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Abstract

In this paper we study the implementation of a locally adaptive vector quantization (LAVQ) algorithr:n

using neural architectures. The standard algorithm, improvements to the algorithm, and implementation

of the algorithm will be discussed. These modifications improve performance, and they including bit

stripping, index compression, filtering, and difference coding. Emphasis will be placed on high speed

techniques requiring only one pass of the image for real-time compression.

1 Basic Algorithm

The locally adaptive vector quantization (LAVQ) algorithm provides a simple yet effective one-pass lossy

compression strategy. (Refer to Figure 1.) The encoder has a codebook containing codewords (vectors) where

the index of the codeword corresponds to its position in the codebook. A block is taken from the image and

compared to the stored codewordsj if there exists a codeword sufficiently close to the image block (within the

allowed error) the index itself is sent, and that codeword is moved to the top of the codebook. If no such
codeword exists, a special index is sent. This index is followed by the block itself. This block becomes a new

codeword and is placed at the top of the codebook. All other codewords are pushed down, and if the number

of codewords exceeds the maximum allowed, the last codeword is lost.

On the decoder side, the decoder expects an index. If this index is the special one denoting that a new block

was sent, the receiver expects a block to be received immediately following; this block is placed at the top of

the codebook and all other codewords are pushed down. If the codebook were already full, the last codeword

is discarded. This new block is also placed into the image being built by the decoder. If the index is not one

designating a new block, then the codeword corresponding to the index is put into the image being built, and
that codeword is moved to the top of the codebook. Thus, if the encoder and decoder start with the same
codebook, they will have the same codebook at each step, and the image will be successfully sent [1-5].

The LAVQ strategy maintains the most recently used vectors in the codebook in order of last usage; this

allows the algorithm to efficiently code any image without codebook training: The algorithm needs only one

raster-scanned pass of the image to code it entirely. In serial implementation, LAVQ has time complexity

O(nm) and space complexity O(m), where n is the number of pixels in the image and m is the number of

codewords in the codebook. Most of the time spent on encoding is taken by finding the closest codeword in the
codebook and deterring if that match is close enough. Rearranging the codebook and sending the required

index and possibly a new block can be done quickly in serial implementation using lookup tables, linked lists,

and other software techniques. Codebook searching is best done is some parallel manner, suggesting the use

of neural networks or other distributed processing.

The basic LAVQ algorithm, however, has poor performance compared to traditional VQ strategies such as
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LBG. Several adjustments can be made to improve the algorithm without degrading the advantage of one-pass

high speed implementation. To make each block more similar to the blocks immediately previous to it in a

raster scan, blocks are taken to be tall and narrow (1 x N pixels). In Figure 2 the image "lenna" is presented;

compression with both LBG and LAVQ algorithms are compared. Note that at 31.71dB mean squared error

signal to noise ratio (SNR), LAVQ achieves 1.32 bit/pixel compression rate, which is much higher than the

0.50 bit/pixel rate which LBG achieves at 31.71dB SNR. However, LAVQ runs many times faster than LBGj
in computer simulations, LBG required several hours to compress "lenna" to the rate and distortion given

above, while LAVQ required less than three minutes. Thus, LAVQ is a viable alternative to LBG for high

speed one-pass coding if methods to improve performance can be found.

Furthermore, LAVQ is capable of adapting to the local image statistics to preserve details: New codewords are

generated more often in regions containing edges and fine features while blank regions are coded with fewer new

codewords. This feature-preservation property, along with its one pass, high speed code book generation and
encoding property are the two main advantages of LA VQ. However, the algorithm, in addition to having inferior

rate-distortion performance, has the shortcoming that while detail regions are coded accurately with LAVQ,

relatively constant regions are not. Because codewords are not optimized for the regions which they represent,
the block boundaries are more easily visible. LAVQ, therefore, trades off speed and detail preservation for

rate-distortion performance and smooth representation of constant regions. Various means to remove these

deficiencies will be explored in the subsequent section.

2 Improvements to the Algorithm

2.1 Bit Stripping of New Blocks

Raw blocks being sent when tolerance is exceeded compose a small but significant portion of the coded image.

To reduce the number of bits sent, new blocks are sent stripped of their least significant bits; at the decoder,

these stripped bits are replaced by random bits. Since the least significant bits are essentially random for

most images, the effect of bit stripping on distortion is generally not noticeable; also, rate is improved. For
one bit stripped off of 8-bit pixels, the decrease in number of bytes spent for sending new blocks is 12.5%j for

two bits stripped off, 25%. Bit stripping can help reduce the staircase effect caused by "discontinuities" at

block boundaries: Since the staircase effect is linked to a slight discontinuity in neighboring pixels at block
boundaries, insertion of random bits helps randomize this difference at the block boundaries, making them
less pronounced.

The drawbacks to stripping bits from data blocks are an increasingly grainy image and, if many bits are

stripped off, a pronounced staircase noise effect. As more bits are removed, the image loses its clarity and

exhibits noise similar to photographs taken in low light conditions. When even more bits are removed, the

insertion of random bits is not sufficient to counteract the staircase effect along block boundaries. Both effects
increase distortion significantly. Many bits must be stripped off to improve rate significantly, but doing so

incrases distortion [6]. Thus, the advantage of stripping least significant bits from the new codeword data

is small: Stripping two bits off the "lenna" image before coding with the LAVQ algorithm yields a rate of

1.29 bits/pixel at 31.72dB SNR, whereas the basic LAVQ algorithm has a performance of 1.32 bits/pixel at

31.71dB SNR.

2.2 Smoothing Filters

Since the decoder is not computationally time intensive as the encoder, some of the improvement to perfor-

mance can be done by the decoder. One such technique is the use of filters at the decoder to remove noise

generated by the encoding process. The most significant and noticeable noise characteristic of LAVQ is the

staircase or sawtooth effect at block boundaries.
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To filter out block boundaries, a bandstop filter with stop bands corresponding to the spacial block frequency
and its harmonics can be used [7]. The filter must have smooth transitions to avoid "ringing" at edges in the

image, yet must have sufficient selectivity in stopband attenuation to avoid attenuating too many frequencies.
Such a filter is effective in reducing the staircase effect, but at the cost of increased fuzziness, especially in high

detail regions. Thus, the filter improves subjective image quality but may degrade objective quality denoted

by SNR.

A solution is obtained by replacing those blocks in the filtered image with those which are not coded with

the same the previous block or which are new data entered into the codebook. The encoder sends indices
which designate frequency of usage or the arrival of new codeword data; the decoder uses this knowledge to

designate high and low detail regions of the image. Those portions which are represented by non-repeating or

new data are designated as high detail; by replacing the filtered blocks with the unfiltered ones in only the hgh

detail areas, distortion is reduced and detail is preserved [6]. This replacement strategy cannot be applied to
standard VQ algorithms. A sequence where the original image is filtered and new blocks are replaced is shown

in Figure 3. In these figures, the basic LAVQ algorithm yielded performance of 1.29 bits/pixel at 31.48dB

SNR; filtering with a bandstop filter of attenuation 0.50 improves SNR to 31.52dB. Block replacement further

improves SNR to 31.71dB.

2.3 One-Pass Entropy Coding

Because of the move-to-front codebook rearrangement strategy and because most images are spacially cor-
related, the smallest valued indices are used most often. This suggests the use of lossless data compression

algorithms on the indices to reduce size without affecting index data, just as in the case of code book data
compression explored in the previous section. The codes used can exploit nonuniform index frequency statis-
tics (such as the case with Huffman and arithmetic coders) or spatial redundancies (such as the case with
Lempel-Ziv type algorithms). Likewise, a lossless entropy coder can be applied to the code book information
for additional performance gain.

There are a number of considerations for data compression algorithms used in this application; they were re

the necessity for algorithms that are fast, single-pass, and adaptive. The algorithms used here are the adaptive
arithmetic and the Lempel-Ziv algorithms. The arithmetic coder used is a variation of the adaptive algorithm

presented in [8]; the UNIX compress and uncompress commands were used for Lempel-Ziv compression. Using

the adaptive arithmetic coder on both the indices and the new codeword data can improve the LAVQ perfor-

mance at 31.71dB SNR from 1.32 bits/pixel to 0.755 bit/pixel. This is closer to the 0.50 bit/pixel performance

obtained by the LBG algorithm at the same SNR.

2.4 Combining the Improvements

Each of these improvements to the algorithm are disjoint and can be implemented independently or in com-

bination with the others. The best result obtained for the "lenna" image is using adaptive arithmetic coding
on both the index and new codeword data streams, two bits stripped from each new block, filtering the re-

ceived block at an attenuation of the stop bands of 0.45, and with block replacement of new data blocks: A

compression of 0.682 bits/pixel at 31.73dB SNR is attained. In comparison, the LBG algorithm attains 0.50

bits/pixel at 31.71dB. Thus, the rate of the LAVQ algorithm can be improved substantially enough to make

it a viable alternative to LBG when high speed, one-pass coding is required.
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3 Implementation

The hardware implementation of the LAVQ algorithm must fulfill the key requirement of speed sufficient

to permit real-time compression of video-rate signals. Traditional VLSI techniques, especially serial digital

designs, cannot meet this criteria with reasonable power or space constraints. LAVQ is a one-pass algorithm
and can best meet the design paradigms of high speed, low power, and massively parallel implementation

through the use of analog VLSI circuits organized in a neural manner, with interconnected repetitions of small
circuits.

The architecture presented here concentrates on reducing computational bottlenecks through the system. The

most time intensive portion of the algorithm is finding the closest codeword in the codebook which corresponds

to the input. This search, when executed on a serial machine, takes O(mN) time. Execution on a parallel

architecture would reduce the time complexity down to 0(1). This significant improvement if implementable

can allow real-time compression of video signals. Note that the analog implementation described below can

be placed after any preprocessing such as bit stripping and before any postprocessing such as entropy coding.

A system-level description of the vector quantizer consists simply of two boxes, the encoder, which has analog
inputs and digital outputs, and the decoder, which has digital inputs and digital outputs. The encoder takes

the input analog values and transmits a digital code either representing the codeword index or the actual input
itself. The decoder takes this transmitted digital signal and outputs the correct digital codeword. The encoder

is a mixed-mode circuit which employs analog circuits for storage and computation and some digital circuitry

for system control. In the broadest sense, the encoder can be described by an analog front-end and a digital

back-end. The decoder, on the other hand, is an entirely digital block so that it can take the transmitted

digital signal and decode it to the correct vector.

3.1 Encoder Implementation

The block level description of the encoder shows that it is composed of several simple analog building blocks
along with some digital control circuitry (See Figure 4). In particular, the encoder consists of codebook

cells, which contain the data for a vector in the codebook, a closest-vector arbitrator (winner-take-all circuit),
a digital control block which manages codeword indicies, and an analog to digital converter which may be
located on another chip. The codebook cells and the closest-vector arbitrator are simple analog circuits whose
parallelism is the key to efficient operation of the encoder.

Each codeword is stored in a codeword cell, an autonomous storage and computational unit of N storage

capacitors and comparators that can compute a distance metric from the input vector to a stored codeword

independently of all the other units (See Figure 5). The relatively few number of transistors that compose

each cell point out the relative efficiency of analog hardware as compared to standard digital blocks for this
particular function. The codeword is stored as charge on N capacitors; charge maintenance is provided by a
feedback amplifier system similar to one designed by Vittoz, et at. [9]. Refreshing, therefore, can take place
in the background. The capacitor values are fed into N distance circuits whose outputs are summed to obtain

the overall distance of that codeword from the given input. The distance circuit is a differential-pair connected

to a current correlator circuit which has maximum output when the two input values are "close" to each other

[10]. The mathematical function that is implemented by this circuit is of the form 1 - tanh2(Vin - Vstored),

which approximates the mean square error function. (See Figure 6.)

Once the cells have computed their respective distances to the input vector, the next stage of computation
determines which cell is closest to the input vector; this is done with a circuit called the closest-vector arbitrator
(CVA), or winner-take-all (WTA) cicrcuit. Refer to Figure 7. The operation of this circuit is very similar

that of the winner-take-all circuit in [11]. The CVA is also a space efficient circuit; it is capable of finding

the largest input value (which corresponds to closest distance) from a relatively large set of inputs in parallel.

Should no codewords be close to the input (no clear winner), the CVA will indicate this.
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The digital controller accepts the output from the CV A and makes a decision of which codeword index to

send or to send the raw digitized data. The primary function in this block is maintaining a memory based on

a large matrix of memory cells arranged as rows of circular shift registers, tapped and gated at each cell, to

provide a mapping between physical cell location and codeword index. The array also can have selected rows
shifted to provide codebook updating with minimal complexity. Therefore, analog values are not shifted in

each cell. Figure 8 shows this controller.

Figure 9 shows an example of how the controller operates, first to output the proper index, then to set up

the gates for circular shifting, and then the actual shift of appropriate registers. Note that since the circuit

provides a one-to-one mapping betwen physical location and codebook index, only one bit in any given row or

column is high; the others are low. Therefore, some rows will shift low values (zeroes) and will not be affected,

while others will have its contents shifted.

If a new codeword need be sent, the input must be converted from an analog vector to a digital representation.

This requires an analog to digital converter to run in parallel with the distance cells and CVA circuit. The

output is routed to the output as necessary; at other times, its output is ignored. This AID converter can be

a separate chip.

3.2 Decoder Implementation

The decoder side of the implementation is a purely digital circuit whose operation is very simple and can

be implemented digitally without significant degradation in performance. The entire decoder is a string of

shift registers holding codebook data; these are sequentially shifted to the output and to the top of the
codebook after use. A new codeword entails shifting in new data while the last codeword is shifted out and

ignored. (Refer to Figure 10.) No other computation is needed at the decoder core; its implementation will

be straightforward. Preprocessing, such as entropy decoding, and postprocessing, such as bit insertion (to
counter bit stripping), and filtering, are done independently of the decoder core.

3.3 Area Estimates

A rough estimate for required area for the encoder is easily obtained. As an example, consider the case of

an encoder with 1x8 pixel vector with 255 stored codewords. For a 211m, double-metal, double-poly process,

storage of an analog value of 8 bits requires approximately 10,000 11m2. Local distance calculation requires

approximately 5000 11m2; therefore, each codeword cell module, containing eight distance calculators and

analog storage elements, requires approximately 120,000 11m2. For 255 codewords, therefore, approximately

30 mm2 of area are required. The WTA circuit with 255 nodes requires a trivial amount of additional area;

therefore, the analog portion of the encoder is very space-efficient.

The digital controller, with 255x255 elements containing a digital storage cell and several pass gates, can be

built very compactly using present-day technologies. Thus, all elements of the encoder core can be placed on
a single 1 cm square chip.

4 Conclusion

The LAVQ algorithm provides a fast, one-pass image compression algorithm capable of compression rates not
significantly inferior to LBG. Implementation of the algorithm with parallel hardware arranged in a neural

structure is conceptually simple, spacially compact, and potentially fast enough for real-time image coding.
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Figure 1: Encoder and Decoder. An image block is compared to the codebook (A); if a codeword close

enough exists, that codeword is moved to the top of the codebook (B) and the index is transmitted (C). If it

does not exist (D), then the block is inserted at the top of the codebook (E) and the index m+ 1 and the block

is transmitted (F). On the receiver side, if an index is received, the corresponding codeword (G) is moved to

the top of the codebook and the block is inserted into the reconstructed image (H). If the special index m + 1

is received (I), a raw block is anticipated immediately following; this block is placed in the codebookand also
in the reconstructed image (J).
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Figure 3: Filtering with Replacement. Detail of uper right. Clockwise from top left, basic LAVQ

(1.29 bits/pixel, 31.48dB), LAVQ with filtering (1.29 bits/pixel, 31.52dB), blocks to be replaced, and after
filtering and block replacement (1.29 bits/pixel, 31.71dB). Note that SNR is improved slightly. Filtering

creates "ringing" at edges. This is removed by block replacement, which occurs mainly at edges in the image.
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not take much area to implement.
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