.e., confuse a random correlation with a true dependency.
The solution is to make one's "hypothesis acceptance criteria" dependent on the
number of hypotheses tested so far - however, this is extremely difficult to model in

all but simple problems. This type of problem can be circumvented by having very
large datasets but, nonetheless, its relevance to any knowledge discovery algorithm
is apparent.

A problem which we have not discussed is that of incremental or "on-line" learn-
ing as opposed to "batch" learning, i.e., the ability;to incorporate new data into

the model without the need for re-running the ~e induction algorithm or the

need to store all the previous data. Various ad hoc schemes have been proposed in
the machine learning or (more recently) the neural network literature. Typically
these schemes fail on two accounts. Firstly they confuse parameter adaptation

with model adaptation, i.e., they fine-tune the parameters of a particular model

without considering the possibility of other models. Secondly, they fail in any even

rudimentary manner to take into account what basic statistical theory has to say

about estimation over time, e.g., the notion of stationarity. It is worth emphasiz-

ing that seeking universal incremental learning algorithms is probably ill-advised

- the engineering approach of domain-specific solutions to particular problems

seems more promising (see Buntine (1990) for a similar viewpoint). The implica-

tions for database discovery algorithms may be that taking into account the nature
of the data and the manner in which it was collected will prove to be the most

profitable avenue for exploration, rather than seeking generic, domain-independent

algorithms.
Another major issue is that of prior knowledge. One of the paradigm shifts

in machine learning in recent years has been away from the idea that a machine
can acquire all knowledge starting from nothing, to a gradual realization that the
machine can do much better in learning tasks with only a little (appropriate) prior

knowledge. So far most of this theory-based learning work has been largely isolated
from the type of quantitative probability-based methodologies we have presented

here. The incorporation of prior knowledge is a non-trivial problem if we consider
the statistical ramifications - an a priori domain theory corresponds to a priori

assumptions or a statistical bias towards certain models. Despite what proponents
of Bayesian inference may claim, getting accurate and consistent subjective prior

estimates for complex hypothesis spaces (such as one has in a typical database) is

"
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quite difficult and there is a dearth of practical literature and experience in this
area.

As a final issue, while SYnthetic
~ ;~ ains are useful for initial experimentation and

comparison purposes, more work ne ds to be done with real databases. Typically,
'.

real databases will not consist 0 random samples and may contain missing and

mixed-mode data. The treatment of missing data, for example, is again subject

to various assumptions and may be domain dependent to a large extent. Prior

work in statistical pattern recognition has addressed some of these topics (Dixon,

1979). Techniques such as these need to become established tools for learning and

discovery algorithms.

9.7 Conclusion

We view the ITRULE algorithm's primary practical use to be that of an exploratory
data analysis tool for discrete/categorical data, rather than a general purpose "won-

der algorithm." Of more fundamental significance, than the algorithm itself, is the

basic underlying idea of intensive hypothesis search guided by information theoretic
principles as a paradigm for managing large volumes of data where we have limited
prior knowledge. In this context, the work presented in this chapter, and indeed
in this volume as a whole, will hopefully be viewed in retrospect as a small but

important early step in the field of automated knowledge discovery.
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9.9 Appendix: Estimating probabilities from data

A necessary component of any statistical approach to rule induction is the ability

to estimate probabilities accurately from data. The approach with which most

people are familiar is the simple frequency ratio, i.e., if we count r occurrences of

an event in a total sample of size n, we then estimate the probability of this event

in general as the simple frequency ratio Tin. In statistical estimation theory this is

known as the maximum likelihood estimate. For large values of n this estimate is

'.
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well-behaved, however, for small values of n it can cause problems.

Consider, for example, the case where a doctor arrives in a foriegn country for a

temporary working assignment and, of the first three patients he examines, all have
the same particular disease. How should the doctor estimate the probability p of the
disease occurring among the general population? Clearly the maximum likelihood

estimate of p = 3/3 = 1 is over-pessimistic and highly unlikely to be true. A
proponent of Bayesian estimation methods (see Berger (1985) for a comprehensive
treatment) might argue that the doctor would have an a priori belief about the
value of p (perhaps the value of p which he has estimated from experience in his

own country), which is then updated to a new a posteriori value for p on the

basis of the three new observations. A more conservative information theorist

might argue that since this is a foreign country, the doctor has really no prior
information, and hence a maximum entropy (ME) estimate is most appropriate -
the technique of maximum entropy estimation was originally proposed by Jaynes

(1968) and explicitly espouses the principle of adding no extraneous information
to the problem. Hence, for m mutually exclusive and exhaustive events, the ME

estimate of the probability of any event is l/m, since there is no initial information

given to suggest that anyone event is more likely than any other.

Naturally, one can view the Bayesian and ME estimation techniques as com-

pletely compatible, differing only in the credence given to initial information. In
the medical example described above, the Bayesian technique would likely be the
most practical and appropriate, given the difficulty in selecting the proper event

space to construct an ME estimate. Given that selecting an initial estimate is not

a problem in principle, the real issue becomes one of how to update this estimate

in the light of new data. In a sense this is a problem in choosing an interpola-
tion formula as a function of n (the sample size), where n ranges from 0 to 00.
At n = 0 our formula should give the initial Bayesian/ME estimate, and it should

change smoothly as a function of increasing n, approaching the maximum likelihood
estimate r/n as n -+ 00.

Such techniques exist in the statistical literature. In our work we have chosen

to use the Beta distribution as described by I. J. Good in his 1964 monograph
on point estimation (Good, 1964). Without going into the technical details, one

effectively parametrises the Beta distribution to encode one's beliefs both about
the expectation of the probability p for n = 0 (the initial Bayes estimate), and
the degree of confidence in our estimate for p. The latter parameter controls the
effective rate at which the Beta estimate changes from the prior value of p to the

maximum likelihood estimate r/n, as a function of n. In Good's treatment one

~
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chooses the parameters a and {3 such that

a

po=~

where Po is one's initial estimate of P having seen no data, and a > 0, {3 > o. One's
estimate for p, having seen r successes from n trials is then

A ( ) a + r

p r,n =

{3a+ +n

Clearly, specifying Po only constrains the ratio of a and {3 - to solve for their

actual values, Good further defines a second equation for an initial estimate of the
variance of, or confidence in, Po. We find the specification of an initial variance

term somewhat non-intuitive and difficult to judge in practice. Instead we use the

following approach, which is entirely equivalent to Good's approach (in that our
estimate implicitly results in a prior variance term) except that it is more intuitive
for practical use.

Let us define

k=a+{3

to be the "effective" sample size corresponding to our prior belief Po, i.e., consider
this to be number of samples by which we wish to weight our prior belief. Hence

we can rewrite our estimator in the form of

A ( ) r + kpo

p r,n =

kn+

We have found this particular small sample estimator to be robust and easy to use in

practice. In the ITRULE algorithm described earlier, one supplies the parameter k

(k > 0) to the algorithm - choosing k large makes the algorithm more conservative,

while k small (such as k = 2) makes it more liberal in inductive inference. For our

purposes Po is chosen automatically by the algorithm depending on the context.

Prior probabilities of simple events employ the ME technique of using 11m, wherey c

estimation of conditional probabilities use an equivalent ME technique where

initial estimate using the unconditional prior is chosen, i.e.,
I

po(zly) = p(z)

In general we have found that the use of these relatively simple estimation tech-

niques make a considerable difference to the robustness of our algorithms.
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