
'- ,. c.,

~'.1, ;c)

Soft-decision threshold decoders.

, " !
,

011:;

R.M.F. Goodman, B.Sc., Ph.D., ~j,(

University of Hull, ,

England. ,':.,.';

Sunmlary

Coding system desj,gners are interested in threshold decoding for convolu-

tional codes because of the hardware simplicity of the decoder. Un-

fortunately, majority-decision threshold decodable codes are sub-optimum,

and this involves a loss in coding gain. In this paper a new method for

implementing soft-decision th_'eshold decoding is introduced, enabling

some of the loss in coding gain to be recovered without too great a

sacrifice in hardware simplicity. Decoders for constraint length 2 and

12 segments are described, and their performance in Gaussian noise

evaluated. The soft-decision technique used can also be applied to block

codes with similar improvements in coding gain, and Methods of i~ple-

menting this are discussed.
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1. Introduction

Binary convolutional codes have beell shown to exhibit extremely good

error-control properties t -.1der both Gaussian and burst noise conditions.

In the case of the additive white Gaussian channel. there are several:

powerful convolutional decoding schemes (sequential decoding. Viterbi .

decodir.g) that yield high coding gains (5dB at a sink bit error ratc of

10-5). Upfortunately. the hardware complexity of such schemes is high.

as the decoders are eJsentia11y large special-purpose computers. In

additior.. the burst-noise performance of the3e powerful schemes tend to

be disaI=pointing in comparison with convolutione1 code systems designed

specifically for burst-error correction.

The SYSLem designer is therefore often interested in convolutional de-

coding schemes that sacrifice a few dB of coding gain in order to

achieve low hardware complexity with reasonably good burst and random

error performance. Threshold decoding is one method of achieving this

ain:. Majority-decision threshold decoding (ref. 1), is in terms of

hardware. one of the simplest convolutional deco~ing schemes possi11e. ,

and is applicable to a wide range of time-varying and facing channels.

Howeve-'. because the scheme is not optimum. some coding gain is lost.

In this paper we present a soft-decision majority threshold decoding

scheme (ref. 2) that improves on the performance achievable with

existing hard-decision decoders. thereby making up some of the lost

ccding gain. whilst still retaining the inherent hard'vare simplicity of

threLho1d decoding. It has been shown (ref. 3) that the maximum increase
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in coding gain that can be achieved by using soft-decision is about 2dB

for infinite-level quantisation, and that the degradation involved in

using equal-spacing 8-level quantisation (as assumed in this paper) is

; only O.2dB. We therefore expect a maximum improvement of about 1.8dB for

soft-decision majority threshold decoding when compared with existing

hard-decision decoders.

In this paper we firstly outline hard-decision majority threshold decoding

and then introduce our soft-decision scheme using a simple constraint

length 2 code as an example. Next we describe our general method for

soft-decision decoding of multiple error-correcting codes, using a

constraint length 12 code as an example, a~d also present performance

results. Finally, methods of applying the technique to majority-decodable

block codes are discussed.

2. Hard-decision majority th!eshold decoding

A single-generator systematic convolutional code is one in which each

information digit is encoded into V code digits (giving a message through-

" put rate of l/V), the first of which is the unchanged information digit.

..
. In general, such a code is generated by a K segment generator sequence

g = g(l) g(2) g(4) ... g(2K-l) , where K is the constraint length of the

code in segments, and each segment contains V digits. For simplicity, we

restrict our discussion in this paper to rate one-half codes.

Let us consider a rate one-half systematic code with constraint length

K=2 segments, to review the basic hard-decision majority threshold de-

coding technique. The encoder for this simple code is shown in Fig. 1,
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and consists of only a single one-bit delay element and a single modu1o-2

adder (exclusive-OR gate). Given a sequence of information digits

x = x 1 x Xt 1 ... , where t denotes the time unit of the informationt- t +
1-

digit Xt' each information digit is encoded into two code digits c~ and.

c~. c~ = Xt is the unaltered information digit Xt' and c~ = Xt-1 $ Xt

is a parity check sum based on the present information digit Xt and the

K-1 = 1 previous information digits. For serial transmission the coded

digits are sent to the channel in order c~ c~ by appropriate action of

the switch. The encoder/decoder configuration for this code is shown in

Fig. 2. On the left of the diagram, the information digit Xt is encoded

into c~ and c~; in the middle, two noise digits n~ and n~ corrupt the

coded digits c~ and c~ respectively; on the right is the decoder which

rea1ises the (hard-decision) sing1e-error-correction capability of the

code. The decoding action is explained with reference to the six points,

a, b, c, 51' 52' and n~-l' The six points are interpreted as follows:

a = x $ n'
t t

b = Xt-1 $ n~-l ;

c = x $ x $ nilt t-1 t .

51 = a $ b $ c = (Xt $ n~) $ (Xt-1 $ n~-l) &J Xt (9 Xt-1 $ n~)

52 = (Xt-1 &J n~-l) &J (Xt-2 &J n~-2) &J (Xt-1 &J Xt-2 &J n~-l)

fi' = 1 if 5 = 5 = 1
t-1 1 2

= otherwise

by cancelling information digits, 51 and 52 become:

5 = n' &J n" &J n'
1 t t t-1

52 = n' 1 $ nil 1 $ n' 2 ...,. (1)t- t- t-
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and it can be seen that the two parity check ~quations 51' 52 are ortho-

gonal on the noise digit n~-l. Thus if a single error occurs anywhere

in the 5 digit span covered by the orthogonal check sums, the only case

~ when 51 = 52 = 1 is when n~-l = 1. In the decoder, the AND gate sends an

estimate n~-l to cancel the noise digit n~-l from the received digit

(Xt-1 ~ n~-l)' and thus produce an estimate Xt-1. From equation (1) it

can be seen that if more than one error occurs in the 5 digit span

covered by {51' 52}' then the error correction capability

exceeded and the decoded digit Xt-1 may be in error.

The decoder described above can be improved by the use of feedback.

This is because if we are concerned with decoding Xt-1 at the present

moment, then Xt-2 has already been decoded. We therefore have available

an estimate of the noise digit n~-2 before we decode Xt-1. Therefore 52

can be simplified by feeding back n~-2 to cancel n~-2 in equation (1).

We may then replace 52 with 52 = 52 ~ n~-2 = n~-l ~ n~-l ~ n~-2 ~ n~-2.

If the estimate n~-2 is correct, that is n~-2 = n~-2' then 52 = n~-l ~ III

. n~-l. This means that provided the previously decoded digit was correct, ..,

~~ the decoder check sums {51' 52} only span 4 digits, and can therefore

~ correct a single error anywhere in 4 digits as opposed to 5 digits in

'"

the previous case. A decoder that makes use of past decisions to simpli-

fy 52 to 52 is called a feedback decoder, whilst a decoder that does not

use past decisions is called a definite decoder.

In general, if it is possible to form a set of 2e parity check equations

which are orthogonal on a specified noise digit, then it is possible to

--,
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build a hard-decision majority threshold decoder which can correct an~

combinations of e or fewer errors over one constraint span. Figure 3

shows the encoder/decoder arrangement for a triple error-correcting rate .
one-half (24,12) majority decoder which has K=12, and an effective

I constraint length of 24 digits within which 3 or fewer errors can be ~

corrected. This decoder can achieve a coding gain of 1.85dB at a sink

bit error rate of 10-5 on the binary symmetric channel (which is compar-

able to the (23,12) perfect Golay code), and can be built with only 16

standard integrated circuits (which is much less than that required to

decode the Golay code).

3. Soft-decision majority threshold decodingI~ In this section we introduce our new method for soft-decision majority I?d;" threshold decoding. Our basic approach is to derive a modified set of

orthogonal check sums S~ which can be used to estimate each noise digit

1.

in the soft-decision sense. ~f~

"'c

Firstly, let us assume that each received digit is quantised into Q : 8 .

levels, and can therefore be expr~ssed as a 3 digit binary number, or the

BCD equivalent. For example, [000] = 0, [001] = 1, [010] = 2, ...

I [111] = 7. The Xt are therefore expressed as [000] when Xt = 0, or [111]

when Xt = 1, in the soft-decision sense. The noise digits are expressed

in a similar manner but can take any intermediate value between 0 and 7,

that is, 0 = [000] < [n' .] < [111] = 7, where the square brackets
-:- t-J -

indicate a quantised or soft-decision noise digit. Note that the most

significant digit of a quantised digit is the hard decision digit itself.

~'ii~: ,
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For example, [n' .] = [010] implies n t' . = Of and [n' .] = [110] implies
t-J -J t-J

n' . = 1. Similarly, received digits are given by [r t' .] = [X
t .] $

t-J -J -J

, [n t' .], and can take any value between 0 and 7. Let us define dh to be. -J

'~ the hard-decision minimum distance between the two halves of the initial

code tree. The guaranteed error-corr~cting capability of the code over

K segments is then eh digits where eh is the largest integer satisfying

eh S (dh - 1)/2. The simple code used in section 2 has dh = 3, and is
therefore a single error-correcting code. In the soft-decision sense,

the minimum distance of a code is given by d = (Q-l) x d h levels, ands

its error correction capability is e soft-decision levels, where e is
s s

the largest integer satisfying es ~ (ds - 1)/2. The simple example code

therefore has d = (8-1) x dh = 21, and e = 10. We can now estimate
s s

the theoretical improvement to be gained by using soft-decision. In the

hard-decision sense an error occurs when sufficient noise is added to a

transmitted digit to form a received digit which lies on the opposite

side of the 0/1 decision boundary. For example, if we transmit [000]

(hard zero) and the noise is such that we receive [101] an 'error' in

~ the hard-decision sense has occurred. Similarly, with transmitting

[111] (hard one) and receiving [011]. Now, the minimum number of soft

level errors required to cause an error in the hard-decision sense is 4.

For example, transmit [000] receive [100]. As the simple code has a

level correcting power of 10 levels, this indicates that integer [ ~]

= 2 'hard' errors can now be corrected. Thus if two hard errors occur

and the total number of level errors amongst the 4 digits involved in
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the decoding is ~ 10, double error correction can be performed. As~pto-

tica11y., at high signa1-to-noise ratios, soft-decision decoding therefore

doubles the effective 'hard' correcting power of a code. .
We now outline the soft-decision technique. Consider the orthogonal .

check sums for the example code (with feedback):

S =n'$n"ltn'1 t t t-1

S = n' It n'l
2 t-1 t-1 .. ... (2)

Our basic approach is to estimate, in the soft-decision sense, the value

of ~ noise digit that appears in the orthogonal check sums, for two

contradictory assumptions.

(a) the data bit being decoded now (r' 1) is not in error, that is fi' 1t- - t-
= 0, and

(b) the data bit ~ in error, n~-l = 1. For each assumption a sum of

the total number of level errors is formed. That is, S~ = E[fi.) for all

1 . J
J

j i~volved in the decoding (= 4 in this case), and i = o for the

assumption n~-l = 0, and i = 1 for n~-l = 1. The assumption which gives

the smalJest sum of estimated errors is chosen to be the correct de-

coding (!ecision.

~ote that the noise digits cannot be directly found but have to be

d~rived from the received digits by a process of estimation as follows.

,Firstly, let us make the assumption of no error in r~-l' that is,

P~-l = O. Thus if the received digit at point b is

[r~-l] = [Xt-l (B n~-l] ~ 3 = 'hard' zero, the estimate of [n~-l)' is



Soft-Decision Threshold Decoders 431

given by [fi~-l] = [Xt-1 ~ n~-l]. If the rece~ved digit is [Xt-l ~ n~-l]

~ 4, then [fi~-l] = 7 - [Xt-l ~ n~-l]' Corresponding values for r~-l ~

error are therefore 7 - [r' 1], and [r' 1]. t- t-

. To estimate the remainder of the noise digits we need to know the result

of each orthogonal parity check sum in the hard-decision sense.

Consider first 52. If 52 = 1, that is, 52 'fails' in the hard-decision

sense, then we must assume that nil

1 = 1, because we have assumed n'
1 =0 t- t-

in the hard-decision sense. Hence the estimate of n~-l in the soft-

decision sense is [ii" ] = [r'l ] if [r" ] > 4, and [ii" ] = 7 - [r" ]
t-l t-l t-l ~ t-l t-l

if [r~-l] ~ 3. Conversely, if 52 does not fail in the hard-decision

sense, then ii" = 0 and [ii" ] = 7 - [r" ] if [r" ] > 4 ort-l t-l t-l t-l - '
[n~-l] = [r~-l] if [r~-l] ~ 3. Consider now 51' If 51 fails then

either n~ or n~ is in error. We choose the assumption which gives the

lowest number of level errors and then estimate the noise digits as

previously. If 51 does not fail we assume no errors in n~ and n~. 5~ is

then formed by summing the noise estimates

5* = [n'] + [nil] + [nil] + [n' ].. 0 t t t-l t-l

. The process is repeated for the assumption n~-l = 1 and 5t is calculated.

If 5* < 5* then ii' = 0 and if 5* > 5* ii' = 1.0 - l' t-l' 0 l' t-1

Consider the following example. Let us assume that Xt = Xt-l = 0, that

the noise digits are [n~-1] = [101], [n~-1] = [100], [n~] = [001],

[nil] = [000], and that the decoder has not made any previous decoding
t

errors. Note that as n~-1 = n~-l = 1, a hard decision decoder would

decode x 1 = 1, thus giving a decoding error. Using the above soft-
t-
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decision procedure, however, Xt-l can be correctly decoded.

(1) Assume n~-l = O. Hence the received digit [rt-l] = [Xt-l ~ n~-l] =

[101] is not in error and [n~-l] = 7 - [101] = 2 levels. .
(2) 52 = 1 ~ 1 = 0 = no fail. We therefore assume n~-l is not in error.

Hence [n" 1] = 7 - [r" 1] = 7 - 4 = 3 levels.
t- t-

(3) 51 = 0 ~ 0 ~ 1 = 1 = fail. Hence we assume either n' or n" is in
t t

error. If we assume n~ is in error than [at] = 7 - [r~] = 7 - [001] = 6

levels, as [r~] ~ 1 ~ 3. Also, n~ is assumed not in error, giving

[n~] = 0 levels, and a total of 6 level errors. If we assume the con-

verse, n' t' in error, then [n'] = 1 level, and [nil] = 7 levels, giving a
t t

total of 8 level errors, we therefore assume that of the two [n~] is

more likely to be in error.

(4) We now calculate 5* = 2 + 3 + (6+0) = 11.

0

(5) Now assume that n~-l = 1, and that r~-l is in error. Hence [n~-l] =

[r~-l] = 5.

(6) 52 does not fail. Therefore as n~-l = 1, n~-l = 1 to cause this.

Hence [nil] = [r" ] = 4.t-l t-l .
(7) 51 fails. Therefore n~ and n~ must be assumed correct. Hence .

[n~] = 1, and [n~] = o.

(8) 5! = 5 + 4 (1+0) = 10.

(9) Therefore 5* < 5* and we assume n' 1 = 1, that is, r' 1 = 1 is in
1 0 t- t-

error, and Xt-l is correctly decoded as Xt-l = o.

4. 50ft-decision.multi Ie error thres

In this section the approach used for tpe co~straint length 2 code is
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generalj.sed to deal with multiple-error corre~ting convolutional codes,

using a constraint length 12 code as an example.

. Figure 3 shows a triple-error-correcting hard-decision threshold decoding

; system. It is possible to form 2e = 6 check sums orthogonal on the noise

digit n~-ll as follows.

S = n' It nil

t-ll t-ll t-ll

S = n' It n' It nil
t-5 t-ll t-5 t-5

S -, "" "" '" IIt-4 - nt-II W nt-lO W nt-4 W nt-4

S -, "" "" '" , '" IIt-2 - nt-ll W nt-9 W nt-8 W nt-2 W nt-2

SitS It S = n' It n' It n' It n' It nil 6J nil It nil
t t-3 t-7 t-ll t-6 t-3 t t-3 t-7 t

SitS It S = n' It n' 6J n' 6J nil 6J nil 6J nil
t-l t-8 t-10 t-ll t-7 t-l t-l t-8 t-10

Our basic approach is now to estimate the algebraic sum of a set of 2e+l

soft-decision noise sums, one for each orthogonal check sum, and one for

[n~-ll]' and compare this to a fixed threshold value T = (Q-l) (2e+l)/2.

Then if S~ > T we decode n~-ll = 1, and if S~ ~ T, n~-ll = o.

. The method outlined here differs from the scheme detailed in the last

section in that only one noise digit per orthogonal check sum is esti-

mated in the soft-decision sense. This digit is always the 'worse'

digit (that is the one nearest the OIl boundary) in each orthogonal sum,

excluding the digit on which all sums are orthogonal. The reason for

doing this can be seen with reference to the example given in t11e last

section. In that example the estimated value of n~ did not change for
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the two assumptions fi~-l = 0, and fi~-l = 1. The value fi~ therefore

played no part in deciding which sum is the greater S* or S*, and can
0 1

therefore be omitted. In general then, the only noise estimate which
,

will change for a given orthogonal check sum result is the 'worst' digit.

in the check sum set.

Also, as a consequence of the above, and neglecting estimates which do

not change, it can be seen that the noise estimates for each orthogonal

check sum are complements of each other for the two assumptions fi~-l = 0,

and fi' 1 = 1, that is, they add to (Q-l) = 7. For the triple-error
t-

correcting code this means that the two sums S~ and S1 add to (Q-l)(2e+l)

= 49, and hence T = 24. It is therefore only necessary to compute S*,

0

and compare its value to (Q-l)(2e+l)/2, because s* = (Q-l)(2e+l)-S* .
1 0

Consider the following example for the constraint length 12 code. We

assume x = x 1 = = x 11 = 0 and that no previous decoding errort t- t-
has been accepted. Also, [n~-ll] = [110], [n~-5] = [101], [n~-lO] = [100],

[n~-4] = [011], [n~-9] = [100], [n~-8] = [001], [n~-l] = [010], and all,

other noise digits are [000]. Note that th~s gives 4 hard decision .

errors. The estimation of S* is performed as follows.
0

(1) [fi~-ll] = 7 - [r~-ll] = 7 - [110] = 1, because we assume n~-ll = O.

(2) St-11 = 1 ~ 0 = 1. Hence fi~-ll = 1 and [n~-ll] = 7 - [r~-ll] = 7 -

[000] = 7.

(3) S 5 = 1 ~ 1 ~ 0 = O. Hence 'worst' not in error. That is,
t-

fi' = 0 and [fi' ] = 7 - [r' ] = 7 - [101] = 2.
t-S t-5 t-5
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(4) St-4 = 1 ~ 1 ~ 0 = O. Hence 'worst' not in error. That is, n~-4 =

0 and [nil] = [r" ] = [011] = 3.
t-4 t-4

. (5) St-2 = 1 ~ 1 ~ 0 ~ 0 ~ 0 = O. Hence, 'worst' not in error. That

.,"

c, is ft' = 1 and [n' ] = 7 - [r' ] = 7 - [100] = 3. , t-9 t-9 t-9 .

(6) St ~ St-3 ~ St-7 = 1 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 = 1. Hence 'worst' is in

error. That is, n' = 1 and [n'] = 7 - lr'] = 7 - [000] =7.

t t t

(7) St-l ~ St-8 ~ St-lO = 1 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 = 1. Hence, 'worst' is

in error. That is n' 1 = 1 and [n' 1 ] = 7 - [010] = 5.
t- t-

(8) Therefore. S* = 1 + 7 + 2 + 3 + 3 + 7 + 5 = 28 > T = 24 and hence
0

n~-ll 1 0 but n~-ll = 1, giving a correct decoding Xt-ll = O.

5. Decoder Design

The increase in complexity required to implement the soft-decision algo-

rithm is not excessive. Essentially, the only complex items in the

circuitry are a BCD adder capable of adding the (2e+l) noise estimates,

BCD comparators for each orthogonal check sum, and a threshold

comparator.

~

; Figure 4 shows a soft-decision decoder for the simple K=2 code. The

essential items in the design are the same for this code or a multiple

error-correcting code, and are as follows.

Delay bistables (denoted D): are used to store both hard-decision and

soft-decision digits.

Quantizers: these provide 8 level quantization of the received digits.

Basic Soft-Error Processors (BSEP): these devices output the number of
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level errors in the received digit, assuming that the received digit is

not in error, in the hard-decision sense. This is therefore a simple

logic device with the following truth table.
t

a

INPUT OUTPUT

Quantized soft-decision Binary Levels.

digit

most
significant LSB MSB LSB

(hard) bit

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 1 0 2
0 1 1 1 1 3
1 0 0 1 1 3
1 0 1 1 0 2
1 1 0 0 1 1
1 1 1 0 0 0

Comparators: these operate on the outputs of the basic soft-error

processors in such a way that for any two BCD inputs, the greatest BCD

number is output. By this means the 'worst' digit in an orthogonal '

check sum is identified. Note that in figure 4 only one such comparator.

is required. In general, however, more than two noise digits are

involved in a check sum, and therefore a comparator with as many inputs

as there are digits in the orthogonal check sum, minus one, are required.

Such a device is easily constructed by simply iterating the basic 2-

input device as many times as required.

Compliment Processors (CP): these devices operate under control of a
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hard-decision orthogonal check sum, and either allow a soft-decision

estimate [i] to be transmitted unalterated through them, or else compli-

ment the estimate to 7-[i]. The device is again a simple logic element

with the following truth table.

INPUT OUTPUT

hard-decision soft-decision

control check digits binary levels
sum input

binary levels

0 00 0 000 0
0 01 1 001 1
0 10 2 010 2
0 11 3 011 3
1 00 0 111 7
1 01 1 110 6
1 10 2 101 5
1 11 3 100 4

BCD Adder: IT! general, an adder with (2e+l) inputs that is capable of

adding input numbers in the range 0+7 is required. Finally, a threshold

device which outputs a 1 if the adder output is > T, and a 0 otherwise,

.
is required.

6. Soft-decision threshold decoding of block codes-

The soft-decision decoding algorithm outlined in the previous sections

can also be used to decode one-step or L-step majority-logic decodable

block codes, with very little modification. Consider as an example the

(15,7) cyclic double-error correcting one-step decodable code which has
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a generator polynomial g(x) = x8 + x7 + x6 + x4 + 1. It is possible to

form 2e=4 parity check sums orthogonal on the noise digital n14 as

follows: .
Al = n14 $ n12 $ nll $ n3 .

A2 = n14 $ n13 $ n5 $ nl

A3 = n14 $ n6 $ n2 $ nO

A4 = n14 $ nlO $ n8 $ n7

Figure 5 shows a Type II decoder for this code, which operates as

follows.

(1) With gate 1 on and gate 2 off, the received block is read into the

buffer register.

(2) The 2e checksums orthogonal on n14 are formed and, the threshold

gate outputs nl4 = 1 if a clear majority of inputs are one.

(3) The estimate nl4 is then added modulo-2 to the received digit to

form the correct output digit xl4.

(4) The register is shifted once with gate 1 off, and gate 2 on. Hence

~

the corrected digit xl4 is fed back, thereby removing nl4 from the .
equations, provided that a correct bit decoding has been made. The

exclusive OR gates now form 4 check-sums orthogonal on n13' which is now

at the right-hand end of the buffer register, and decoding is again

accomplished via the threshold gate.

(5) Decoding continues on a bit-by-bit basis, until all the corrected

information bits have been output.
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It can be easily seen that the soft-decision algorithc can operate on

this decoding scheme in exactly the same way as with convolutional codes.

- That is
, for each information bit the sum S* of (2e+l) 'soft-decisi~n

~ 0

1:; noise estimates is computed: one for [~14] given the assumption lll4 = 0,

and one for each orthogonal check-sum based on the 'worst' digit in the

checksum. The sum of estimates is then compared with the fixed thresh-

old T, and nl4 is decoded. Similarly, each information digit in the

block is decoded on a bit-by-bit basis by simply shifting the quantized

received block in the buffer register.

The above type of soft-decision decoding is again sub-optimum in tha~

the full 2dB of soft-decision coding gain is not achieved. It is

possible however to considerably improve the decoding performance, at

the expense of more complex control circuitry, by modifying the scheme

as follows.

The above block code soft-decision algorithm proceeds by decoding the

information bits in their natural order, that is, we estimate the noise

: digits in the qrder n14' n13' , nn-k+l' nn-k. However, as decoding
.

decisions are fed-back, thus affecting future decoding decisions, it

would ~e wise to decode all the bits in the block in order of decreasing

'confidence'. We can form an estimate of the 'confidznce' of each de-

coding decision by comparing the sum S* with the threshold value T. The
0

further the value of S* is away from the value of T, that is, the
0

greater IT-s*l, the greater the confidence we have of a correct bit de-
0

coding decision. A decoder operating on this scheme would therefore
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calculate the sum iT-S*1 for each bit in the block, and sto~e a list ~f
0 .

the order in which bits are to be decoded, based on the increasing value

of IT-S~I. The decoder then decodes the bits in the order indicated by ~

successively shifting them into the decoding position, that is, the a

right-most end of the buffer register. In this way, a decoder which

realises most of the 2dB soft-decisif)n coding gai- available can be

built for a wide variety of majority-logic decodable codes.

7. Performance-
Figure 6 shows the performanc.e of various block and convolutional de-

coding schemes using the algorithm, under conditions of additive white

Gaussian noise. It can be seen that useful coding gains over that

achievable with hard-deci~ion decodin~ are possible. Note that all

curves are corrected for rate, that is, plotted versus normalised signal-

to-noise rat;.o (energy per information bit Eb/No noise density), to

ensure a valid compariso_l between uncoded and coded transmission.
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Figure 6. Performance curves


