
An Investigation of Several Document Classification Algorithms

Leading to the Design of an Autonomous Software Agent

for Locating Specific, Relevant Information on the World Wide Web

Thesis by

John Lindal

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2001

(Defended December 19, 2000)

11

© 2001

John Lindal

All Rights Reserved

iii

Acknowledgements

Of the many people with whom I have associated during my time as a

graduate student, my advisor, Dr. Rodney Goodman, and one of his early stu

dents, Dr. Padhraic Smyth, have had the most direct influence on this thesis.

Dr. Goodman encouraged me to pick a topic that interested me and then al

lowed me complete freedom to work at my own pace and do as I pleased with

the project. Dr. Smyth's seminal work on IT Rule provided the foundation

for a significant portion of my research. Lengthy discussions with Dr. Smyth

during my early years as a graduate student helped me get up to speed on the

theory and provided much needed guidance, and his feedback on several dif

ferent drafts of this thesis near the end was invaluable. Chris Ulmer also de

serves thanks for taking the time early on to get me up to speed on the practi

cal issues and cheerfully allowing me to throwaway his implementation of

ITRule in C so I could write my own version in C++.

Additionally, special thanks must go to Dr. R. David Middlebrook. His

influence provided me with both teaching experience and interesting topics

in circuit theory with which to tinker, most notably the NEET. His project to

develop software which could aid the process of analytically analyzing electri

cal circuits (Design-Oriented Analysis) provided me with the initial impetus

which eventually lead to the development of the JX Application Framework

and the founding of New Planet Software, Inc. Without JX, I would have

been unable to write Poirot, the end product of my research efforts.

iv

Without JX on which to work over the years, I would likely no longer be

sane. Special thanks are due to Glenn Bach and Dustin Laurence for their

help in developing JX, even though this often threatened to derail my at

tempts to graduate. Additional thanks for helping to keep me from cracking

up are due to Eileen Lau for all those lunch hours, Sharon Laubach for all

those Hawaiian pizza dinners and everything else from rollerblading to cook

ie baking, Dustin Laurence, Teresa Moore, Ruben Krasnopolsky, and Sarah

Yost for role playing and other activities, and Tammy Moore for being herself.

Finally, of course, I would never have succeeded at anything if it were

not for the unshakable support of my parents. They encouraged me to grow

without forcing me down a particular path and showed me how to survive

in the American educational system. Their foresight in 1982 into the future

importance of computers provided me with the opportunity to discover that

I was born to develop software. As a graduate student, had I not been able to

seek refuge from the world at their home as often as necessary and thereby

work for extended periods without interruption, this thesis would never

have been written.

The research presented in this thesis was primarily supported by the

Fannie and John Hertz Foundation.

v

Abstract

The goal of the research described in this thesis was to design an a u

tonomous software agent that can locate specific, relevant information on the

World Wide Web. The first chapter provides the motivation behind this pro

ject and a brief overview of the challenges associated with it. The next chap

ter presents the analysis which led to the development of a new, improved

version of the computer program called ITRule. The improvements consist

of a new algorithm for classifying documents that outperforms the previous

one, significantly enhanced support for data exploration, i.e., the process of

extracting information from raw data, and a new algorithm for quantizing

numeric variables so they can be used by ITRule. The third part of this thesis

compares the performances of three versions of ITRule, two versions of the

Naive Bayes classifier, several neural networks, the decision tree algorithm

called CART, and a linear support vector machine, in order to determine

which one is best suited for selecting relevant web pages. An analysis of the

test results shows that a new ITRule classification algorithm, based on cross

validation combined with the J-measure, performs best. The fourth and final

part of the thesis describes how some of these results were used in the design

of a user friendly, autonomous software agent called Poirot that can help

World Wide Web users stay up to date on new developments in topics of in

terest.

vi

Table of Contents

Acknowledgements .. iii

Abstract .. v

Table of Contents .. vi

List of Figures .. xi

List of Tables .. xvi

CHAPTER 1 Introduction .. 1

CHAPTER 2 Improvements to the IT Rule algorithms 6

2.0. Chapter outline ... 7

2.1. Review of the classification algorithm .. 7

2.1.1. Picking the rules to be used by the classification network 12

2.1.2. Speeding up the Minimum Description Length (MDL) and

Cross Validation with Steepest Descent (CV-SD) algorithms ... 16

2.1.3. Pseudocode description of the improved MDL algorithm 21

2.1.4. Pseudocode description of the new CV -SD algorithm 22

2.1.5. Pseudocode description of the new CV-J algorithm 24

2.1.6. Upper bounds on the computational complexities of the

MDL, CV-SD, and CV-J algorithms .. 25

2.1.7. Experimental comparison of the run times of the

MDL, CV-SD, and CV-J algorithms .. 26

2.1.8. Experimental comparison of the accuracies of the

MDL, CV-SD, and CV-J algorithms .. 27

2.1.9.

2.1.10.

2.2.

2.2.1.

2.2.2.

2.2.2.1.

2.2.2.2.

2.2.2.3.

2.2.3.

2.2.3.1.

2.3.

2.4.

2.4.1.

vii

The sensitivities of the MDL, CV-SD, and CV-J accuracies

to the choice of adjustable parameters .. 27

Extrapolating from the training data ... 28

Data exploration ... 34

Correlations between variables ... 35

Cleaning the data ... 38

Detecting missing values in the data ... 38

Identifying irrelevant variables .. 38

Using correlations to discard redundant variables 41

Identifying significant rules ... 43

Discarding subsumed rules .. 43

Generating rules ... 45

Quantizing numeric variables .. 46

A comparison of the Minimal Entropy Partitioning (MEP)

and Recursive Minimal Entropy Partitioning (RMEP) algo-

rithms ... 50

2.4.2. The Minimal Entropy Partitioning (MEP) algorithm 52

2.4.3. Analysis of the function, F, minimized by the Minimal

Entropy Partitioning (MEP) algorithm .. 53

Appendices

2-A The analytical expression for the computational

complexity of the improved MDL algorithm 64

2-B The analytical expression for the computational

complexity of the new CV -SD algorithm 66

VIll

2-C The analytical expression for the computational

complexity of the new CV-J algorithm .. 68

2-D The analytical expression for the time required to classify

one example using the rule-based classification network 69

CHAPTER 3 Experimental comparison of the classification algorithms

considered for use in Poirot ... 70

3.0. The data used to evaluate the classifiers 71

3.1. The method used to calculate the probabilities used by the

classifiers .. 72

3.2. Misclassification costs .. 72

3.3. Reducing the run time by prefiltering the list of words

3.4.

3.4.1.

3.4.2.

3.4.3.

3.4.4.

3.4.5.

3.5.

3.5.1.

3.5.2.

3.5.3.

obtained from the training articles ... 73

Description of the classification algorithms 81

ITRule ... 81

Naive Bayes ... 82

Neural networks .. 83

Classification and Regression Trees (CART) 85

Support Vector Machines (SVM) ... 85

Experimental comparison of classifier performances 86

Comparing the effects of using single words and phrases 88

Improvements in performance when more training

examples are added .. 90

The sensitivity of classifier accuracy to variations in the

misclassification costs .. 91

IX

3.5.4. The effect on classifier accuracy of prefiltering the list of

words obtained from the training articles 91

3.5.5. The effect on classifier accuracy of using stemmed words 92

3.5.6. Experimental comparison of the run times of the various

algorithms .. 93

3.6. Experimental comparison of classifier performances on

a second data set .. 94

3.7. Comparison with other published results 96

Appendices

3-A List of stop words 130

3-B The analytical expression for computing the precision/recall

breakeven point (PRBEP) based on the Probability of

Relevance (PRR) algorithm ... 132

CHAPTER 4 The design of the autonomous agent Poirot 133

4.0. Introduction .. 134

4.1. An example of a brief session with Poirot 134

4.1.1. General description of the user's interaction with Poirot 135

4.1.2. A note on obtaining feedback from the user 144

4.2. Description of Poirot's page rating algorithm 145

4.2.1. Computing the rating displayed in the Score column 147

4.3. Reporting significant changes to a web page since it was

last visited .. 149

4.4. Sharing relevant pages with other Poirot users via

index pages ... 153

4.5. Miscellaneous features provided by Poirot 157

x

4.5.1. User interface design ... 157

4.5.2. Avoiding loss of information .. 157

4.5.3. Benefiting from newly available search engines 158

4.6. Results of initial user testing ... 159

4.7. Comparison with other systems ... 159

4.8. Suggestions for future work .. 161

4.8.1. Natural Language Processing (NLP) .. 161

4.8.2. Using a thesaurus to expand the list of keywords 162

4.8.3. Exploiting the links between web pages 162

4.8.4. Extracting information from Usenet and mailing lists 163

CHAPTER 5 Summary ... 164

References ... 166

Xl

List of Figures

CHAPTER 2

2.1 Rule-based classification network .. 11

2.2 Adjusted run time of the MDL algorithm ... 29

2.3 Adjusted run time of the CV -SD algorithm .. 30

2.4 Run time of the CV-J algorithm ... 31

2.5 Example illustrating correlation strengths ... 36

2.6 Venn diagram with three equal intervals displaced laterally 36

2.7 Example of the subset of data to which a rule applies 39

2.8 When two variables are fully correlated, one can be discarded 42

2.9 Separable data set for comparing MEP and RMEP 51

2.10 Non-separable data set for comparing MEP and RMEP 51

2.11 The shape of the interval membership function 56

2.12 Entropy (H) and its concave up replacements (G, Gs) for the

case of two classes , ... 56

2.13 Sample MEP surface using H ... 57

2.14 Sample MEPsurface using G ... 58

2.15 Sample MEP surface using Gs ... 59

2.16 Sample MEPsurface using G with Dmuch smaller than the

separation between adjacent examples ... 60

XlI

2.17 Sample MEPsurface using G with c50f the order of the

separation between adjacent examples when perfect

separation is not possible ... 61

2.18 Sample MEPsurface using G with c5much larger than the

separation between adjacent examples when perfect

separation is not possible ... 62

2.19 Sample MEPsurface using H with c5much larger than the

separation between adjacent examples when perfect

separation is not possible ... 63

CHAPTER 3

3.1 Mutual information (balanced word occurrence) 77

3.2 Word imbalance (balanced word occurrence) 78

3.2 Word imbalance minus mutual information 79

3.4 Word imbalance (unbalanced word occurrence) 80

3.5 NB-CV accuracy .. 98

3.6 NB-CV accuracy minus ITRule CV-J accuracy 99

3.7 NB-CV Accuracy Minus SVM Accuracy .. 100

3.8 NB-CV accuracy minus NB-96 accuracy ... 101

3.9 ITRule CV-J accuracy minus ITRule MDL accuracy 102

3.10 ITRule CV-J accuracy minus ITRule CV-SD accuracy 103

3.11 NB-CV accuracy minus NN-Boolean accuracy 104

3.12 NB-CV accuracy minus NN-Boolean-Decay accuracy 105

3.13 NB-CV accuracy minus NN-Numeric accuracy 106

xiii

3.14 NB-CV accuracy minus NN-Numeric-Decay accuracy 107

3.15 NB-CV accuracy minus CART-Boolean accuracy 108

3.16 NB-CV accuracy minus CART-Numeric accuracy 109

3.17 IT Rule CV-J: Accuracy with phrases minus accuracy with

single words .. 110

3.18 NB-CV: Accuracy with phrases minus accuracy with

single words 111

3.19 SVM: Accuracy with phrases minus accuracy with single

words ... 112

3.20 NN-Boolean-Decay: Accuracy with phrases minus accuracy

with single words 113

3.21 CART-Boolean: Accuracy with phrases minus accuracy with

single words .. 114

3.22 NB-CV: Accuracy on large data set minus accuracy on small

data set .. 115

3.23 NB-CV: Accuracy vs. training set size for "acq" topic 116

3.24 NB-CV: Accuracy vs. training set size for "money supply"

topic ... 117

3.25 ITRule CV-J: Accuracy with relative misclassification cost

equal to two minus accuracy with relative misclassification

cost equal to one .. 118

3.26 ITRule CV-J: Accuracy with relative misclassification cost

equal to two minus accuracy with relative misclassification

cost equal to four .. 119

XIV

3.27 NB-CV: Accuracy with relative misclassification cost equal to

two minus accuracy with relative misclassification cost equal

to one .. 120

3.28 NB-CV: Accuracy with relative misclassification cost equal to

two minus accuracy with relative misclassification cost equal

to four ... 121

3.29 ITRule CV-J: Accuracy with unfiltered word lists minus

accuracy with filtered word lists ... 122

3.30 NB-CV: Accuracy with unfiltered word lists minus accuracy

with filtered word lists .. 123

3.31 ITRule CV-J: Accuracy with unstemmed words minus

accuracy with stemmed words .. 124

3.32 NB-CV: Accuracy with unstemmed words minus accuracy

with stemmed words .. 125

3.33 NB-CV: Accuracy with unstemmed words minus accuracy

with stemmed words (statistical significance) 126

3.34 Run time of the NB-CV algorithm ... 127

3.35 Run time of the CART-Boolean algorithm 128

3.36 Run time of the SVM algorithm when using 100 words and

phrases ... 129

xv

CHAPTER 4

4.1 System block diagram for the autonomous agent called Poirot 137

4.2 Screen shot from Poirot showing the dialog window where

the user enters one or more initial keywords describing a

topic of interest ... 138

4.3 Screen shot showing the results of Poirot's initial search for

web pages containing the word "Goodman" 139

4.4 Screen shot from Poirot after the user has studied and rated

a few of the web pages by placing + and - symbols in the

Opinion column .. 140

4.5 Screen shot from Poirot after it has constructed a classifier

based on the ratings provided by the user in the Opinion

column ... 141

4.6 Output from Poirot showing all the words and phrases used

by the classifier .. 142

4.7 Screen shot showing the results of Poirot's second search for

web pages ... 143

4.8 Screen shot from Poirot showing how the rating, Rchange'

which is assigned to the changes in each web page is displayed

on the left-hand side of the Status column .. 152

4.9 Hypertext Mark-up Language (HTML) source code for the

topic index page generated by Poirot from the topic

"Goodman" ... 156

4.10 The result of displaying the source code from Figure 4.9 in a

web browser 156

xvi

List of Tables

CHAPTER 2

2.1 Effectivness of the bound used in the Minimum Description

Length (MDL) algorithm .. 19

2.2 Effectivness of the bound used in the Cross Validation with

Steepest Descent (CV-SD) algorithm ... 20

2.3 Comparison of run times on articles dealing with the

international balance of payments (bop) .. 32

2.4 Comparison of run times on articles dealing with trade 32

2.5 Comparison of run times on articles dealing with corporate

acquisitions and mergers (acq) .. 33

2.6 Comparison of run times on articles dealing with corporate

earnings (earn) .. 33

CHAPTER 3

3.1 Joint probabilities if a word occurs in only a single, relevant

training article, and there are equally many relevant and

irrelevant articles ... 76

3.2 Average accuracies on each WebKB category 95

3.3 Average accuracies achieved by NB-CV on each WebKB

category when only single words were used and when

phrases without stop words were included ... 95

xvii

3.4 Average accuracies achieved by NB-CV on each WebKB

category when data sets with 30 and 100 training examples

were used ... 95

3.5 The highest precision/recall breakeven points achieved by

the new NB-CV algorithm when using phrases without stop

words, the non-linear support vector machines tested by

Joachims (1998), and the multinomial Naive Bayes classifier

developed by McCallum and Nigam (1998) on ten topics

chosen from the Reuters-21578 collection ... 97

3.6 The minimum and maximum precision/recall breakeven

points achieved by the NB-CV algorithm on each of the six

categories in the WebKB collection ... 97

1

Chapter 1

Introduction

2

The number of pages on the W orId Wide Web has grown tremendously

over the past few years. As a result, it has become difficult to locate all the ex

isting information on any given subject. Part of the reason is the relatively

poor coverage of the W orId Wide Web provided by most search engines

(Selberg and Etzioni, 1995; Lawrence and Giles, 1998). It is therefore usually

necessary to consult several of them to ensure that nothing is missed.

Furthermore, most engines will only accept a short list of keywords for which

to search. Thus, the selectivity is likely to be quite low unless the desired in

formation can be concisely and unambiguously specified.

An additional obstacle is the determination of the optimal keywords to

use. The user may initially have only a vague idea of what is required and

will therefore often be unable to provide more than a couple of general

terms. The result is that the user must manually read through many irrele

vant web pages in order to find the special words that are actually important.

Consequently, the web searches may have to be repeated many times with

both different keywords and engines. In addition, it may be desirable to peri

odically look for newly created web pages and check for additions and correc

tions to old pages.

Computers are well suited for processing large volumes of data and

should therefore be the ideal tools for automating the above process. Since

the W orId Wide Web can be explored via the existing search engines, the re

maining problem is essentially one of classification, i.e., deciding whether or

not a particular web page is relevant. Once the user has located a few rele

vant and irrelevant web pages, an algorithm for constructing a classifier de

termines what distinguishes the relevant pages from the irrelevant ones.

3

The associated classification algorithm can then use this information to de

cide whether or not other web pages are likely to be relevant.

Over the past couple of decades, many different algorithms have been

developed in attempts to solve classification problems, but they all have

weaknesses. Naive Bayes seems too simple and requires conditional indepen

dence (Duda and Hart, 1973), though it sometimes works quite well in spite of

this drawback (Domingos and Pazzani, 1996). In the case of neural networks

(Haykin, 1999) and support vector machines (Vapnik, 1995), it is difficult to

explain how they arrive at decisions unless the transformations are particu

larly simple (Towell and Shavlik, 1992; Setiono, 1997). Rule based classifiers

such as ITRule (Goodman et al., 1992) are designed to be more comprehensi

ble, but continuous variables must be quantized to reduce the search space to

a manageable size and obtain accurate probabilities. Instead of solving the

problem, this only changes it to that of designing a suitable quantization algo

rithm. Decision trees (Breiman et al., 1984) avoid the need for quantization,

but only at the cost of greedily partitioning the input space instead of fully ex

ploring it and thus being very sensitive to noise in the training data

(Dietterich, 1997).

When all the variables associated with a problem are inherently discrete,

however, then the major objection to using a rule based classifier vanishes.

Thus, by simply treating the presence or absence of words and phrases in a

document as Boolean features, the rule based classification system becomes

more attractive. The ability of such a classifier to explain how it arrives at its

decisions is especially helpful when applied to the search for web pages be

cause the words and phrases chosen by the classifier can be sent directly to

4

each search engine.

However, making decisions based only on the presence or absence of

words and phrases does not utilize all the available information. The fre

quency of occurrence may also be important. Unfortunately, Boolean vari

ables are not sufficient for representing this additional information. Instead,

one must use numeric variables. For this representation, neural networks

are suitable, but it is not easy to determine which words to send to a search

engine because as mentioned earlier, it is difficult to explain how neural net

works arrive at decisions.

Thus, since all of the above classifiers seem to have some disadvantages,

this thesis compares the performances of what is believed to be a reasonably

representative sample of them in order to determine which approach is like

ly to yield the simplest and best classification scheme.

Chapter 2 describes the analysis leading to the design of a new, improved

version of ITRule. The improvements that are relevant to the task of classi

fying web pages consist of refinements to the rule based classifier and a faster

algorithm for choosing the rules which also improves the classifier's accura

cy. Improvements and additions to ITRule's data exploration capabilities are

also presented, along with a new algorithm for quantizing continuous, n u

meric variables.

Experiments designed to compare the performances of ITRule, Naive

Bayes, neural networks, support vector machines, and CART with regard to

classifying web pages are discussed in Chapter 3. The results demonstrate

that, on average, a new ITRule algorithm, which uses cross validation com

bined with the J-measure, produces a more accurate classifier than any of the

5

other methods.

The final chapter presents the design of a user friendly, autonomous

software agent called Poirot that can search the W orId Wide Web for new, rel

evant pages and also report interesting changes to pages discovered previous

ly. In order to illustrate how well this system performs, a detailed description

of a demonstration session, complete with screen shots, is also included.

6

Chapter 2

Improvements to the ITRule algorithms

7

2.0. Chapter outline

The first version of the computer program called ITRule was developed

in conjunction with Padhraic Smyth's thesis (Smyth, 1988). It was given the

name ITRule because its design is based on rules and information theory.

There are two tasks to which ITRule can be applied, namely classifica

tion, i.e., the process of making decisions based on a finite set of training data,

and data exploration, i.e., the process of discovering useful information in

raw data. Section 2.1 discusses the issues associated with classification and

compares the original algorithm developed by Goodman et al. (1992) with

two new algorithms. These algorithms will later be considered for use in

Poirot. Section 2.2 presents improvements to ITRule's data exploration algo

rithms. The process of generating the rules used by the classification and data

exploration algorithms is discussed in Section 2.3. Finally, Section 2.4 pre

sents a new algorithm for quantizing continuous variables so they can be

used in the rule generation process.

2.1. Review of the classification algorithm

The idea of using rules to make decisions has been around for several

decades in the form of expert systems. In such a system, each rule consists of

a left-hand side (LHS) that specifies a condition and a right-hand side (RHS)

that contains a statement which is true if the LHS is true. A simple example

is "If the animal has wings, then it can fly." If only one rule's LHS is satisfied

in a particular situation, the result is simply the corresponding RHS. If sever

al rules are satisfied, however, the corresponding RHS's may disagree, thereby

requiring a conflict resolution mechanism to make the final decision. As an

8

example, there may be another rule that states "If the animal is an ostrich,

then it cannot fly." It is easy for a human to resolve the conflict in this exam

ple, but a computer cannot do so without a lot of background information

and a powerful inference algorithm. When rules are generated from raw

data, there is usually no background information available. In this case, all

conflict resolution mechanisms must be ad hoc because the rules are as

sumed to be correct, and yet they lead to different conclusions. One common

method of handling this problem is to order the rules in some way and then

use the first one that applies (Quinlan, 1993; Segal, 1994; Cohen, 1995; Weiss

and Indurkhya, 1995). In contrast, Padhraic Smyth decided to try a different

approach in order to avoid the problem entirely. He therefore introduced the

idea of attaching a probability to each rule (Smyth, 1988). With this approach,

the above rule might for instance become "If the animal has wings, then it

can fly with probability 0.995," since there are several species of flightless

birds. The introduction of a probability, no matter how close to 1.0, elimi

nates the need for conflict resolution because the rule probabilities can be

combined in a Bayesian fashion to calculate the probability of each possible

result instead of forcing the expert system to pick a single outcome. This, in

cidentally, also makes the system more tolerant of missing values, noise, and

errors in the data.

The general form of a probabilistic rule is "If Yj is true, then X=Xj with

probability p(Xj IYj)'" Let {h, ... , jn} represent the indices of the rules whose

LHS's are true, N x be the number of possible values of X , and p(Xj) be the

prior probability of the ith possible value of X. Assuming that the y/s are in

dependent when the value of X is known, then the posterior probability of X,

9

P(Xi IYjl"'Yjn)' can be calculated in the manner presented by Goodman et al.

(1992):

('I' ,) - P(Yh ... Yjn I Xi) p(Xi)
P Xl YJ1'" YJn -

P(Yh ... YjJ
(Bayes' Rule)

n

p(Xi) n P(Yjk I Xi)
k=l = ----'-'------''-----

P(Yh ... YjJ
(Conditional Independence Assumption)

(Bayes' Rule)

In this result, the first term is independent of i, so it can be represented by a

constant c:
n

II P(Yjk)
C = ...;,,:k_=--=l __ _

P(Yh ... YiJ

For the posterior probability of X normalized to C, this yields:

p(Xi I YJ'l ... YJ'n) q i = '---'--------"-.L:.-_=_<=

C

In(qi) = In P(Xi) + f In p(Xi I Yjk)
k=l p(Xj)

Since Li P(xi IYjl'''Yjn) = I, P can be calculated from q by simply normal

izing:

10

Figure 2.1 provides a graphical representation of these calculations.

Based on Boolean value of the kth rule's LHS, the rule either contributes zero

or In(p(xi IYk)lp(Xi)) to each of the output units. Each output adds in the bias

of In(p(xi)) and exponentiates the result to get qi. The normalizer then gener

ates the desired probabilities, P(xi IYjl···Yjn). Beyond this, one can attach an

extra layer to make a "hard" decision based on the probabilities. The two

most common algorithms are to pick either the most probable class or a ran

dom class using the probabilities as weights (Goodman et al., 1992).

The most obvious difficulty with the above derivation is the assumption

of conditional independence. Even with the results presented by Domingos

and Pazzani (1996), it remains a highly dubious proposition that the system

will work correctly when an arbitrary set of rules is used in a network of the

form shown in Figure 2.1 (Goodman et al., 1992). The problem of picking

rules that work well together is analyzed in the next section.

Another problem with this approach is that C is independent of i only if

every rule contributes to every output of the network. However, the rules

used by Goodman et al. (1992) are of the form "If Y is true, then X=xi with

probability P(xi Iy)." Thus, each rule contributes to only a single output. In

order to avoid this problem, the new implementation of ITRule instead uses

rules of the form "If Y is true, then X has probability distribution p(Xly)."

YR
Inputs

11

Rules Outputs (q)

I-<
il)
N-
til

S
I-<
o
Z

Figure 2.1: Rule-based classification network

p(Xly)

12

2.1.1. Picking the rules to be used by the classification network

As mentioned in the previous section, the assumption of conditional in

dependence is unlikely to be satisfied for an arbitrary set of rules. In an at

tempt to deal with this, Goodman et al. (1992) used the Minimum

Description Length (MDL) principle to choose rules that empirically satisfy

this assumption. MDL is based on the theory of data compression. The algo

rithm greedily picks rules to minimize the number of bits required to encode

both the rules and the corrections to the errors that the rules make on the

training data. The description length that Goodman et al. used was:

where N R is the number of rules, N E is the number of training examples, and

P (Xi,correct) is the predicted probability of the correct result for the ith training

example, which is known. The first term represents the number of bits re

quired to transmit the rule probabilities. The terms of the form

-log2(p(xi,correct)) are the average number of bits required to transmit errors as

measured by the Kullback-Liebler distance between the correct and predicted

probability distributions (Smyth, 1988; Cover and Thomas, 1991).

The first term in Ll increases as the algorithm adds more rules, while

the second term decreases as the classification of the training examples be

comes more accurate. The algorithm terminates when no more rules can be

found that will decrease the value of L1.

The results presented by Goodman et al. (1992) show that this approach

works remarkably well on a variety of data sets. However, the first term in Ll

is only an ad hoc expression (Smyth, 1996). The theoretically correct descrip-

13

tion length formula that accounts for all the information required to trans

mit rules of the form "If Y1 =a and Y2=b and ... then Xhas probability distribu

tion p(XIY1=a,Y2=b, ...)" 1 is obtained as follows:

L2 = (NRHs-1) log2(NE)
2

+ log2(NR)

NR

+L
j=l

(log2(N LHS,maJ

NE

nLHS,j

+ L (log2(Nv) + log2(nv,i))
i=l

+ L - log2(P(Xi,correct))
i = 1

Number of bits required to represent:

prior probabilities

number of rules

for each rule:

number of variables on
left-hand side (LHS)

index of each variable
and the corresponding value

probability distribution of
right-hand side (RHS)

corrections

As before, N E is the number of training examples. Among the N R rules,

N LHS,max is the maximum number of variables that occur on the LHS, n LHS,j is

the number of variables on the LHS of the jth rule, N v is the total number of

variables, n Vi is the number of possible values of the ith variable, and N RHS is

the number of possible values of the RHS variable.

1 Even though one can, in principle, use any Boolean LHS, Goodmanet al. (1992) chose to use
this particular form. The reasons for this choice are discussed in Section 2.3.

14

The formula for L2 accounts for sending the prior probabilities for the

RHS variable, the number of rules, and the LHS conditions and the RHS

probability distribution for each rule. Unfortunately, these terms produce

such a large increase2 in L2 for every rule which is added that it completely

overwhelms the decrease in the last term. Thus, when L2 was tested on a va

riety of data sets in the collection available from the University of California

at Irvine (UCI), the value of L2 never decreased, so the algorithm always ter

minated without choosing any rules. Since the algorithm using L2 never

chooses any rules, in what follows, MDL refers to the original algorithm

which uses LI .

In addition to the fact that the first term in LI is ad hoc, MDL has two

other undesirable properties. First, it does not provide any indication of how

well the classifier will perform on an independent set of test data. Without

this feature, one has no idea whether or not the classifier will actually work

in practice. In addition, MDL does not allow the user to specify a different

cost for each type of mistake.3 The relative costs of various errors are typically

encoded in the function, Fc' to be minimized4 so it rises more steeply when

an error is made whose consequences are more serious. MDL does not allow

any such flexibility, however.

2 Note that a large part of this increase results from attaching a complete probability dis
tribution to each rule instead of a single probability, as discussed at the end of Section 2.l.

3 A good example of the importance of specifying the relative costs of errors is the case of
medical diagnosis when a human life is at stake. It is far more serious to make a mistake tha t
leads to death than to make a mistake that causes the doctor to perform unnecessary but non
fatal procedures on the patient.

4 The function F c is often referred to as the cost function.

15

Cross validation, on the other hand, provides both of these features

(Breiman et al., 1984). When applied to ITRule, the basic principle is that one

can estimate the accuracy of any given algorithm for picking the rules gener

ated from a data set with N E examples by measuring the algorithm's accuracy

on each data set created by using N E-l examples for training and the last ex

ample for testing. When repeated for different algorithms, the one with the

best accuracy estimate is most likely to produce the best classifier when used

on all N E examples.s Thus, the desired accuracy estimate is automatically

computed, and it is easy to allow the user to specify the relative costs of vari

ous errors as long as one uses algorithms that provide this option.

During the course of the work presented in this thesis, two new algo

rithms for picking rules have been developed: cross validation combined

with steepest descent (CV -SD) and cross validation combined with the J

measure6 (CV-J). CV-SD replaces the MDL criterion with a user specified cost

function and then utilizes cross validation to determine the optimal number

of rules to pick. In contrast, CV -J merely picks the N R rules with the largest J

measures, with N R determined via cross validation. The pseudocode descrip-

tions of the original MDL algorithm and the new CV-SD and CV-J algorithms

are presented in Sections 2.1.3 through 2.1.5.

5 Provided, of course, that the models have the same Vapnik -Chervonenkis (VC) dimen
sion (Vapnik, 1995).

6 Refer to Section 2.2 for a discussion of the J-measure.

16

2.1.2. Speeding up the Minimum Description Length (MDL) and Cross

Validation with Steepest Descent (CV-SD) algorithms

The MDL and CV-SD algorithms are both based on steepest descent.

They are greedy because it is not feasible to consider all possible subsets of the

available rules. In order to further reduce the execution time, a simple

bound has been developed to reduce the number of rules that have to be con

sidered at each step.

When using MDL, the first term in Ll always increases by log2(N E)/2

when a rule is added, while the second term cannot decrease by more than

L1max,MDL = L - log2(p(xi,correct))
i E Sj

where Sj is the set of examples that satisfy the LHS of the jth rule. If one pre

calculates a matrix specifying which examples satisfy each rule, and one stores

an array of -log2(p(xi,correct)) for the current set of rules, then L1max,MDL can be

calculated very quickly, i.e., O(N R) additions, for each new candidate rule. If

the result is less than log2(N E)/20r the actual decrease caused by some previ

ously tried rule, then the rule can be ignored, thus avoiding the work of cal

culating the exact value of P (xi,correct) for each example.

A similar bound can be derived for CV-SD. Given a set of candidate

rules from which to choose and knowing the minimum value, Fcmint that ,

the cost function can attain, the maximum possible decrease that any particu

lar rule can cause is given by

dmaxCV-SD , L (Fc,i - Fc,min)
i E Sj

17

where Fe,i is the current value of the cost function for the ith example. If

L1 max,CV-SD is less than the actual decrease caused by some previously tried

rule, then the rule in question is not worth trying. Again, this can be com

puted with O(N R) additions. This is much faster than calculating the actual

decrease caused by the rule which requires using the full classification net

work on each example. Note that the idea behind this bound could be used

to provide a second bound for use by the MDL algorithm, but the one dis

cussed above is already sufficiently strong.

The experimental results confirming the effectiveness of these bounds

are shown in Tables 2.1 and 2.2. The fraction of rules that are rejected by the

bounds ranges from 5.5% to 99.4%. The lowest fractions occur when there are

a large number of examples, which increases the value of L1max by including

more terms in the summation, or when no single rule is able to significantly

lower the value of the description length or the cost function, so that even a

rule with a small value of L1max is worth trying. Conversely, the largest val

ues occur when a few rules that dramatically decrease the value of the de

scription length or the cost function are encountered early in the process, so

that for the rest of the rules, a very large value of L1max is required in order for

a rule to be worth trying.

The results shown in Tables 2.1 and 2.2 were generated by using only

simple rules with a single condition on the LHS. In the general case when

more specialized rules are also used, the bounds become even more effective.

There are far more specialized rules than simple rules, and a specialized rule

is more likely to be rejected than a simple rule. The reason is that a special-

18

ized rule usually applies to fewer examples, thereby reducing the number of

terms in the summation for d mar

Name of
topic

acq

bop

coffee

corn

cotton

Cpl

crude
dlr

earn

gnp

19

Effectiveness of the bound used in the
Minimum Description Length (MDL) algorithm

Training % rules Name of Training
set size rejected topic set size

80 5.5% gold 20
120 11.6% 30
20 19.8% grain 60
30 24.1% interest 60
20 15.3% money-fx 40
30 21.1% 60
20 22.9% 80
30 23.2% 80
20 23.7% 80
40 26.9% money-supply 40
20 29.1% oilseed 40
30 22.9% ship 40
60 26.7% soybean 20
20 25.0% 30
30 23.5% sugar 20
80 30.2% 30

120 20.3% trade 40
20 20.9% 60
30 18.7% wheat 20

30

% rules
rejected

28.8%
24.6%
21.3%
18.1%
14.8%
17.9%
13.4%
14.8%
13.3%
18.3%
17.8%
18.5%
17.0%
19.7%
21.5%
22.8%
28.7%
29.1%
25.5%
32.5%

Table 2.1: The percentage of rules rejected by the bound, L1max,MDLt presented
in Section 2.1.2. The values range from 5.5% to 32.5%. The data sets were
generated from the Reuters-21578 collection of news stories. The details of
this procedure are explained in Chapter 3.

20

Effectiveness of the bound used in the
Cross Validation with Steepest Descent (CV-SD) algorithm

Name of Training % rules Name of Training % rules
topic set size rejected topic set size rejected

acq 80 59.4% gold 20 99.4%
120 23.8% 30 99.4%

bop 20 98.0% gram 60 67.5%
30 97.6% interest 60 38.8%

coffee 20 98.9% money-fx 40 44.8%
30 99.4% 60 86.5%

corn 20 94.5% 80 31.3%
30 96.2% 80 49.7%

cotton 20 98.8% 80 45.0%
40 99.4% money-supply 40 90.0%

cpi 20 97.8% oilseed 40 88.7%
30 56.9% ship 40 88.9%

crude 60 98.3% soybean 20 99.4%
dlr 20 98.3% 30 93.3%

30 93.7% sugar 20 98.7%
earn 80 78.9% 30 97.9%

120 41.8% trade 40 41.3%
gnp 20 93.8% 60 23.1%

30 88.5% wheat 20 99.4%
30 92.8%

Table 2.2: The percentage of rules rejected by the bound, .1max,CV-SD, presented
in Section 2.1.2. The values range from 23.1% to 99.4%. The data sets were
generated from the Reuters-21578 collection of news stories. The details of
this procedure are explained in Chapter 3.

21

2.1.3. Pseudocode description of the improved MDL algorithm

T = set of training examples
Ntrain = number of training examples
Generate rules from T.

C = set of all candidate rules
(sorted by decreasing J-measure)

R = empty set
F = matrix of which rules apply to each example in T
LIST value of -log2(P(xi,correct)) for each example in T

using rule set R
CURRENT description length computed from LIST

Repeat until R stops growing
{
MIN
DELTA

CURRENT
log2(Ntrain)/2

For each RULE in C
{
Using F and LIST, calculate ~ax,MDL for RULE

If A > DELTA '"!nax,MDL

}

{
L = LIST
Using F, update L by re-classifying each example in T

to which RULE applies using RuRULE.
Using F, compute NEW_DELTA to be the sum of the changes

in the values of the elements of L.
V = description length computed from L
If V < MIN

}

{
MIN
DELTA
BEST_RULE
BEST_LIST
}

=V
= NEW_DELTA

RULE
L

If BEST_RULE was assigned
{
Move BEST_RULE from C to R.
CURRENT MIN
LIST BEST_LIST
}

}

R now contains the final set of rules.

22

2.1.4. Pseudocode description of the new CV-SD algorithm

J:iIMAX = maximum number of rules to consider
CV = list of J:iIMAX zeros
T = set of training examples
For each example E in T

{
Tl = T with E removed
Call DESCENT with N=NMAX and S=Tl to get contents of CVl.
Add each element of CVl to the corresponding element of CV.
}

BEST = index of minimum element in CV
Call DESCENT with N=BEST and S=T to get final set of rules
(contents of R) .

23

Subroutine DESCENT
{
S = set of training examples
E = validation example
Generate rules from S.

C

R =
F =
CVl

set of all candidate rules
(sorted by decreasing J-measure)

empty set
matrix of which rules apply to each example in S
empty list

LIST = cost of classifying each example in S using rule set R
sum of values in LIST CURRENT

Repeat N times
{

}

MIN
DELTA
BEST_RULE =

CURRENT
o
first rule in C

For each RULE in C
{
Using F and LIST, calculate ~,CV-SD for RULE

If ~,CV-SD > DELTA

}

{
L = LIST
Using F, update L by re-classifying each example in S

to which RULE applies using RuRULE.
V = sum of values in L
If V < MIN

}

{
MIN
DELTA

=V
= CURRENT - MIN

BEST_RULE = RULE
}

Move BEST_RULE from C to R.
Update CURRENT and LIST to match new R.
Append the result of classifying E using R to CVl.
}

24

2.1.5. Pseudocode description of the new CV -J algorithm

NMAX
cv

= maximum number of rules to consider
= list of NMAX zeros

T set of training examples

For each example E in T
{
Tl = T with E removed
Generate rules from Tl.

C = set of all candidate rules
R = empty set
CVl = empty list

Repeat NMAX times
{
Move rule with highest J-measure in C to R.
Append the cost of classifying E using R to CVl.
}

Add each element of CVl to the corresponding element of CV.
}

N = index of minimum element in CV
Generate rules from T.
Keep N rules with highest J-measure.

25

2.1.6. Upper bounds on the computational complexities of the MDL, CV-SD,

and CV-J algorithms

Upper bounds7 on the amount of time required for each algorithm to

finish are given by the following expressions:

TMDL = Tgen + NMDL N gen Ntrain (Tc + TDd

TCV-SD = (Ntrain + 1) (Tgen + N max N gen Ntrain (Tc + Tcost))

Tcv-J = Ntrain (Tgen + N max (Tc + Tcos t)) + Tgen

where N train is the number of training examples, Tgen is the time required to

generate rules from the training data (see Section 2.3), N gen is the number of

rules that the user wants generated, N MDL represents the number of times the

outer loop of the MDL pseudocode executes, N max is the parameter from the

CV-SD and CV-J pseudocode whose value is specified by the user, T c is an

upper bound on the time required to classify an example, T DL is an upper

bound on the time required to compute the description length once an exam

ple has been classified, and Tcos t is an upper bound on the time required to

evaluate the cost function, FCI once an example has been classified. Typically,

one sets N max ~ 102 and N gen ~ 103 to help keep the run time reasonable. It is

not worth the effort to even attempt to write down an expression for N MDL

since it depends on the statistics of the training data in such a complicated

way. However, in all the experiments performed for this thesis, the value of

N MDL was always significantly less than 102 .

Even with these simple approximations, it is clear from the above ex

pressions that CV-J is significantly faster than CV-SD, because CV-J lacks the

factor N gen and only has one factor of N train in front of (T c+ T cost). MDL is sig-

7 Appendices 2-A through 2-D provide the exact expressions.

26

nificantly faster than CV -J, however, because MDL lacks the term N train T gen-

2.1.7. Experimental comparison of the run times of the MDL, CV-SD, and

CV -J algorithms

Figure 2.2 depicts measured run times of the MDL algorithm. Also

shown is a solid line with the slope of the quadratic, Nt;ain. The MDL run

time has approximately the slope of N t;ain, rather than the slope of N traint be

cause N MDL tends to increase with the number of training examples. There is

clearly no simple relationship between N MDL and N traint however. This was

demontrated by one experiment where three different sets of 80 training ex

amples were used, and the resulting values of N MDL were 4, 6, and 8.

The data plotted in Figures 2.3 and 2.4 confirm that the run time of the

CV-SD algorithm increases quadratically with the number of training exam

ples, while the run time of the CV-J algorithm is a linear function of N train-

The results presented in Tables 2.3 through 2.6 illustrate the relative exe

cution speeds of the three algorithms and demonstrate the effectiveness of

the optimizations discussed in Appendices 2-A through 2-D. The data sets

that were used were generated from the Reuters-21578 collection of news sto

ries. The details are discussed in Chapter 3. Here, the only relevant facts are

that N gen = 200 for all three algorithms8
, N max = 50 for CV-SD, and N max = 200

for CV-J. The value of T DL was negligible when compared with T c because

modern CPU's have hard-wired circuitry for computing logarithms. The

value of Tcos t was also negligible because the cost function was simply a ma-

8 There were 100 Boolean input variables, and only rules of the form "if x is true, then ... "
and "if x is false, then ... " were considered, where x represents a single input variable. Thus,
setting N gen = 200 did not exclude any rules at all.

27

trix of constants specifying the cost of each possible mistake.

It is important to note that in all the above results, the time required to

generate the rules, represented by Tgen in Section 2.1.6, was excluded because

that analysis was presented in Randy Spangler's thesis (Spangler, 1999).

2.1.8. Experimental comparison of the accuracies of the MDL, CV-SD, and

CV -J algorithms

Detailed results comparing the performances of the MDL, CV-SD, and

CV-J algorithms are presented in Chapter 3. Here it is only important to note

that CV-J was significantly more accurate than both MDL and CV-SD on the

data sets which were tested, and that the MDL and CV -SD algorithms had ap

proximately the same performance.

2.1.9. The sensitivities of the MDL, CV-SD, and CV-J accuracies to the choice

of adjustable parameters

The only adjustable parameter in the MDL algorithm is N gew The CV

SD and CV-J algorithms depend on both N gen and N max.

All three algorithms operate on the N gen rules with the highest J

measure (see Section 2.2). The algorithms are only sensitive to the value of

N gen when it is small so that potentially useful rules are discarded. If the

value of N gen is set large enough to discard only rules that are certain to be

useless, then the exact value will not affect the accuracy of the resulting classi

fier. As mentioned in Section 2.1.6, N gen is typically of the order of 103. In all

the experiments where N gen caused rules to be discarded, none of the algo

rithms picked rules near the bottom of the list of remaining rules. This indi-

28

cates that keeping the top few thousand rules is sufficient. Using significantly

more would only slow down the computations.

The same argument is applicable to N max for the CV-SD and CV-J algo

rithms. When using the values of N max presented in Section 2.1.7, both CV

SD and CV-J always chose significantly fewer than N max rules. Since these al

gorithms search for the minimum misclassification cost, this shows that the

minimum is achieved by using only a few rules from the top of the list of

input rules, so appending more rules to the end of the list would have no ef

fect.

2.1.10. Extrapolating from the training data

As with all other classification results obtained from a limited number

of training examples, one should not expect ITRule to provide accurate an

swers when it has to extrapolate, i.e., when the value of a variable falls out

side the range of the training data. In order to guard against this situation,

the latest implementation of ITRule warns the user about each variable

whose value is out of range. In such cases, the user must make the final deci

sion whether or not to trust the result.

29

Adjusted run time of the MDL algorithm

•
+

100 --r.Il
"'d
C
0
u
(U
r.Il

'--'
(U

S
C
;:::l

p:::
10

50 100 200 400

Number of Training Examples (N train)

Figure 2.2: The discrete points show the adjusted run times of the MDL algo
rithm as a function of the number of training examples. The solid line has
the slope of Nd"ain. As discussed in Section 2.1.7, the data appear to fit a
quadratic instead of a linear function of N train because N MDL tends to increase
along with N train- The run times were adjusted to remove the effect of

L1max,MDV since the percentage of rules that this bound rejects varies, as shown
in Table 2.1.

..--..
CfJ

'"d
~
0
u
(J)
CfJ

'--'
(J)

S
~
;:::l
~

10000

3000

1000

30

Adjusted run time of the CV-SD algorithm

40 60 100

Number of Training Examples (N train)

Figure 2.3: The discrete points show the adjusted run times of the CV -SD al
gorithm as a function of the number of training examples. The solid line has
the slope of Nd"ain. By comparing the data points and the line, it is evident
that the CV -SD run time is approximately proportional to N t;ain. The run

times were adjusted to remove the effect of L1max,CV-SD, since the percentage of
rules that this bound rejects varies dramatically, as shown in Table 2.2.

31

Run time of the CV-J algorithm

30

.--..
rJ:J

'"0
~
0
u
Q)
rJ:J --Q)

S 10
4-'

~
;:l

0:::

5

50 100 200 400

Number of Training Examples (N train)

Figure 2.4: The discrete points show the measured run times of the CV -J al
gorithm as a function of the number of training examples. The solid line has
the slope of N train- By comparing the data points and the line, it is evident
that the CV-J run time is approximately proportional to Ntrain-

32

Run time Measured Upper bound Speed increase
(seconds) speed rei a- on speed rela- from opti-

tive to CV-J tive to CV-J mizations

MDL 1.49 0.58 2 3.45
CV-SD 6.92 2.68 1000 373.13

CV-J 2.58

Table 2.3: A comparison of run times on a data set generated from articles
dealing with the international balance of payments (referred to as "bop" in
Reuters-21578). For this data set, N train=20, and the computer run yielded
N MDL = 2. The increase in speed due to optimizations includes the effect of
the bounds discussed in Section 2.1.2. The other optimizations are discussed
in Appendices 2-Aand 2-B.

Run time Measured Upper bound Speed increase
(seconds) speed rela- on speed rela- from opti-

tive to CV-J tive to CV-J mizations

MDL 4.68 0.66 2 3.03

CV-SD 2981.67 418.19 3000 7.17

CV-J 7.13

Table 2.4: A comparison of run times on a data set generated from articles
dealing with trade (referred to as "trade" in Reuters-21578). For this data set,
N train=60, and the computer run yielded N MDL = 2. The increase in speed due
to optimizations includes the effect of the bounds discussed in Section 2.1.2.
The other optimizations are discussed in Appendices 2-Aand 2-B.

33

Run time Measured Upper bound Speed increase
(seconds) speed rela- on speed rei a- from opti-

tive to CV-J tive to CV-J mizations

MDL 13.5 1.44 5 3.47
CV-SD 2703.29 288.81 4000 13.85

CV-J 9.36

Table 2.5: A comparison of run times on a data set generated from articles
dealing with corporate acquisitions and mergers (referred to as "acq" in
Reuters-21578). For this data set, N train=80, and the computer run yielded
N MDL = 5. The increase in speed due to optimizations includes the effect of
the bounds discussed in Section 2.1.2. The other optimizations are discussed
in Appendices 2-A and 2-B.

Run time Measured Upper bound Speed increase
(seconds) speed rei a- on speed rei a- from opti-

tive to CV-J tive to CV-J mizations
MDL 21.85 1.54 5 3.25
CV-SD 11126.55 785.22 6000 7.64

CV-J 14.17

Table 2.6: A comparison of run times on a data set generated from articles
dealing with corporate earnings (referred to as "earn" in Reuters-21578). For
this data set, N train=120, and the computer run yielded N MDL = 5. The in
crease in speed due to optimizations includes the effect of the bounds dis
cussed in Section 2.1.2. The other optimizations are discussed in Appendices
2-Aand 2-B.

34

2.2. Data exploration

The idea of using rules to represent information has been around for a

long time. When the goal is to extract information from raw data, the prob

lem is to decide which rules to keep out of the very large set of all rules gen

erated from the data (see Section 2.3). In his thesis, Smyth suggested picking

the rules with the largest J-measures (Smyth, 1988). For the probabilistic rule,

"If y is true, then x is true with probability p(x Iy)," the J-measure calculates

how much useful information the rule provides about the raw data. This is

done by combining the probability of the LHS (y) and the Kullback-Liebler dis

tance (Cover and Thomas, 1991) between the rule probability and the prior

probability of the RHS (x) in the following way:

J = p(y) D(p(x I y) II p(x)) = p(y) (P(X I y) lojp(x I y)) + (1 - p(x I y)) loj1 - p(x I y))) b\ p(x) b\ 1 - p(x)

The J-measure ranks a rule highly if its LHS is satisfied relatively often,

i.e., when p(y) is large, and the rule provides new information about the

RHS, i.e., when p(x Iy) is different from p(x). This gives a low rank to rules

that are unlikely to apply or that predict what is already known.

The originalITRule algorithm only printed a list of rules sorted by their

J-measures. There is, however, quite a bit more that can be done to help the

user make sense of raw data. In particular, the new version of ITRule pro

vides additional information about the data, helps the user clean the data by

locating missing values and unnecessary variables, and provides additional

methods of organizing the final set of rules beyond merely sorting them by

their J-measures.

35

2.2.1. Correlations between variables

Let xi and Yj represent particular values of the variables X and Y, respec

tively. Correlations between the mutually exclusive values of X and Y can

then be presented in the form "X=xi ¢:::> Y=Yj with probability p." This ap

proach exposes the simplest relationships hidden in the data and can be use

ful during the first stage of data exploration when the user is searching for an

initial understanding of the problem.9 If one defines 51 and 52 to be the sub

sets of examples where X=xi and Y=Yj' respectively, then the probability is ob

tained from:

151 (\ 52 1 p = --'--------'---
151 U 52 1

Correlations are usually only interesting when p is close to one. The

new version of ITRule allows the user to set a threshold on p so correlations

below the threshold are not reported. One can visualize the set of all correla-

tions as an undirected graph where each node represents a statement, e.g.,

X=Xj, and each edge represents an interesting correlation. As illustrated in

Figure 2.5, by introducing a third dimension, the strength of each correlation

can be indicated by the height of the edge above the base plane. The thresh

old is then a horizontal plane at a particular height. All edges below this

plane are ignored.

Unlike in Boolean logic, probabilistic correlations are not transitive.

This can be seen in the example in Figure 2.5 where X=xi is correlated with

Y=Yj' and Y=Yj with Z=zk, but X=Xj is not considered to be correlated with Z=zk

(as indicated by the dashed edge) because it is below the threshold.

9 Correlations can also be used to clean the data, as discussed in Section 2.2.2.3.

Correlation
strength

100%

Threshold

0%

36

Figure 2.5: Example illustrating correlation strengths

Z=Zk
Y=y. 1-1 ------I

X=Xi rIJ __________ ,

I

w

Figure 2.6: Venn diagram with three equal intervals displaced laterally

37

A lower bound on the strength of "X=xi ¢:} Z=zk'" represented byp xz, can

be derived from the strengths of "X=xi ¢:} Y=y/' and "Y=Yj ¢:} Z=zk," represent

ed by PXy and pyZ' respectively. As an example, if one assumes that the last

two strengths are equal, and that all three statements have the same number

of supporting examples, then the minimum possible overlap between the ex

amples satisfying X=xi and Z=zk is illustrated by the one-dimensional Venn

diagram shown in Figure 2.6. Since all three intervals have width w, and the

overlaps between X=xi and Y=Yj and between Y=Yj and Z=zk are both w-.<1, one

has:

w-.<1
P = PXy = PYZ =

w+.<1

which yields:

w =
l+p

.<1 1-p

Since the overlap between X=xi and Z=zk is w-2.<1, the lower bound on

p xz is therefore

1 + P -2
w - 2.<1 1-p 3p -1

Pxz = = =
w + 2.<1 1+P+2 3-p

1-p

The upper bound on p xz is obviously 1. This occurs when the three sets

depicted in Figure 2.6 are perfectly aligned, i.e., when .<1 = O.

38

2.2.2. Cleaning the data

There are many ways that data can be cleaned. The particular tasks with

which the new ITRule can help are detecting noise in the form of missing

values or irrelevant variables and detecting redundant variables that can be

eliminated.

2.2.2.1. Detecting missing values in the data

Missing information can easily arise in practice due to human errors In

data entry, e.g., in medical records, insurance claims, etc. These missing val

ues can always be treated simply as noise. However, the new version of

ITRule also provides the option to generate rules specifically about the miss

ing data. This feature may help the analyst identify the problems that are

causing the values to be absent in the first place so that these data acquisition

problems can be corrected.

2.2.2.2. Identifying irrelevant variables

A variable is defined to be noise if there is no significant correlation be

tween it and any of the other variables. In terms of probabilistic rules, this

translates into the statement that if the variable is used on the RHS of a rule,

then the rule's probability is the same as the variable's prior probability re

gardless of the rule's LHS. Since the Kullback-Liebler distance is the appropri

ate measure of the difference between probabilities, a variable is noise if all

rules with that variable on the RHS have a low J-measure. Thus, by using

the J-measure, ITRule can automatically detect irrelevant variables as long as

sufficient data are available to calculate accurate probabilities.

39

Unfortunately, one must sometimes work with data sets that have rela

tively few examples. When data points are scarce, the statistics become less

accurate, and it is therefore more likely that ITRule will compute a large J

measure for a rule that does not actually provide any information.

As an example, consider the situation where two variables, x and Y, are

independent. Let the prior probability distribution of x be p(x). When x is

conditioned on a particular value of Y, the true distribution is still p(x), but

the distribution computed from the data is likely to be at least slightly differ

ent. One can think of the examples that support p(x IY=YI) as having been

drawn without replacement from the pool of all examples. Since x and yare

independent, the probability distribution that controls the sampling is p(x).

This situation is illustrated by the simple example in Figure 2.7.

All examples: Examples where Y = YI:

x2
x2 x2 X2

Xl Xl Xl x2 x2 x2

NI samples N2 samples MI samples M2 samples
of Xl of x2 of Xl of x2

Figure 2.7: The two bins on the left contain all the available samples of x.
Thus, the prior probabilities of x, i.e., P(x=xI) and P(x=x2), are N I /(N I +N 2)

and N 2/(N I + N 2), respectively. The two bins on the right-hand side of the fig
ure contain the samples of X where Y=YI. The corresponding conditional
probabilities are

40

When the probability distribution associated with the rule "if Y=YI' then

x" is significantly different from p(x), then ITRule will report that the rule is

interesting. In principle, one could provide an indication to the user of

which such rules are likely to be spurious by estimating the probability of ob

taining a Kullback-Liebler distance, D, greater than the observed value, Dabs'

under the hypothesis that x and yare independent. If this probability is small

enough (e.g., 5%), then one could assume that the rule is not spurious.

For the case depicted in Figure 2.7, let N =N I +N 2 and M=MI +M2 . If one

assumes that N is large enough so that one never runs out of examples in ei

ther bin, i.e., that M <min(N I,N 2), then one can treat the sampling as a se

quence of Bernoulli trials. The probability of drawing xl is therefore p=N I IN,

while the probability of drawing x2 is I-p =N 2 IN. The probability of drawing

MI samples of xl and M2 samples of x2 is given by the Binomial distribution:

In the case when M~min(N I,N 2), one can run out of examples in one of

the bins. This complicates the calculation significantly, so it is best done n u

merically on a computer rather than analytically. Regardless of how one

computes P(MI), however, one obtains the desired probability for a given

value of M from

Prob[D> Dabs] = L P(MI)
M1: D(M1) > Dobs

where

(MI) (M -MI)
D(MI) = MI log M + M -MI log M

M P M I-p

41

Generalizing this derivation to the case where x has more than two pos

sible values is straightforward. Note that the maximum value of P(M l) oc

curs when D(M l) is zero. The situation is similar to testing hypotheses with a

Gaussian distribution. In fact, in the limit when N is large, the exact

Binomial distribution can be approximated by a Gaussian distribution with

mean M p and variance M p(l-p). Of course, in this limit, one has enough ex

amples that the above calculations are unnecessary. However, the Gaussian

approximation may be useful for obtaining estimates of the probabilities even

when the value of N is only moderately large.

There is one theoretical and one practical problem with the above ap

proach. The theoretical complication is that the more often one repeats a sta

tistical test, the more likely it becomes that the test will give the wrong an

swer at least once. One solution to this difficulty is the Bonferroni method

presented by Bay and Pazzani (1999). Unfortunately, the practical problem ap

pears to be insurmountable. The time required to calculate P(M l) when

M~min(N 1,N 2) is exponential in M since one has to consider separately each

way of obtaining Ml samples of xl and M2 samples of X2. This makes the en

tire approach unfeasible.

2.2.2.3. Using correlations to discard redundant variables

The new correlation feature discussed in Section 2.2.1 can also be used to

clean the data. If one finds that every value of one variable is correlated with

a different value of another variable, then one should consider discarding

42

one of them.lO This will reduce the time required for ITRule to consider all

possible rules because the execution time is an exponential function of the

number of variables (see Section 2.3). It is not appropriate for ITRule to auto

matically search for redundant variables, however, because there might be

values that are not present in the data or there might not be enough exam

ples to justify some of the correlations. It is a judgment that the user must

make. As a guideline, if X and Y have the same number of possible values,

and there is a one-to-one correspondence between them, then either X or Y

can be discarded. If X has N x possible values, Y has Ny possible values,

N x>N y, and Ny of the possible values of X each has a one-to-one correspon

dence with one of the values of Y, then X should be discarded since it has val-

ues that are unused. (It is impossible for two values of X to both be correlated

at a level above 50% with one value of Y since the values of X are mutually

exclusive.) These cases are illustrated in Figure 2.8.

Discard X or Y Discard X (x2 is unused)

X Y

Figure 2.8: When two variables are fully correlated, one can be discarded

10 One could simply calculate the mutual information between the variables (Ezawa and
Schuermann, 1995), but this single value does not reveal the underlying structure of how the
variables are related. The Markov blanket algorithm presented by Koller and Sahami (1996)
also has this problem. John et al. (1994) provides a good overview of some of the other auto
mated algorithms.

43

2.2.3. Identifying significant rules

One can generate a nearly unlimited number of different rules from a

given set of data (see Section 2.3). Without a way to filter and organize these

rules, however, this merely replaces the problem of studying a large quantity

of raw data with the problem of studying a large number of rules. The new

version of ITRule includes several features that can assist the user in dealing

with this problem.

The original version of ITRule sorted the rules by their J-measures and

discarded all rules with J-measures below a user specified threshold (Smyth,

1988). The actual value of the J-measure is probably meaningless to most

users, however. The new version of ITRule therefore replaces the threshold

on the J-measure with a threshold on the minimum number of examples to

which a rule applies, i.e., the rule's support.

The new version ofITRule also displays the likelihood ratio, p(x Iy)/p(x),

for each rule. While it may be difficult to decide whether or not a rule with

probability 0.3 is important, it is clear that a rule with likelihood ratio 10 is

quite interesting because conditioning on the LHS makes the RHS ten times

as likely to be true.

2.2.3.1. Discarding subsumed rules

In addition to the simple rule selection tools discussed above, ITRule

also has a filter that is based on the concept of subsumption. This is a gener

alization of the J-measure. The justification for discarding rules that have

low J-measures is that these rules do not provide sufficient information be

yond that of the prior probabilities, i.e., the simplest possible rule.

44

Subsumption extends this concept by using the Kullback-Liebler distance to

discard rules that do not provide any information beyond that of all simpler

rules. As an example, the analysis of a data set might yield the following four

rules for the condition x:

R1: For the entire data set, x is true with probability PI

R2 : For the subset of examples where y is true,
x is true with probability P2

R3: For the subset of examples where z is true,
x is true with probability P3

R 4 : For the subset of examples where y and z are true,
x is true with probability P 4

Here, rule R2 is discarded if the difference between PI and P2 is not con

sidered significant. The same applies to R 3 . If R2 and R3 are discarded, then

R4 is discarded if P 4 is close to Pl· If R2 is kept, however, R4 is discarded if P 4

is close to P2 but is set aside in a separate list of rules if P 4 is sufficiently differ

ent from P2 but close to Pl. (The equivalent action is taken if R3 is kept.) The

reason for the separate list is that some users consider R4 to be just as interest

ing as R2 because it tells them that combining the two conditions y and z

changes the probability of x, while others feel that R4 is only of secondary in

terest since P 4 is close to Pl. By presenting two lists of rules in a situation like

this one, ITRule allows the user to first grasp the main ideas by studying the

first list and then look for subtleties by examining the second list.

Since the actual values of the Kullback-Liebler distance are meaningless

to most users, the condition "close" is specified as a fraction of the maximum

Kullback-Liebler distance between any two rules. Aggressive filtering might

45

use 0.5, while conservative filtering might use 0.1.

2.3. Generating rules

So far, the discussion has ignored the issue of how to generate the rules

that are used by the algorithms for classification and data exploration because

these algorithms are independent of how the rules are generated. Any set of

probabilistic rules can in principle be used. In his thesis, Smyth presented an

algorithm that, given a set of discrete valued variables, computes the proba

bility for each possible conjunctive rule of the form "If Yl=a and Y 2=b and ...

then X=xt (Smyth, 1988; Smyth and Goodman, 1992). (The number of terms

on the LHS is called the rule's "order.") Unfortunately, there are two serious

problems with this approach. The first is the restriction that the variables

cannot be continuous, numeric variables. This is unavoidable, as discussed

in the next section. The second problem is the computational complexity of

the algorithm. If there are N variables available for use on the LHS, and the

ith one has n i possible values, then the number of possible rules is given by:

(,~ (ni + 1))-1
The reason is that each of the N variables either takes one of its ni values or

is excluded, and the single case with all variables excluded is not relevant.

Even in the case of only 20 Boolean variables, there are over 3 billion possi

bilities. The solution is to switch from a possibility driven algorithm to a

data driven algorithm, i.e., only the rules that are actually supported by the

data should be considered. This is the basis for the SpanRule algorithm

(Spangler, 1999) which is used in the current implementation of ITRule.

46

However, this algorithm is unfortunately not fast enough either, when it

comes to generating all the supported rules in a reasonable amount of time.

The reason is that even though the algorithm is only O(n log2(n)) in the

number of examples and does not depend significantly on the number of val

ues for each variable, it is still exponential in the number of variables.

ITRule therefore only generates rules from the first order up through some

maximum rule order specified by the user, typically two or three. Since low

order rules also have the largest support, this provides the additional benefit

of generating only the rules that are most likely to have a large J-measure.ll

In addition, since the classification algorithm does not place any restrictions

on the form of the LHS that can be used12
, ITRule allows the user to enter ar-

bitrary Boolean expressions to be considered along with the rules that are au

tomatically generated.

2.4. Quantizing numeric variables

As discussed in the previous section,ITRule can only generate rules for

variables with a limited number of discrete values. Thus, numeric variables

must be quantized before they can be used. This is a fundamental problem

with all probabilistic approaches. Since each particular value of a continuous,

numeric variable is by itself very unlikely to occur, one must consider ranges

of values in order to get enough examples to generate accurate probabilities.

Of course, it also makes intuitive sense that only ranges should matter, not

exact values. Clearly, trying every possible quantization is far too time con-

11 Note that cleaning the data by removing redundant variables also reduces the run time.
This is discussed in Section 2.2.2.3.

12 The subsumptionalgorithm (see Section 2.2.3.1) requires that every LHS be a specializa
tion of some other, simpler LHS.

47

suming. This section therefore presents the theory behind Minimal Entropy

Partitioning (MEP), a newly developed algorithm for obtaining a useful quan-

tization.

The most general method for scalar quantization is first to transform the

examples by passing a subset of the available variables through a function

f: 9\Nv --7 9\ and then to determine an ordered set of breakpoints, b2 < b3 < ... <

bNI, that separate the real number line into intervals [b i, bi+1), with b1 = - 00

and bNI+1 = + 00. The index of the interval containing an example becomes

the value of the new discrete variable for that example.

Ideally, the examples in an interval will all belong to the same class, as

illustrated in Figure 2.9. In practice, however, this is usually not possible.

Instead, one can only attempt to maximize the homogeneity of each interval

by adjusting its breakpoints to minimize the entropy of the examples that it

contains, as illustrated in Figure 2.10. Since decreasing the entropy of one bin

may increase the entropy of the adjacent bins, it is necessary to minimize the

weighted sum of the entropy of all the bins, H total, which is given by:

NJ

H '" Ni HI' total = £...
i=l NE

Nc

Hi = - L pi,e log(Pi,c)
e=l

Pi,e

Here, N I is the number of intervals, N e is the number of classes, N E is

the total number of examples, N i is the number of examples in the ith inter

val, and N i,e is the number of examples in the ith interval that belong to class

48

c. Adjusting all the breakpoints between intervals to minimize the value of

Htotal yields the optimal quantization for a given N I. The factor N /N E en

sures that nearly empty, mixed bins do not overwhelm the contribution of

large, nearly homogeneous bins.

An existing algorithm called Recursive Minimal Entropy Partitioning

(RMEP) (Dougherty et al., 1995) uses this idea in a way that is similar to grow

ing a decision tree. It begins by placing a single breakpoint (N I = 2) and then

recursively applies itself to each newly created interval. The Minimum

Description Length (MDL) principle is used to stop the process before it cre-

ates a separate interval for each example. As with decision trees, the process

does not backtrack, so if the first breakpoint is poorly chosen, the effort is

doomed. The new MEP algorithm avoids this problem by simultaneously ad

justing all the breakpoints (via any minimization algorithm) when N I> 2.

While this is guaranteed to always be able to do at least as well as RMEP, since

the search space for MEPis larger, MEPhas the disadvantage that the number

of intervals is not determined automatically. In order to avoid the problem

of choosing a single quantization, ITRule has been modified to allow multi

ple quantizations of the same variable to be specified and to automatically en

sure that only one quantization of a variable is used in a particular rule. This

allows all the quantizations that appear promising to be tried

simultaneously.13

In addition, MEP has the advantage that it can optimize the transforma

tion f at the same time that it adjusts the breakpoints. It simply asks the

minimization algorithm to treat the parameters of f as additional values to

13 This also allows oneto try entirely different algorithms for quantization. Doughertyet
al. (1995) and Kohavi et al. (1997) have, for instance, shown that using ten equally wide inter
vals often performs surprisingly well.

49

be optimized. This expands the search space for MEP even further, again en

suring that MEP will be able to do at least as well as RMEP as long as MEP does

not get stuck in a local minimum.

In the simplest case, f is the scalar identity transform, producing the

value of a single, numeric variable. In multi-dimensional problems, howev

er, the optimal decision boundaries are usually not parallel to any of the axes

and are often not even linear. Thus, f typically combines several or even all

of the variables. If one wishes to enforce linear decision boundaries, one

must use a linear combination of the variables. Otherwise, one could use a

two layer neural network to provide an arbitrary, non-linear transformation.

It should be noted that if all the data variables are continuous, then MEP

provides a complete classifier for a discrete class variable if one uses an algo

rithm such as cross validation to determine the optimal number of break

points. On the other hand, if one has a mixture of discrete and continuous

data variables, then ITRule should be used to take into account the additional

information provided by the discrete data variables. In addition, it may not

be appropriate to combine all the numeric data variables into a single trans

formation. The final result will be much easier to understand if one uses

several transformations, each combining only related variables, instead of a

single transformation that produces values to which even the experts cannot

assign any meaning, as is sometimes the case when using a single neural net

work.

50

2.4.1. A comparison of the Minimal Entropy Partitioning (MEP) and

Recursive Minimal Entropy Partitioning (RMEP) algorithms

Two simple experiments were performed to compare the performance of

MEP and RMEP. First, a fully separable, one-dimensional data set was created

as shown in Figure 2.9. The letters 0 and x represent data points belonging to

two different classes, and the carets (A) indicate the optimal breakpoint loca

tions. The RMEP algorithm stopped after placing only the left breakpoint.

When instructed to use two breakpoints, MEP correctly placed both of them.

When only one breakpoint was requested, MEP correctly stated that the left

and right positions were the two best choices.

The second experiment used the one-dimensional data set shown in

Figure 2.10 to test the case where the data is not fully separable. In this case,

the carets indicate the Bayes-optimal breakpoint locations. This time, RMEP

also stopped after placing only one breakpoint. In this case, however, it did

not even place it in an optimal location. Instead, it placed it between the

third and fourth data points from the left. MEP, on the other hand, correctly

placed breakpoints at the Bayes-optimal locations when instructed to use two

breakpoints. Moreover, when told to use only one breakpoint, MEP correctly

stated that the positions of the two carets were the best choices.

Even though these two examples are quite simple, they clearly demon

strate that MEP can produce significantly better results than RMEP.

51

oooooxxxxxxxxxxooooo
/\ /\

Figure 2.9: Separable data set for comparing MEP and RMEP. The carets indi
cate the locations of the optimal breakpoints.

oooxoxoxxxxxxoxoxooo
/\ /\

Figure 2.10: Non-separable data set for comparing MEP and RMEP. The
carets indicate the locations of the Bayes-optimal breakpoints.

52

2.4.2. The Minimal Entropy Partitioning (MEP) algorithm

This section presents the details of the MEP algorithm. For computa

tional reasons discussed in the next section, MEP does not use the actual

Shannon entropy function (Cover and Thomas, 1991). Instead, MEP mini

mizes the function F, defined as follows:

F =

Gi =

qi,c =

Mi =

mi,c =

NT

L Mi Gi
i=l NE

Nc 1 {4 2
1 L ql,C

Nc- 1 C = 1 4 (1 - qi,c)2

mi,c

Mi

Nc

L mi,c
c=l

L mi(Yj)
Yi E class c

O 2 1 <q. <-
- I,C - 2

1 2 1 -< q. :::; 2 I,C

Here, N c is the number of classes, N E is the number of examples, and N I

is the number of intervals. As discussed in Section 2.4, Yj can be either the

value of a single data variable or a transformation of several data variables.

m i(Y) is called the interval membership function. It has the shape shown in

Figure 2.11. Any function with this shape can be used as long as it is differen

tiable at all points. One simple example is:

53

t (Y - ;~- b)) bi - 8 < y < bi + 8

1 bi + 8 -::; Y -::; bi+ 1 - 8

t ((h i+1 ~ : - y)

o everywhere else

t(y) = 3 y2 - 2 y3

Here, 8 is an adjustable parameter that determines the width of the tran

sition regions in Figure 2.11. The choice of an appropriate value for 8 is dis

cussed in the next section. RMEP implicitly uses this function with 8=0 when

it computes the entropy of the examples in each interval. One can apply MEP

in this case, but only if one uses a minimization algorithm that does not re

quire continuity, e.g., simulated annealing (Corana et al., 1987) or a simplex

algorithm (NeIder and Mead, 1965). In this case, F will not be continuous be

cause it remains constant while a breakpoint moves within the interval be

tween two adjacent examples and changes abruptly when the breakpoint

passes an example. By setting 8>0, F becomes differentiable, thereby allowing

it to be minimized via gradient based algorithms.

2.4.3. Analysis of the function, F, minimized by the Minimal Entropy

Partitioning (MEP) algorithm

In the definition of F presented in the previous section, q and G are used

instead of p and H, respectively. This was done to indicate that qi,c and Gi do

not represent the real probabilities and entropies. However, q becomes a

54

probability in the limit when 8=0. (It should be noted that even when 0>0, 0

~ qi,c ~ 1 and Lc qi,c = 1.)

The entropy, H, is not used in the definition of F because it causes F to be

concave down, as illustrated by the example in Figure 2.13 for the case of one

breakpoint. This shape places the minima in narrow valleys which can dra

matically increase the time required for gradient based algorithms to find a

minimum. In addition, the slope of F becomes infinite as the value of F ap

proaches zero, again due to the shape of the entropy function. (The data set

used to generate this surface is marked above the graph using "0" and "x" to

represent the two different classes.) G is therefore concave up as shown in

Figure 2.12. This places the minima in wide basins that are much easier to

find, as shown in Figure 2.14. The cusp in G can be smoothed out, as demon

strated by the graphs of Gs in Figure 2.12 and F in Figure 2.15, but experiments

have shown that this is not necessary because gradient descent always moves

away from any sharp edges caused by the cusp, so the lack of differentiability

does not cause problems. In addition, the cusp does not introduce any in

finite slopes. Briefly stated, G causes problems in regions that are avoided by

minimization algorithms, while H presents difficulties in the region directly

surrounding the minimum.

It is important to note that the graphs in Figures 2.13 through 2.15 were

generated by choosing 8to be wider than the distance between adjacent exam

ples. If this is not done, F will have the shape of a staircase function as illus

trated in Figure 2.16. Even though this surface is differentiable at every point,

it is perfectly flat between examples, so gradient descent will not work.

55

In the typical case of overlapping class distributions, F also has many

local minima when 8 is of the order of the distance between adjacent exam-

ples. This is illustrated in Figure 2.17. Setting 8 much larger than the dis

tance between adjacent examples can eliminate these spurious minima with

out changing the position of the global minimum, as shown in Figure 2.18.

This case also demonstrates another problem with using the entropy, H, in

stead of G. As Figure 2.19 shows, the minimum of F is not at the Bayes

optimal location because H(y) rises so rapidly near y=O that when the break

point starts at b=25 in Figure 2.19 and moves to the right, the decrease in the

contribution to F from the bin (b, 100] is swamped by the increase in the con

tribution from the bin [0, b). (Gs does not have this problem because, like G, it

has zero slope at y=O and y= 1.)

As can be seen by comparing Figures 2.14 and 2.18, the less separable the

classes are, the shallower the valleys will be. In all cases, F attains its maxi

mum value of one when the breakpoints are far from all the data points.

When the classes are fully separable, F achieves the value of zero when the

breakpoints are positioned optimally. If there is no correlation between the

data variables and the class variable, then the data points from each class will

be uniformly distributed, and F will be flat.

1

o

56

t
m i (Y)

1_4-~
b· I

Figure 2.11: The shape of the interval membership function

H(y) G(y)

1 1

1 y o 1 y o 1

Figure 2.12: Entropy (H) and its concave up replacements (G, Gs)

for the case of two classes (y = qi,l' qi,2 = 1 - qi,l)

y

57

0000000000000000000 XXXXXXXXXXXXXXXXXXX
1

0.8

0.6

0.4

0.2

o ~ __ ~ ____ ~ ____ ~ ____ ~ __ ~U-__ ~ ____ ~ ____ ~ ____ ~ __ ~

o 10 20 30 40 50 60 70 80 90 100

Breakpoint Value (b)

Figure 2.13: Sample MEP surface using H

58

0000000000000000000 XXXXXXXXXXXXXXXXXXX
1

0.8

0.6

0.4

0.2

10 20 30 40 50 60 70 80 90 100

Breakpoint Value (b)

Figure 2.14: Sample MEPsurface using G

59

0000000000000000000 XXXXXXXXXXXXXXXXXXX
1

0.8

0.6

0.4

0.2

10 20 30 40 50 60 70 80 90 100

Breakpoint Value (b)

Figure 2.15: Sample MEPsurface using Gs

60

000 0 0 0 0 0 0 x x x x x x x x x
1 r-~~~---'----~-----r-----r-----r----~----~----~~~

0.8

0.6

0.4

0.2

o
o 10 20 30 40 50 60 70 80 90

Breakpoint Value (b)

Figure 2.16: Sample MEPsurface using G with 8 much smaller
than the separation between adjacent examples

100

61

x
000 0 0 X 0 X 0 0 x 0 x 0 x x x x X

1 ~~~--~-T--~~~--~~--r-~~~~~~~~~~~~~

0.8

0.6

0.4

0.2

o ~--~----~----~----~----~--~~--~----~----~--~
o 10 20 30 40 50 60 70 80 90 100

Breakpoint Value (b)

Figure 2.17: Sample MEP surface using G with 8 of the order of the separa
tion between adjacent examples when perfect separation is not
possible

62

x
000 0 0 X 0 X 0 0 X 0 X 0 X X X X X

1 r---~----~----~----~----~--~r---~----~----~--~

0.8

0.6

0.4

0.2

o ~--~----~----~----~----~--~~--~----~----~--~
o 10 20 30 40 50 60 70 80 90 100

Breakpoint Value (b)

Figure 2.18: Sample MEPsurface using G with 8 much larger than the sepa
ration between adjacent examples when perfect separation is not
possible

63

x
000 0 0 X 0 X 0 0 X 0 X 0 X X X X X

1 r----,----~----~----._----r_--_,~--~----~----~--~

0.8

0.6

0.4

0.2

o ~--~----~----~----~----~--~----~----~----~--~
o 10 20 30 40 50 60 70 80 90 100

Breakpoint Value (b)

Figure 2.19: Sample MEPsurface using H with 8 much larger than the sepa
ration between adjacent examples when perfect separation is not
possible

64

Appendix 2-A: The analytical expression for the computational complexity

of the improved MDL algorithm

The amount of time required for the MDL algorithm to finish can be de

rived directly from the pseudocode presented in Section 2.1.3:

Tgen

+ N gen Ntrain TLHS

+ Ntrain TDL

NMDL

+L
i=l

Ngen - i + 1

L
j=l

[/R,j N train T add

+ /L1,j (

Time required to:

generate initial set of rules

evaluate every LHS on every example

initialize LIST

repeat until description length
stops decreasing:

for each rule that has not already
been added to the final set of rules:

compute ,1max,MDL

if the value is large enough:

re-classify examples and
compu te -log2 (p (Xi,correct))

compute description length

Most of these symbols are defined in Section 2.1.6 where the formula for

the upper bound on T MDL is presented. The parameter / R,j is the fraction of

the examples that are processed as a result of optimizing to operate only on

the examples to which the candidate rule applies, while / L1,j is the fraction of

the rules that are processed as a result of using the bound ,1max,MDL presented

in Section 2.1.2. Both of these parameters lie in the interval (0,1]. The func

tion T dn) computes the amount of time required to classify one training ex-

65

ample when there are n rules in the classification network of Figure 2.1. This

function is analyzed in Appendix 2-D. The parameters Tadd and T DL represent

the amounts of time required to perform one addition and compute one

term in the summation in the formula for Ll presented in Section 2.1.1, re

spectively. T LHS represents the average amount of time required to evaluate

a rule's LHS. Since the LHS can in principle be arbitrarily complex, a simple

expression for T LHS cannot be given. However, if the LHS is a conjunction of

simple conditions, as discussed in Section 2.3, then T LHS is merely the time

required to check the values of one or more data variables.

66

Appendix 2-B: The analytical expression for the computational complexity

of the new CV -SD algorithm

The amount of time required for the CV-SD algorithm to finish can be

derived directly from the pseudocode presented in Section 2.1.4:

Tcv-so =

(Ntrain + 1) {

Tgen

+ N gen (Ntrain -1) TLHS

+ (Ntrain - 1) Tcos t

N max

+L
i = 1

Ngen - i + 1

L
j=1

[fR,j N train T add

fR,j N train (T c(i) + T cost)

+ Ntrain Tadd)] }

+ N train N max T add

Time required to:

for each call to DESCENT:

generate initial set of rules

evaluate every LHS
on every example

initialize LIST

repeat N max times:

for each rule that has not
already been added to the final
set of rules:

compute L1max,CV-so

if value is large enough:

re-classify examples and
evaluate cost function

compute total cost

add list CVl to list cv
(inside outer loop)

Most of these symbols are defined in Section 2.1.6 where the formula for

the upper bound on T cv-so is presented. The parameter f R,j is the fraction of

the examples that are processed as a result of optimizing to operate only on

the examples to which the candidate rule applies, while f 11,j is the fraction of

67

the rules that are processed as a result of using the bound ..1max,CV-SD presented

in Section 2.1.2. Both of these parameters lie in the interval (0,1]' The func

tion T c(n) computes the amount of time required to classify one training ex

ample when there are n rules in the classification network of Figure 2.1. This

function is analyzed in Appendix 2-D. The parameters Tadd and Tcost repre

sent the amounts of time required to perform one addition and evaluate the

cost function introduced in Section 2.1.1, respectively. Since the cost function

is specified by the user and may therefore be arbitrarily complex, an expres

sion for Tcost cannot be given. However, if the cost function is simply a ma

trix of constants specifying the cost of each possible mistake, as it was for the

experiments presented in Chapter 3, then Tcos t is the time required to look up

a value in memory. T LHS represents the average amount of time required to

evaluate a rule's LHS. Since the LHS can in principle be arbitrarily complex, a

simple expression for T LHS cannot be given. However, if the LHS is a con

junction of simple conditions, as discussed in Section 2.3, then T LHS is simply

the time required to check the values of one or more data variables.

68

Appendix 2-C: The analytical expression for the computational complexity

of the new CV-J algorithm

The amount of time required for the CV-J algorithm to finish can be de

rived directly from the pseudocode presented in Section 2.1.5:

Tcv-J =

Ntrain (

Tgen

N max

+ L (Tc(i) + Teost)
i == 1

+ Tgen

Time required to:

for each training example:

generate initial set of rules

repeat N max times:
add next rule and classify the example

add list CVl to list CV

generate the final list of rules

Most of these symbols are defined in Section 2.1.6 where the formula for

the upper bound on T CV-J is presented. The function T c(n) computes the

amount of time required to classify one training example when there are n

rules in the classification network of Figure 2.1. This function is analyzed in

Appendix 2-D. The parameters Tadd and Teost represent the amounts of time

required to perform one addition and evaluate the cost function introduced

in Section 2.1.1, respectively. Since the cost function is specified by the user

and may therefore be arbitrarily complex, an expression for Teost cannot be

given. However, if the cost function is simply a matrix of constants specify

ing the cost of each possible mistake, as it was for the experiments presented

in Chapter 3, then Tcos t is the time required to look up a value in memory.

69

Appendix 2-D: The analytical expression for the time required to classify one

example using the rule-based classification network

The amount of time required for the rule-based classification network to

classify one example can be derived from the procedure in Section 2.1:

Tc(n) = n TLHS

+ NRHS (

fR n Tadd

+ Texp)

+ NRHS (Tdiv + Tadd)

Time required to:

evaluate the LHS of each rule

for each output:

add the values from the rules
that were satisfied

exponentiate the result

normalize the results

Here, n is the number of rules in the network, N RHS is the number of

outputs from the network, and T LHS represents the average amount of time

required to evaluate a rule's LHS. Since the LHS can in principle be arbitrari

ly complex, a simple expression for T LHS cannot be given. However, if the

LHS is a conjunction of simple conditions, as discussed in Section 2.3, then

T LHS is simply the time required to check the values of one or more data vari

ables. It is important to note that the pseudocode presented in Sections 2.1.3

and 2.1.4 assumes that the matrix of Boolean values resulting from evaluat

ing every LHS for every example has been pre-calculated. In this case, T LHS is

zero. The parameter f R is the fraction of rules whose LHS's are satisifed. All

that can be said about this value is that it lies in the interval [0,1]. The sym

bols T exp' Tdiv' and Tadd represent the amounts of time required to exponenti

ate, divide, and add two numbers, respectively.

70

Chapter 3

Experimental comparison of the classification
algorithms considered for use in Poirot

71

3.0. The data used to evaluate the classifiers

This chapter presents the results of experiments designed to compare the

performances of the three different versions of ITRule presented in Chapter

2, two variants of the Naive Bayes classifier (Duda and Hart, 1973), several

neural networks (Haykin, 1999), the decision tree algorithm, CART (Breiman

et al., 1984), and a support vector machine (Vapnik, 1995), in order to deter

mine which classifier is best suited for use in Poirot. The data sets utilized in

these experiments were generated from a well known collection of 21,578 ar

ticles published by the Reuters News Service during 1987 (Reuters-21578,

1987). Each article has been manually classified as belonging to one or more

of 120 different topics. This collection of articles is large and diverse.

Although they are not actual web pages, they provide good substitutes.

In the experiments described here, each training set was generated by

first picking a topic and then randomly choosing N articles about the chosen

topic and N articles about other topics. The corresponding test set consisted

of the remaining articles about the chosen topic and an equal number of ran

domly chosen articles concerning other topics in order to ensure that the a v

erage accuracy one could expect to get from pure guessing was 50%. For each

training set and its corresponding test set, sampling was done without re

placement so no article was used more than once. When generating data

sets, only topics containing a reasonably large number of articles were used,

thereby ensuring that each test set contained at least 100 examples so that the

performance of each classifier was evaluated accurately.

72

3.1. The method used to calculate the probabilities used by the classifiers

Since there is only a finite number of training examples, only approxi

mate statistics can be calculated. ITRule and Naive Bayes therefore use the

Laplacian formula for estimating probabilities (Kohavi et al., 1997). With this

method, the probability that a relevant article will contain a particular word

is given by:

N wnr + 1
p(wlr)=--

N r + 2

Here, N WIlY is the number of relevant documents that contain the word

of interest, and N r is the total number of relevant documents. When N r is

zero, N WIlY must also be zero, so p(w Ir) = 1/2. This corresponds to the maxi

mum entropy assumption which is considered to be the best guess when no

other information is available. As N r increases, the information about the

frequency of occurrence of the word becomes more and more accurate. This

eventually overwhelms the contribution of the constants, so p(w Ir) asymp

totically approaches N wIIY/N r. The same principle is used for computing all

the other probabilities that are required.

3.2. Misclassification costs

Since most users probably prefer to skim and reject some irrelevant arti

cles rather than risk missing an interesting article, the cost! of misclassifying

an article as irrelevant was set to twice the cost of misclassifying an article as

relevant in all experiments except with the neural networks, where the usual

1 The term "cost" is used because it is analogous to situations such as finance or medicine
where all decisions can be measured in monetary units. When dealing with web pages, the cost
is not related to anything concrete, butis simply a subjective measure of the relative severity of
the different types of errors.

73

mean squared error was used. As demonstrated by the results presented in

Section 3.5.3, this turned out to be primarily an issue of principle because

varying the cost did not significantly affect the performance of any of the al

gorithms.

3.3. Reducing the run time by prefiltering the list of words obtained from the

training articles

The complete list of unique words for a set of training articles usually

numbers in the thousands. When phrases are included, this may rise to tens

of thousands. Many of these potential input features, such as articles and

conjunctions, provide no information. By discarding these useless words

and phrases before the classifier construction algorithm (see Section 3.4) is

run, one can dramatically increase the speed of the computations without a

noticeable loss of accuracy (see Section 3.5.4).

In order to decide which words and phrases to discard, a ranking func

tion is used. This function is evaluated separately for each word and phrase.

After sorting them in descending order of the value of the ranking function,

all but the top N words and phrases are discarded.

The most commonly used ranking function is the mutual information,

I(W;A), between the Boolean occurrence of each word, represented by the

random variable W, and the Boolean relevance of each training article, repre

sented by the random variable A. As illustrated in Figure 3.1, the value of

this function is large for words that occur in many relevant articles but in

only a few irrelevant articles, and also visa versa.

74

Using the value of I(W;A) to rank the words does not produce the cor

rect result in all cases. For instance, if there are an equal number of relevant

and irrelevant training articles, and the word only occurs once in each rele

vant article but many times in each irrelevant article, then I(W;A) is zero.

This will cause the word to be ignored since zero is the lowest value that the

mutual information can attain. However, even though I(W;A) is zero in this

case, the distribution of the word clearly indicates that articles containing the

word are likely to be irrelevant since the word occurs much more often in ir

relevant articles than in relevant ones. In order to handle this case correctly,

a new ranking function dubbed the word imbalance, FWI' has been developed:

!Nr-Nr! () FWI = max p(w I r), p(w If)
N r + N r

Here, r denotes relevant and f not relevant. The symbols N rand N r rep

resent the average numbers of occurrences of the word in relevant and irrele-

vant articles, respectively. Similarly, p(w Ir) and p(w If) are the probabilities

that the word occurs in relevant and irrelevant articles. The first factor in the

formula provides a measure of the imbalance in the distribution of the word

between the sets of relevant and irrelevant training articles. The denomina-

tor of this factor scales the value so that it lies in the interval [a, 1]. If the

word occurs equally often in both sets, the value of the function is zero. The

second factor ensures that the value of the function is also small for words

that are very rare in both sets.2

2 Without the absolute value bars, FWI would provide additional information. A positive

value would indicate that an article containing the word is relevant, while a negative value
would indicate that an article containing the word is irrelevant. This additional information
is not needed by the classifier construction algorithm, however. It only requires an unbalanced
probability distribution, not a probability distribution that specifically indicates "relevant."

75

Figures 3.1 through 3.4 provide examples of the difference between the

mutual information and the word imbalance. The graphs were generated

using one hundred relevant articles and one hundred irrelevant articles.

Figure 3.1 shows I(W ;A) as a function of the fraction of relevant and irrele

vant documents that each contain ten occurrences of the word under consid

eration. Figure 3.2 plots the word imbalance under the same conditions.

Note that both functions have the same shape in this case. The only differ

ence is in the curvature. This is demonstrated by the graph in Figure 3.3

which plots the difference between the two functions. The difference is zero

down the middle and at all four corners.

The situation is very different if each relevant article that contains the

word at all contains only one occurrence rather than ten. The graph of the

mutual information does not change. The word imbalance, on the other

hand, changes dramatically, as shown in Figure 3.4. The initial example dis

cussed above occurs when all the articles contain the word, i.e., at (I, 1) in the

relevant-irrelevant plane of the graph. The word imbalance gives a value of

1(1-10)/(1+10) 1 zO.82, in stark contrast to the mutual information which is

zero. The word imbalance is zero along the line between (0, 0) and (1,0.1) in

the relevant-irrelevant plane, as opposed to the mutual information which is

zero along the line between (0, 0) and (I, 1). The displacement of the word

imbalance's II zero line" demonstrates this function's sensitivity to the n u m

ber of occurrences of the word, rather than only the Boolean occurrence of

the word, as is the case with the mutual information.

76

Considering the success of the J-measure used by ITRule, one might be

tempted to use the Kullback-Liebler distance (Cover and Thomas, 1991) be

tween p(w Ir) and p(w 11'), denoted by D(p(w Ir)11 p(w 11')). This does not work,

however, because this distance measure is unbounded. Even if the word oc-

curs in only a single, relevant article, as illustrated in Table 3.1,

D(p(w Ir)llp(w If)) will be infinite. Both the mutual information and word

imbalance give a very low score in this case. ITRule will also ignore the word

because it considers the J-measure between each column and the prior proba

bility distribution, not the distance between the rows. In Table 3.1, the left

column produces a rule with very low J-measure because the probability of

the rule's LHS is very low, and the right column does the same because the

distribution is very close to the prior distribution.

In practice, picking the top 100 words with either mutual information or

word imbalance yields mostly the same words, merely in a different order.

As shown in Section 3.5.4, discarding all but these top 100 words does not de

grade performance. The relevancy score which is common in the informa

tion retrieval literature was not tried because Wiener et al. (1995) state that it

produces results very similar to those obtained when using mutual informa-

tion.

occurs

relevant liN
not relevant a

does not
occur

0.5 -liN

0.5

Table 3.1: Joint probabilities if a word occurs in only a single, relevant train
ing article, and there are equally many relevant and irrelevant articles. There
are a total of N training articles, so Pr(word occurs n article is relevant) = liN.

77

Mutual Information

Figure 3.1: Plot of the mutual information, I(W;A), as a function of the frac
tion of relevant and irrelevant training articles that contain a given word.
The random variable W represents the Boolean occurrence of a word, and
the random variable A represents the Boolean relevance of a training article.

78

Word Imbalance

1

~ J:.J... 0.5

o o

1 1

Figure 3.2: Plot of the word imbalance, FWI, as a function of the fraction of
relevant and irrelevant training articles that contain a given word. This plot
was generated by using relevant and irrelevant articles that either did not
contain the word or contained ten occurrences of the word.

0.25

0.2

0.15

0.1

0.05

o

79

Word Imbalance Minus Mutual Information

o

1

Figure 3.3: Plot of the difference between the word imbalance and the mutual
information as a function of the fraction of relevant and irrelevant training
articles that contain a given word. This plot was generated by using relevant
and irrelevant articles that either did not contain the word or contained ten
occurrences of the word.

80

Word Imbalance

1

0.5

1

F 0.5
ra t·

C lOn of·
articles th IrreleVant tr ..

at COnt . aInIng aIn the word

o o

Figure 3.4: Plot of the word imbalance, FW/I as a function of the fraction of
relevant and irrelevant training articles that contain a given word. This plot
was generated by using relevant articles that either did not contain the word
or contained one occurrence of the word and irrelevant articles that, if they
contained the word, contained ten occurrences of the word. Note that the
"zero line" from (0, 0) to (1,0.1) is not clearly visible because the sampling
grid is too coarse. The graph is zero at the three points (0, 0), (0.5, 0.05), and
(1,0.1) because these lie on both the zero line and the sampling grid.

81

3.4. Description of the classification algorithms

3.4.1. ITRule

The three algorithms, MDL, CV-SD, and CV-J, described in Chapter 2

were all tested. The input variables were Boolean values denoting the pres

ence or absence of words or phrases. Only first order rules were considered

for MDL and CV-SD because the run time was excessive even in this case.

For CV-J, inclusion of second order rules produced significantly lower accura

cy, so only the results for first order rules are presented here.

In the case of CV -SD, the cost function was a simple matrix of constants.

The cost of correctly classifying an example was zero. The cost of misclassify

ing an example as relevant was one, while the cost of misclassifying an exam

ple as irrelevant was two, as discussed in Section 3.2.

As the results below show, the CV-J algorithm works very well.

However, it should be noted that when only one word is needed to distin

guish between relevant and irrelevant articles, and the data set has an equal

number of positive and negative examples, then the algorithm will fail. The

reason is that every cross validation cycle will use M positive and M-1 nega

tive examples or visa versa. Thus, when a single word is a perfect discrimi

nator,ITRule only needs to pick a single rule that moves the predicted proba

bility in the direction opposite the initial slant in the prior probability distri

bution. For instance, with M positive and M-1 negative examples, the de

fault decision is "relevant," and one only needs the rule "if word is not pre

sent, then p(not relevan t)",,1" to always get the correct result. In this case, this

happens to be the rule with the highest J-measure since it is further from the

82

prior distribution, so the result of cross validation is "pick the single rule

with highest J-measure." This does not work on the complete set of M posi

tive and M negative examples, however, because it is perfectly balanced.

Since the prior distribution is not slanted in either direction, one needs both

rules "if word is present, then ... " and "if word is not present, then ... " in

order to make the correct prediction in all cases. Thus, in order to work in

this special case, the algorithm presented in Section 2.1.5 was modified so it

cannot pick fewer than two rules.3

3.4.2. Naive Bayes

The Naive Bayes classifier produces probability estimates under the as

sumption that the input variables are conditionally independent when given

the class (Domingos and Pazzani, 1996). This is identical to the case when

ITRule is restricted to use only first order rules except that when Naive Bayes

uses an input variable, it automatically uses both rules for that variable, i.e.,

"if x=T, then ... " and "if x=F, then "ITRule, on the other hand, can choose

each one separately.

The input variables for this classifier were Boolean values denoting the

presence or absence of words or phrases. Two different algorithms for picking

the words to be used were tested, namely NB-96 and NB-CV. NB-96 is the al

gorithm used by Pazzani and Billsus (1997). It simply picks the 96 words and

phrases with the highest mutual information between the Boolean occur

rence of the word or phrase and the Boolean value indicating the relevance

of the article to the topic under consideration. While many have studied the

3 It should be noted that when the algorithm is nul on a data set where the number of posi
tive and negative examples is not equal, it correctly picks two rules even without this adjust
ment.

83

effects of varying the number of words that are used (Joachims, 1996;

Mladenic, 1996; Pazzani and Billsus, 1997; McCallum and Nigam, 1998), no

body seems to have considered the problem of determining the optimal

number of words. In the course of the research presented in this thesis, the

new NB-CV algorithm was developed to do just this. It sorts the words and

phrases in decreasing order of the word imbalance and uses cross validation

to pick the top N. This is fundamentally the same algorithm as ITRule CV-J,

except that the ranking function is different.

3.4.3. Neural networks

The experiments were performed with the basic, feed forward neural

network architecture because it is the most widely used. Since even this sim

ple configuration has a dizzying number of adjustable parameters, any at

tempt to optimize all these settings would alone take years of computer time.

The network size chosen by Pazzani and Billsus (1997) was therefore used,

namely 96 input units (the same features used by NB-96 above) and twelve

hidden units. Both the hidden layer and the output layer used the hyperbolic

tangent function whose range is [-I, +1]. In order to avoid forcing the units

into saturation, the training data used +0.9 to indicate "relevant" and -0.9 to

indicate "not relevant." (During testing, positive output values were consid

ered to be "relevant," and negative output values were considered "not rele

vant.") The initial weights were randomly chosen in the interval [-0.001,

+0.001]' and plain gradient descent was used with a learning rate of 0.1 and a

momentum of 0.9. Training was stopped after 5000 iterations. This compro

mise allowed the training error to decrease to within a few percent of the ab-

84

solute minimum without using excessive amounts of computer time. In

order to compensate for the tendency to find only local minima instead of the

global minimum, ten independent trials were conducted on each data set,

and only the best performance was recorded.

Two different types of input features were tested. In the first case (NN

Boolean), the input variables were Boolean values denoting the presence or

absence of words or phrases. In the second case (NN-Numeric), the input

variables were numbers representing the frequency of occurrence of each

word or phrase, i.e.,

number of occurrences of the word
numbe; of words in the article

This approach often produces very small input values. However, these

values are guaranteed to lie in the interval [0, 1], so the method does not suf

fer from normalization problems if a test article is longer than any of the

training articles. Scaling these values separately for each article so they lay in

the interval [-1, +1] was also tried, but the performance was significantly

worse, so these results are not reported.

In addition, to compensate for the fixed number of hidden units, the ef

fect of using a weight decay factor of 0.995 was investigated in both cases, i.e.,

NN-Boolean-Decay and NN-Numeric-Decay. The results of all these trials

are presented in Section 3.5.

85

3.4.4. Classification and Regression Trees (CART)

CART (Breiman et al., 1984) builds a decision tree from the training data

and then uses cross validation to prune the tree to combat the problems of

overfitting and sensitivity to noise. The tests presented here used the imple

mentation of CART provided by the "IND" package (Buntine, 1992). Since

CART can handle both discrete and continuous variables, the same two types

of input variables were tried that were used in the neural network. For con

sistency with the neural network results, these two cases are denoted by

CART-Boolean and CART-Numeric. Since IND does not accept more than

250 input variables and pushing this limit is not recommended (Buntine,

1992), the top 100 words ranked by word imbalance were used.

3.4.5. Support Vector Machines (SVM)

On the advice of Dr. Joshua Alspector (Alspector, 2001), only the linear

support vector machine (Vapnik, 1995) with Boolean inputs was tested. This

algorithm simply searches for the hyperplane that best separates the relevant

and irrelevant training articles. The training data used +1 to indicate both

"relevant article" and "word or phrase is present" and -1 to indicate the op

posite. Preliminary experiments showed that using all the available words

and phrases as features resulted in very poor accuracy, e.g., 50%, so the same

cross validation algorithm that was used in NB-CV was used to pick the opti

mal number of input variables. The tests presented here used the implemen

tation of SVM provided by the SVMlight package (Joachims, 1999). Since this

software does not directly support any form of feature selection4
, a separate

4 As with the Naive Bayes algorithm, nobody appears to have considered the problem of
determining the optimal number of words.

86

program was created to implement the cross validation algorithm and run

SVMlight for each set of words. Unfortunately, this method is very slow be

cause it requires writing a separate data file for each set of words and invok

ing SVMlight from scratch on each data file. In addition, SVMlight often got

stuck in an infinite loop when there were fewer than ten features. The cross

validation algorithm was therefore restricted to considering only sets of

words of size 10, 15, 20, 25, ... , 100.

3.5. Experimental comparison of classifier performances

Before presenting the test results, it is necessary to describe how the com

parisons of the classifiers were performed. Since the ultimate goal of this re

search was to develop a system that would assist users in locating relevant

web pages, the performance goal was somewhat flexible. A system will be

considered useful even if its performance is not perfect. The performance

measure used in all the experiments was the test accuracy, which is defined as

the ratio of the number of testing examples that were classified correctly to

the total number of testing examples.

As illustrated in Figure 3.5, the performance of the best algorithm,

namely NB-CV, rarely dropped below 80% accuracy. This may not appear

particularly good when compared with the ideal accuracy of 100%, but when

one takes into account the time that the user saves by not having to study

each irrelevant page manually, it is an impressive result. Moreover, misclas

sifying a web page as "relevant" is not a serious problem as long as it does not

occur too often. Misclassifying a web page as "not relevant" can be more seri

ous but is not usually critical because the user will probably discover the page

87

while surfing from other relevant pages.

The performance criterion is also flexible in the sense that users are u n

likely to notice a difference in accuracy of a couple of percent. Thus, rigorous

statistical tests were not used as the primary method of comparison.5 Instead,

one classifier was considered to be better than another if its average perfor

mance was at least several percentage points higher across all the data sets

that were generated, and the standard deviation was small when compared to

the mean. This approach was chosen because there will always be variations

due to the randomness in the sampling process.6

The comparison between mean and standard deviation can easily be per

formed by plotting the difference in absolute accuracy across all the data sets.

If the mean (shown by a horizontal dashed line) does not appear to be signifi

cant relative to the standard deviation (indicated by the scatter of the points),

then the user is unlikely to notice the difference between the algorithms.

As an example of how to read the graphs, Figure 3.8 shows the accuracy

difference between NB-CV and NB-96. When the average "Difference in

Percent Accuracy" is 10.18 as indicated by the dashed line, this means that if

NB-96 achieved 79.82% accuracy on average, then NB-CV achieved 90% accu-

racy on average.

5 The "Difference of Two Proportions Test" (Dietterich, 1998; Yang and Liu, 1999) was never
theless applied in all cases. The result from a single test example was assumed to be a
Bernoulli random variable. Under this assumption, the total number of mistakes is a binomial
random variable. If one assumes that the results from different classifiers are independent and
uses the Gaussian approximation to the binomial distribution, one can obtain a unit Normal
random variable and use a two-sided test to check the null hypothesis that two classifiers
have the same performance. As discussed in Section 3.0, the data sets used in this thesis were
generated independently. Thus, the unit Normal random variables generated from different
data sets should be independent. By applying the Central Limit Theorem, the results from a 11
the data sets were combined to obtain a single unit Normal random variable. The correspond
ing Z value is given in the figure caption for each graph.

6 This randornnessis actually a good way to simulate the way in which users accumulate
web pages.

88

3.5.1. Comparing the effects of using single words and phrases

When only the occurrences of single words were considered, NB-CV,

ITRule CV-J, and SVM performed equally well on average as can be seen

from the graphs in Figures 3.6 and 3.7.7 As shown in Figures 3.8 through 3.16,

these three algorithms also performed better on average than NB-96, the two

other ITRule algorithms, the neural networks, and CART.

The NN-Boolean-Decay and CART-Boolean algorithms performed sec

ond best. While one could argue that the difference in accuracy between

these two algorithms and NB-CV is too small to be noticeable by users, there

are additional issues which make NB-CV preferable. When compared with

the neural network algorithms, the training process for NB-CV runs at least

two orders of magnitude faster. In addition, since NB-CV explicitly chooses

particular words, it is also much easier to determine which words should be

sent to search engines. In Figure 3.15, the average difference between NB-CV

and CART-Boolean is quite small only because there are so many data sets on

which they both performed equally well. On the data sets where their perfor

mance differed, NB-CV was almost always better.

It is also interesting to note that NN-Numeric and CART-Numeric per

formed worse than NN-Boolean and CART-Boolean, respectively. (crf.

Figures 3.11 through 3.16) Apparently, neither algorithm was able to utilize

the word frequency information. Because of these results, word frequencies

were not tried with ITRule or SVM.

7 The fact that NB-CV and ITRule CV -J performed equally well might have been expected
since they use the same basic algorithm.

89

When the occurrences of two and three word phrases were also includ

ed, ITRule CV-J, NB-CV, SVM, NN-Boolean-Decay, and CART-Boolean did

sometimes make use of them, but on average, the performance only i m

proved slightly, as can be seen from the graphs in Figures 3.17 through 3.2l.

Even though there were no significant improvements on average, it is i m

portant to note that the inclusion of phrases did not degrade the average per

formance, either. In fact, the only reason the average accuracies of NB-CV

and ITRule CV-J did not change considerably is that the performance differ

ence was zero on a large fraction of the data sets. On the data sets where the

performance was different, the use of phrases almost always improved the ac

curacy. Thus, it is worthwhile to include phrases as potential input features.

It is important to note that when phrases were included, "stop words"

were automatically removed before the articles were passed to a classifier.

Stop words are words such as articles and conjunctions that are not useful for

discriminating between relevant and irrelevant articles. When only single

words were used as features, all the classifiers automatically ignored stop

words because they had no discriminatory power. Removing them ahead of

time was therefore unnecessary. However, when phrases were included, stop

words often degraded the performance. As an example, if "merger" was

ranked highly by the word imbalance, then "the merger," "merger with," and

"the merger with" were also likely to be ranked highly. However, such

phrases clearly provide no additional information. Thus, by removing stop

words like "the" and "with" before passing the articles to the classifier, this

problem was avoided. The list of stop words that were removed is given in

90

Appendix 3-A.8

3.5.2. Improvements in performance when more training examples are

added

In order to model the scenario where the user evaluates only a few web

pages before asking Poirot to make suggestions, the experiments discussed in

Section 3.5.1 were performed with a small number of training articles. An ex

periment was also conducted in which a larger number of training articles

was used for each topic. This models how well Poirot might perform after

the user has used it for a while and accumulated a larger collection of web

pages. The results are depicted in Figure 3.22. There is a clear and consistent

improvement in performance when more training data is available.

A second experiment was performed to demonstrate this result in more

detail for two particular topics. For each training set size, 20 independent data

sets were generated and tested. Sampling without replacement was used

within each data set, but sampling with replacement was used between data

sets. Figures 3.23 and 3.24 show that as the training set size increased, the a v

erage performance improved, and the standard deviation due to the varia

tion in the training data decreased, i.e., the classifier both worked better and

was more reliable.

B The source of this list has unfortunately been lost, but there are several other lists a v a i 1-
able from http://www-a2k.is.tokushima-u.ac.jp/member/kita/NLP/lex.html

91

3.5.3. The sensitivity of classifier accuracy to variations in the misclassifica

tion costs

As discussed in Section 3.2, the cost of misclassifying an article as irrele

vant does not have to be equal to the cost of misclassifying an article as rele

vant. The NB-CV and ITRule CV-J algorithms were tested with the relative

cost of misclassifying an article as irrelevant set to I, 2, and 4. Figures 3.25 and

3.26 demonstrate that ITRule CV-J has the same average accuracy for all three

values of the cost. As shown in Figures 3.27 and 3.28, NB-CV performs

marginally better when the relative cost is two. This indicates that these two

algorithms are not particularly sensitive to the value of the relative cost.

3.5.4. The effect on classifier accuracy of prefiltering the list of words obtained

from the training articles

The NB-CV and ITRule CV-J algorithms were tested on both unfiltered

and filtered sets of words and phrases to determine the effect of filtering out

all but the top 100 words via the word imbalance ranking function (see

Section 3.3). The results are shown in Figures 3.29 and 3.30. It is clear from

these plots that filtering the list of words did not have a detrimental effect on

the accuracy. The issue does not apply to NB-96 or any of the neural net

works because they always pick the top 96 words. (As discussed in Section

3.4.3, optimizing the number of words for the neural networks was not at

tempted because it would require too much CPU time.) The issue does not

apply to SVM either, because, as discussed in Section 3.4.5, this algorithm

only considered the top 100 words in order to avoid using excessive run time.

The test could not be performed directly on CART because it cannot accept

92

more than 250 features, but tests did show that using the top 250 words pro

duces exactly the same performance as using the top 100 words.

3.5.5. The effect on classifier accuracy of using stemmed words

Stemming is the process of combining the statistics for words that have

the same root, such as "fly" and "flying." This improves the support of each

resulting stem, thereby producing more accurate statistics. However, this is

done at the cost of reducing the predictive power of some features due to a v

eraging over the words that are combined into a single stem. The stemming

algorithm that was used for this thesis is the one developed by Porter (Frakes

and Baeza-Yates, 1992). When NB-CV and ITRule CV-J were tested on both

unstemmed and stemmed sets of words, there were no significant differences

in the average performance, as shown in Figures 3.31 and 3.32.

An additional experiment was conducted to reduce the variance due to

the sampling process used to generate the data sets. For each of 11 different

topics, 20 data sets of the same size were created. Sampling without replace

ment was used within each data set, but sampling with replacement was used

between data sets. NB-CV was run on each data set for both unstemmed and

stemmed words. The difference between the average performances using un

stemmed and stemmed words was not significant, as shown in Figure 3.33.

The error bar for each topic shows the estimated standard deviation calculat

ed from the variation in performance over the 20 data sets for that topic.

93

3.5.6. Experimental comparison of the run times of the various algorithms

Figures 3.34 through 3.36 plot the measured run times of the NB-CV,

CART-Boolean, and SVM algorithms as functions of the number of training

examples, N train" The run time of the NB-CV algorithm is clearly a linear

function of N traiw while the run time of the CART-Boolean algorithm ap

pears to be proportional to the square root of N train" For the SVM algorithm,

since cross validation had to be performed by a separate program and was

therefore very slow as explained in Section 3.4.5, the time required for this

computation was not measured. Instead, the run time was measured for the

case when the top 100 words and phrases as ranked by the word imbalance

were used as input variables. In this case, the run time of the SVM algorithm

is clearly a linear function of N traiw as illustrated by Figure 3.36. If all the

computations for SVM were done in one program, cross validation would, in

the worst case, produce an additional factor of N train in the computational

complexity.9

The run times of the ITRule algorithms presented in Section 2.1.7 are

not directly comparable to the run times plotted in Figures 3.34 through 3.36

because the current implementation of ITRule performs significant amounts

of disk access10 while the NB-CV, CART, and SVM algorithms operate entirely

in RAM. The run times of the neural network algorithms were not mea

sured because they are known to be slow to train, and the factor of ten penalty

in the run time resulting from the strategy used to avoid local minima (see

Section 3.4.3) merely exacerbates the problem.

9 It is possible that clever optimizations could reduce or even eliminate this additional fac
tor.

10 The software was originally designed to handle very large data sets that would not fit in
the available RAM.

94

3.6. Experimental comparison of classifier performances on a second data set

In order to verify that the superior performance of NB-CV was not due

merely to some quirk of the Reuters-21578 collectionll
, the NB-CV, NB-96,

SVM, and CART-Boolean algorithms were also tested on the WebKB data set

(Craven et al., 1998). This is a collection of 8,282 web pages collected from the

computer science departments of several large universities. The web pages

are grouped into seven categories: course information, department informa

tion, faculty home pages, research project home pages, staff home pages, stu

dent home pages, and" other." Even though these categories are far broader

than any topic likely to be of interest to a Poirot user, the data set nevertheless

provides a good test of whether or not NB-CV might be useful for other clas

sification problems. For each topic except" other," 20 independent data sets

were generated and tested. Sampling without replacement was used within

each data set, but sampling with replacement was used between data sets.

Each data set had 100 training pages and over 1000 testing pages. Both the

training and testing data was evenly split between relevant and irrelevant

pages. Table 3.2 shows the average accuracy of each algorithm and the corre

sponding standard deviation due to the variation in the training data. The

accuracies of NB-CV, NB-96, and SVM all fall within one standard deviation

of each other, while CART-Boolean performed significantly worse.

The effect on the performance of NB-CV of using only single words or

including phrases without stop words was also tested. The results are shown

in Table 3.3 and demonstrate the same result as in Section 3.5.1, namely that

using phrases provides, on average, a slight improvement in performance.

11 This does seem rather unlikely considering the wide variety of topics for which data sets
were generated.

95

Finally, the effect of adding more training examples was tested, as in the

second half of Section 3.5.2, and the same result was obtained, namely that in

creasing the number of training examples increased the average accuracy and

decreased the standard deviation due to the variation in the training data.

The details are shown in Table 3.4.

course dept. faculty project staff student
NB-CV 87.7%±2.5 91.6%±2.9 85.9%±2.3 77.2%±3.8 70.8%±5.1 81.3%±3.4
NB-96 87.6%±2.6 91.4%±2.2 86.7%±1.8 78.1%±2.2 72.6%±3.9 81.7%±2.6

SVM 89.1%±2.1 91.2%±2.8 87.2%±1.5 79.0%±2.3 71.5%±3.9 79.4%±4.0
CART 84.5%±2.4 82.4%±5.7 84.6%±1.9 69.6%±7.3 65.9%±8.7 70.1%±6.1

Table 3.2: Average accuracies on each WebKB category. The averages were
taken over 20 independently generated data sets, each with 100 training ex
amples and at least 1000 testing examples. The standard deviations are due to
the variations in the training data.

course dept. faculty project staff student
words 85.4%±4.0 90.6%±2.5 85.1%±2.6 77.3%±4.0 71.1%±5.6 75.9%±6.2

phrases 87.7%±2.5 91.6%±2.9 85.9%±2.3 77.2%±3.8 70.8%±5.1 81.3%±3.4

Table 3.3: Average accuracies achieved by NB-CV on each WebKB category
when only single words were used and when phrases without stop words
were included. The averages were taken over 20 independently generated
data sets, each with 100 training examples and at least 1000 testing examples.
The standard deviations are due to the variations in the training data.

course dept. faculty project staff student

30 80.4%±7.1 84.2%±5.8 78.2%±8.6 66.9%±6.6 60.5%±6.9 70.8%±5.3

100 87.7%±2.5 91.6%±2.9 85.9%±2.3 77.2%±3.8 70.8%±5.1 81.3%±3.4

Table 3.4: Average accuracies achieved by NB-CV on each WebKB category
when data sets with 30 and 100 training examples were used. The averages
were taken over 20 independently generated data sets. The standard devia
tions are due to the variations in the training data.

96

3.7. Comparison with other published results

Many papers have been published during the past few years comparing

the performance of various classifiers. Of the ones that used the Reuters-

21578 data set, none used accuracy as the measure of performance. Instead,

they used recall, precision, the precision/recall breakeven point (PRBEP)

(Raghavan et al., 1989), or some other function. As explained by Schapire et

al. (1998), these measures are all unsuitable for comparing text classification

algorithms. However, since it is desirable to allow comparisons between the

newly developed NB-CV algorithm and algorithms developed previously by

other researchers, the PRBEP was computed for each data set that was generat

ed from the Reuters-21578 and WebKB collections.

In order to compute the PRBEP for a particular data set, the NB-CV clas

sifier was first constructed from the training articles. Next, the test articles

were sorted in descending order of the output values that they produced

when used in the classifier. The misclassification cost was then varied so that

the threshold for predicting "relevant" was placed successively between each

pair of adjacent test articles, and the precision and recall were computed at

each position of this threshold. The PRBEP is defined as the value of the pre

cision and recall when they are equal. Following the method used by

Joachims (1998), the Probability of Relevance (PRR) algorithm (Raghavan et

al., 1989) was used to interpolate the precision and recall curves to find the

breakeven point when it did not occur at a threshold position. The details of

this interpolation algorithm are explained in Appendix 3-B. Multiple

breakeven points on a single data set were never encountered, but the algo

rithm was designed to report the lowest one if this situation had occurred.

97

acq corn crude earn grain interest money-fx ship trade wheat
NB-CV 92.5 100 100 92.5 100 95.0 95.0 100 91.4 100
Joachims 95.4 85.7 88.9 98.5 93.1 76.2 76.3 86.5 77.8 85.9

McCallum 93.9 70.4 83.9 98.0 81.7 62.6 67.4 86.1 71.7 65.4

Table 3.5: The highest precision/ recall breakeven points achieved by the new
NB-CV algorithm when using phrases without stop words, the non-linear
support vector machines tested by Joachims (1998), and the multinomial
Naive Bayes classifier developed by McCallum and Nigam (1998) on ten top
ics chosen from the Reuters-21578 collection. NB-CV performs much better
on eight of the ten topics, and is only slightly inferior on the other two.
Joachims also tested the well known TF-IDF (Rocchio, 1971), C4.5 (Quinlan,
1993), and k-nearest neighbors (Duda and Hart, 1973) algorithms. All three of
these algorithms had lower precision/ recall breakeven points than the non
linear support vector machines that he tested.

category minimum maximum

course 86.5 96.0

department 90.0 98.0

faculty 84.0 100.0

project 78.8 100.0

staff 58.3 96.0
student 88.0 96.0

Table 3.6: The minimum and maximum precision/recall breakeven points
achieved by the NB-CV algorithm on each of the six categories in the WebKB
collection. These values were obtained from the data sets with 100 training
examples that were discussed in Section 3.6.

----::? 0
'-"

>,
u
ro
I-<
;:::i
U
u
<

100 -
90 - ~-

•
80

!_4
••

•
70 r-

60 I-

50 f-

40 f-

30 I-

20 I-

10 I-

98

NB-CV Accuracy

-- ~. -. -
~ - --- - ...".~ - -_..JI" _.~

• - .-" ." . -• ,-
---...... ~ --

• - -
••

-

-
-

-

-
-

-

o ~------~------~------~---------~------~------~.~------~------~------~
o 20 40 60 80 100 120 140 160 180

Data Set Index

Figure 3.5: This graph shows the accuracy of the Naive Bayes using Cross
Validation (NB-CV) algorithm. The experiments were performed with 167
data sets generated from the Reuters-21578 collection of news articles. Only
single words were used to identify relevant articles. The accuracy is defined
as the percentage of testing examples that were classified correctly. The aver
age accuracy, indicated by the dashed line, was 90%, and the performance
rarely dropped below 80%. Because of its excellent performance, the NB-CV
algorithm was chosen for use in Poirot.

99

NB-CV Accuracy Minus ITRule CV-J Accuracy

45 I

40 - -
35 I- -

>-.
30 ~ -u

til
l-<
;:::l 25 ~ -u
u
-< 20 I- -
......
~ 15 IlJ I- - -
U
l-<
IlJ 10

_. • • -p., • •
~ • • _. • • 5 • , • • - • -
IlJ .~~ U -:. -. -. .~- - • -- -~ a - • .-IlJ - • •
l-< -- •• -• IlJ -5 - • 4·. -...... • • ,

Cl -10 - • -
-15 - -
-20

a 20 40 60 80 100 120 140 160 180

Data Set Index

Figure 3.6: Difference in accuracy between Naive Bayes using Cross
Validation (NB-CV) and Cross Validation using the J-measure (ITRule CV-J)
when only single words were used to identify relevant articles. The average
difference is 0.21 %. This is not statistically significant (Z=l.l, see Section 3.5).

100

NB-CV Accuracy Minus SVM Accuracy

45 . .
40 - -
35 - -

>-.. 30 U - -
til
~
;:J 25 - -
u
u
~ 20 - -
.....
!:::: 15 ~ -(l)
u
~
(l) 10 l- • • -P-. •
!:::: 5 I- -...... • • • (l) • • • • • u • • !:::: 0 - • -. -(l) • • • • ~ • • (l) -5 l- • • -'<-< • '<-<
0 -10 l- • • -

-15 I- -
-20 I

0 5 10 15 20 25 30 35 40 45

Data Set Index

Figure 3.7: Difference in accuracy between Naive Bayes using Cross
Validation (NB-CV) and the linear support vector machine (SVM) when
only single words were used to identify relevant articles. The average differ
ence is -0.05%. This is not statistically significant (Z=0.68, see Section 3.5).

45

40

35

30

25

20

15

10

5

0

-5

-10

-15

-20

I-

t-

t-

l-

t-

- ,

101

NB-CV Accuracy Minus NB-96 Accuracy

• -. .,.
•
•
• •

• -
•

. -.-
• • • •• . ,. ..

• •
•••

• •
•• . ~ -• -.:'-
• I-- --• -..- - --., - ----., - ~ .. . ~ . . -

:'
I-

~,-.

t-
•

I-

...

o 20

- . ., - .
•

•

40 60 80

.. --- . .. _,,--.. .
•
•

•

100 120

Data Set Index

-.. •

140

.
160

•
•

-
-
-
-

-
-

--
-

-
-
-

180

Figure 3.8: Difference in accuracy between Naive Bayes using Cross
Validation (NB-CV) and Naive Bayes using 96 words (NB-96) when only sin
gle words were used to identify relevant articles. The average difference is
10.18%, as shown by the dashed line. This is statistically significant far be
yond the 0.1 % confidence level (Z=30, see Section 3.5).

45

40

35

30

25

20

15

10

5

0

-5

-10

-15

-20

r-

I-

I-

r-
l- •
l- •

102

ITRule CV-J Accuracy Minus ITRule MDL Accuracy

•

-

-
-• -•

-
•

• • • . .:~ .
••
~ - - • • -- •

• • :- - -.z-
.:"'0

•• -....
-
-

0 20

• -- -- -.'" -. - . . " - -• •
•

40 60 80

• .-
•

• • .' . -

100

Data Set Index

•
• -,.

... -

120

•

•

-
140

-
-
-
-
-
-
-
-

-
-•
-
-

I

160 180

Figure 3.9: Difference in accuracy between Cross Validation using the J
measure (ITRule CV-J) and Minimum Description Length (ITRule MDL)
when only single words were used to identify relevant articles. The average
difference is 6.53%, as shown by the dashed line. This is statistically signifi
cant far beyond the 0.1% confidence level (Z=16, see Section 3.5).

103

ITRule CV-J Accuracy Minus ITRule CV-SD Accuracy

45

40 l- -•
35 I- -

>.
u 30 ~ -
til
I-<
;:::i 25 u l- • -
u
~ 20 ~ -
...... • • • I:::
Q) 15 ~ • -
U
I-< • Q) ,.... • p.... 10 -
I::: - - - - - -.- _ eo- .. _

..... 5 - • • • -
Q) •
u • •
I::: 0 -Q) • •
I-< •

.2 -5 ... -

........
Cl -10 I- -

-15 I- -•
-20

0 5 10 15 20 25 30 35 40

Da ta Set Index

Figure 3.10: Difference in accuracy between Cross Validation using the J
measure (ITRule CV-J) and Cross Validation using Steepest Descent (ITRule
CV-SD) when only single words were used to identify relevant articles. The
average difference is 7.18%, as shown by the dashed line. This is statistically
significant far beyond the 0.1% confidence level (Z=18, see Section 3.5).

104

NB-CV Accuracy Minus NN-Boolean Accuracy

45 I

40 r- -
35 - -

>.
u 30 fo- -ro
I-< •
;j 25 - -u
u

<t: 20 fo- -.....
c • -<lJ 15 I- -u •
I-< • <lJ • .-
P-. 10 fo- • • -• •• • c • • .- 5 ~ •• • -
<lJ -.- - - -- -_. ~ - - - -• u • • • -c 0 • • <lJ •• • • • • I-<
<lJ -5 fo- • • • '-'-< • -

'-'-< • • .- •
Cl -10 l- • -

-15 fo- -
-20

. .
0 5 10 15 20 25 30 35 40 45 50

Data Set Index

Figure 3.11: Difference in accuracy between Naive Bayes using Cross
Validation (NB-CV) and Neural Network with Boolean inputs (NN
Boolean) when only single words were used to identify relevant articles. The
average difference is 3.45%, as shown by the dashed line. This is statistically
significant far beyond the 0.1 % confidence level (Z=9.4, see Section 3.5).

105

NB-CV Accuracy Minus NN-Boolean-Decay Accuracy

45 .
40 f- -

35 I- -
>.. v 30 I-
ro -
I-<
;::l 25 l-v -
v

<r:: 20 f- -
4-'

s::: • Q) 15 -v • -
I-< • Q)

10 -p.., • •• • •
s::: •• • .-...... 5 =- .~ • Q) - ~ - ~ - - -
v • • - .. • • • s::: 0 Q) •• • •

-

-

I-< ••• Q)
-5

_. • • •
-

0 -10 - -
-15 - -

-20
. .

0 5 10 15 20 25 30 35 40 45

Data Set Index

Figure 3.12: Difference in accuracy between Naive Bayes using Cross
Validation (NB-CV) and Neural Network with Boolean inputs using weight
decay (NN-Boolean-Decay) when only single words were used to identify rel
evant articles. The average difference is 3.16%, as shown by the dashed line.
This is statistically significant far beyond the 0.1 % confidence level (Z=11, see
Section 3.5).

106

NB-CV Accuracy Minus NN-Numeric Accuracy

45

40 I- -
35 I- -

>-u 30 - -ro
I-<
;:::1 25 - -u
u • -< 20 - • -...... • • •• • !=: • • • • • Q) 15 - • • • •• -u • • I-< • Q) • • P-< 10 fo- • • -- - - - - - -
!=: - - • • • • 5 l- • -
Q) •• • ••
u • • !=: 0 • Q)
I-< • Q) -5 fo- • • -...... • • • 0 -10 I- -

-15 fo- -
-20 I

0 5 10 15 20 25 30 35 40 45 50

Data Set Index

Figure 3.13: Difference in accuracy between Naive Bayes using Cross
Validation (NB-CV) and Neural Networks with numeric inputs (NN
Numeric) when only single words were used to identify relevant articles.
The average difference is 8.66%, as shown by the dashed line. This is statisti
cally significant far beyond the 0.1% confidence level (Z=22, see Section 3.5).

107

NB-CV Accuracy Minus NN-Numeric-Decay Accuracy

45

40 I- -

35 I- -
>.

I-u 30 -
ttl
I-<
;j 25 I- -u
u •
~ 20 I- -..... • ••
~ • Q) 15 l- • • • •• -u • •
I-< • • • Q)

l- • •
0.... 10 • • • -• •
~ - _.- • ...,., - - .a... ~ - - - -...... 5 - • -•
Q) • •
u • •
~ 0 •
Q) • .
I-< • • Q)

-5 -. • -'-1-1
'-1-1 • • •• • 0 -10 - -

-15 - -
-20

0 5 10 15 20 25 30 35 40 45 50

Data Set Index

Figure 3.14: Difference in accuracy between Naive Bayes using Cross
Validation (NB-CV) and Neural Networks with numeric inputs using weight
decay (NN-Numeric-Decay) when only single words were used to identify
relevant articles. The average difference is 6.56%, as shown by the dashed
line. This is statistically significant far beyond the 0.1% confidence level
(Z=17, see Section 3.5).

108

NB-CV Accuracy Minus CART-Boolean Accuracy

45 I

•
40 I- -
35 I- -

>.
I- • u 30 -ro

!-<
;::::j 25 I- -u
u
~ 20 l- • -..,
~

I-(J) 15 -u • !-<
(J) •

p... 10 l- • -
~ 1-• • 5 - -
(J) I-- - -.- - - - -
u • •• • •
~ 0
(J) •
!-< -(J)

-5 - ••
::t: • -.....
0 -10 I- -

-15 I- -
-20

I

0 5 10 15 20 25 30 35 40 45

Data Set Index

Figure 3.15: Difference in accuracy between Naive Bayes using Cross
Validation (NB-CV) and CART with Boolean inputs (CART-Boolean) when
only single words were used to identify relevant articles. The average differ
ence is 3.82%, as shown by the dashed line. This is statistically significant far
beyond the 0.1% confidence level (Z=15, see Section 3.5).

109

NB-CV Accuracy Minus CART-Numeric Accuracy

45 .
•

40 r -
35 - • -

>-. 30 - -u ro • I-< • ;j 25 - -
u
u • <t: 20 - • -
4-' • C 15 - -(1) • • u • •

I-<
(1) 10 ~- • -p.. - - - - - - - - - - - -•• C 5 l- • ••• • -...... • •• • • • • •• .. -. (1) • • •• • u
C 0 • (1)
I-<
(1) -5 l- • -tt::
Q -10 r- -

-15 I- -
-20 I I

0 5 10 15 20 25 30 35 40 45

Data Set Index

Figure 3.16: Difference in accuracy between Naive Bayes using Cross
Validation (NB-CV) and CART with numeric inputs (CART-Numeric) when
only single words were used to identify relevant articles. The average differ
ence is 8.71 %, as shown by the dashed line. This is statistically significant far
beyond the 0.1% confidence level (Z=34, see Section 3.5).

110

ITRule CV-J: Accuracy with Phrases Minus Accuracy with Single Words

45 .
40 - -
35 - -

~
30 -u

ro
-

I-<
;:l 25 -u -
u
~ 20 - -......
I::: 15 il)

,... -
U
I-< --il) 10 r P-.
I::: --....... 5 I- ., -il)

1';'- !t...e u
I::: 0 -il)

- - --- - ---. .- .
........ -- -~~

-- -• ~ _ _ -..:: -___ 41100~_

- -- - -I-< -~ -5 r - -
.......
Cl -10 I- - -

-15 I- -
-20

0 20 40 60 80 100 120 140

Data Set Index

Figure 3.17: Difference in accuracy of Cross Validation using the J-measure
(ITRule CV-J) between using phrases without stop words and using only sin
gle words to identify relevant articles. The average difference is 1.37%, as
shown by the dashed line. This is statistically significant far beyond the 0.1%
confidence level (Z=6.8, see Section 3.5).

111

NB-CV: Accuracy with Phrases Minus Accuracy with Single Words

45

40 I- -
35 I- -

>.
30 I- -v

ro
~
;::l 25 r- -v v
~ 20 - -....
C 15 - -c;
v
~ • c; 10 ,... -p... -c • • • • .. • • . - 5 - • •• -
c;

~-~ ., -- -v - • _ ..!e -C 0 .~ c;
~ • c; -5 l- • - • -::t:: • . -Cl -10 '- -

-15 - - -
-20

0 20 40 60 80 100 120 140

Data Set Index

Figure 3.18: Difference in accuracy of Naive Bayes using Cross Validation
(NB-CV) between using phrases without stop words and using only single
words to identify relevant articles. The average difference is 0.58%, as shown
by the dashed line. This is statistically significant far beyond the 0.1% confi
dence level (Z=4.7, see Section 3.5).

112

SVM: Accuracy with Phrases Minus Accuracy with Single Words

45

40 - -
35 - -
30 - -
25 - -
20 - -
15 r- -
10 r-

• • • -
• • -•

• • •
-5 - • -

-10 r- -
•

-15 r- -
-20

0 5 10 15 20 25 30 35 40 45 50

Data Set Index

Figure 3.19: Difference in accuracy of the linear support vector machine
(SVM) between using phrases without stop words and using only single
words to identify relevant articles. The average difference is 0.66%, as shown
by the dashed line. This is statistically significant at the 0.2% confidence level
(Z=3.2, see Section 3.5).

:>-..
u ro
l-<
;:j
u
u

<r:
C
(l)
U
l-<
(l)

p...
C
(l)
u c
(l)
l-<

~
0

113

NN-Boolean-Decay: Accuracy with Phrases Minus Accuracy with Single
Words

45

40 r-

35 r-

30 r-

25 r-

20 -
15 -
10 - •

• •
5 - • • • • • • • • - ~ ----- • • -" • • - - -.- ...--•• • 0 - • • • •

-5 - •
-10 -
-15 -
-20

0 5 10 15 20 25 30 35 40

Data Set Index

-
-
-
-
-
-
-
-

-
-
-

45

Figure 3.20: Difference in accuracy of Neural Networks with Boolean inputs
using weight decay (NN-Boolean-Decay) between using phrases without stop
words and using only single words to identify relevant articles. The average
difference is 1.98%, as shown by the dashed line. This is statistically signifi
cant far beyond the 0.1% confidence level (Z=6.8, see Section 3.5).

114

CART-Boolean: Accuracy with Phrases Minus Accuracy with Single Words

45 . .
40 I- -

35 I- -
>. •
u 30 l- • -
('($
I-<
;:::i 25 - -
u
u

-< 20 r -
.......
s:: 15 ClJ I- -
U
I-<
ClJ 10 1-. -p...
s:: 5 I- -..... •
ClJ I- - - - - - .- - - - - - -u • s:: 0 • • ClJ
I-<
ClJ -5 I- -......

Cl -10 I- -
-15 I- -
-20

.
0 5 10 15 20 25 30 35 40 45

Data Set Index

Figure 3.21: Difference in accuracy of CART with Boolean inputs (CART
Boolean) between using phrases without stop words and using only single
words to identify relevant articles. The average difference is 1.81%, as shown
by the dashed line. This is statistically significant far beyond the 0.1% confi
dence level (Z=5.4, see Section 3.5).

115

NB-CV: Accuracy on Large Data Set Minus Accuracy on Small Data Set

20 I

--
is - -

>-u - -m 10 - -
I-<
;::i --- - -u -u - --<t:: 5 - -- --- .3!!. .. ~ _ - - ---~ - -(I) -u - -- - "- - --I-< 0 -- -(I)
p.. -~

-5 I- -(I)
u -~ -(I)
I-< -10 t- -(I)

Cl
-15 I- -

-20
0 10 20 30 40 50 60 70

Data Set Index

Figure 3.22: Improvement in accuracy of Naive Bayes using Cross Validation
(NB-CV) when adding more training examples. The average difference is
2.92%, as shown by the dashed line. As explained in the Section 4.2, NB-CV
was chosen for use in Poirot.

116

NB-CV: Accuracy vs. Training Set Size for "acq" Topic

100

90 - -
t ± ! !

80 -

I I
I ! -

I I 70 - ->,

I I u

I ro
1-4 60 - -::s ! u
u
<t: 50 I- -..
~
Cl)

40 I- -U
1-4
Cl)

p.,
30 I- -

20 I- -

10 I- -

0
10 100

Training Set Size

Figure 3.23: Improvement in accuracy of Naive Bayes using Cross Validation
(NB-CV) as a function of training set size for the "acq" topic which deals with
corporate acqusitions and mergers. For each training set size, 20 independent
data sets were generated. The data point represents the average accuracy on
the test data, while the error bar indicates the standard deviation of the accu
racy due to the variations in the training data. As explained in the Section
4.2, NB-CV was chosen for use in Poirot.

117

NB-CV: Accuracy vs. Training Set Size for "money supply" Topic

100

90 -

! ! I ! I I I -

I I ! I 80 -

I
-

70 -

I
-

:>..,
u ro
!-< 60 - -;::J
u
u

<t: 50 ~ -..... c
(l)

40 ~ -U
!-<
(l)

P-.
30 ~ -
20 ~ -

10 ~ -

0
.

10 100

Training Set Size

Figure 3.24: Improvement in accuracy of Naive Bayes using Cross Validation
(NB-CV) as a function of training set size for the "money supply" topic which
deals with Federal monetary policy. For each training set size, 20 indepen
dent data sets were generated. The data point represents the average accuracy
on the test data, while the error bar indicates the standard deviation of the ac
curacy due to the variations in the training data. As explained in Section 4.2,
NB-CV was chosen for use in Poirot.

>..
u
ro
I-<
;:::J
U
U

-<
~
Cl)
u
I-<
Cl)

p...
~
Cl)
u
~
Cl)
I-<
Cl)
0

118

ITRule CV-J: Accuracy with Relative Misclassification Cost Equal to Two
Minus Accuracy with Relative Misclassification Cost Equal to One

20

15 - -

10 r- -

5 r- -- - - ---a ,.- - • -- -.... -- • - -
-- --5 1-- -- --

-10 I- -

-15 - -

-20
a 20 40 60 80 100 120 140 160 180

Data Set Index

Figure 3.25: Difference in accuracy of Cross Validation using the J-measure
(ITRule CV-J) between using a relative misclassification cost of two and one.
Misclassification costs are discussed in Section 3.2. The average difference is
0.019%.

>.
u
C\i
I-<
;::i
u
u

<t:
~
!J.)
u
I-<
!J.)

p...
~
!J.)
u
~
!J.)
I-<
!J.)

'"'""' '"'""'
Cl

119

ITRule CV-J: Accuracy with Relative Misclassification Cost Equal to Two
Minus Accuracy with Relative Misclassification Cost Equal to Four

20

15 - -

10 - -
•

5 - . -

. -0
• - • • • • • • •

-5 - -

-10 - -

-15 - -

-20
I

0 20 40 60 80 100 120 140 160 180

Data Set Index

Figure 3.26: Difference in accuracy of Cross Validation using the J-measure
(ITRule CV-J) between using a relative misclassification cost of two and four.
Misclassification costs are discussed in Section 3.2. The average difference is
0.012%.

120

NB-CV: Accuracy with Relative Misclassification Cost Equal to Two Minus
Accuracy with Relative Misclassification Cost Equal to One

20

15 I- -
>, •
u

10 - -ro -I-<
;:J
U •
U • .-~ 5 - • - • -• • • • c • • - - • .- •
Q) --... '..:. • •• --u - -I-< 0 - - - - -- --• • Q) , . • • p.. - • • c • • -5 ,... -
Q)
u
C
Q)
I-< -10 ,... -
~ • •
.......
Cl

-15 - -

-20
I I I

0 20 40 60 80 100 120 140 160 180

Data Set Index

Figure 3.27: Difference in accuracy of Naive Bayes using Cross Validation
(NB-CV) between using a relative misclassification cost of two and one.
Misclassification costs are discussed in Section 3.2. The average difference is
0.54%.

121

NB-CV: Accuracy with Relative Misclassification Cost Equal to Two Minus
Accuracy with Relative Misclassification Cost Equal to Four

20 .

15 - -•
>. - -u

10 - • -Cii
l-; • ;::::l
u • • • u • • <t: 5 - - -•
!=: ~ • •• Il,) -_. .- . - • u 0 •
l-; • • J - -. . . Il,) • - -. P-. - - • • .-
!=: - • -5 l- • • -• • • Il,) •• .. u
!=:
Il,)
l-; -10 I- -Il,)

4-<
4-<
0

-15 I- -

-20
0 20 40 60 80 100 120 140 160 180

Data Set Index

Figure 3.28: Difference in accuracy of Naive Bayes using Cross Validation
(NB-CV) between using a relative misclassification cost of two and four.
Misclassification costs are discussed in Section 3.2. The average difference is
0.57%.

122

ITRule CV -J: Accuracy with Unfiltered Word Lists Minus
Accuracy with Filtered Word Lists

20 T

15 I- -
:>-.
u

I-ro 10 -
!-<
;j
U
u

<t: 5 I- -
..... • ~ • • a; • •• u • • -!-< 0 • a;
p....

• • •
~ •

-5 a; - . -
u
~ • a;
!-< -10 ~ - -

'-I-t
Cl

-15 - -

-20
0 5 10 15 20 25 30 35 40 45

Data Set Index

Figure 3.29: Difference in accuracy of Cross Validation using the J-measure
(ITRule CV -J) between using unfiltered and filtered word lists to identify rele
vant articles. The average difference is -0.36%.

123

NB-CV: Accuracy with Unfiltered Word Lists Minus
Accuracy with Filtered Word Lists

20 .

15 I- -
>..
u

10 -ro -
!-<
;::J
U
u

<t: 5 - -..... •
~
Q)
u

0 • • • !-< -Q)
p....
~

-5 I- -Q) •
u
~
Q)
!-< -10 r • -
~ •
.......
Cl

-15 I- -

-20
0 5 10 15 20 25 30 35 40 45

Data Set Index

Figure 3.30: Difference in accuracy of Naive Bayes using Cross Validation
(NB-CV) between using unfiltered and filtered word lists to identify relevant
articles. The average difference is -0.53%.

124

ITRule CV-J: Accuracy with Unstemmed Words Minus
Accuracy with Stemmed Words

20

15 r -
~
u r -ro 10 ;..;
;:j
u • u • • <t: 5 r -
..... • •
C • •
IJ.) • • • • • • • u

0 • ;..; • • IJ.) • • p... • • • ••
C • •

•
-5 - -

IJ.)
u
C •
IJ.)
;..;

-10 IJ.) - -......
Q

-15 - -
•

-20
I

0 5 10 15 20 25 30 35 40 45

Data Set Index

Figure 3.31: Difference in accuracy of Cross Validation using the J-measure
(ITRule CV-J) between using unstemmed and stemmed words to identify rel
evant articles. The average difference is -0.20%.

125

NB-CV: Accuracy with Unstemmed Words Minus
Accuracy with Stemmed Words

20

15 ~ -
>...
u 10 ell ~ -
I-<
;j • • u
u • <t: 5 - -

...... • • • ~ • • •
Q) ••
u 0 • •
I-< • • • • • Q) ••

P-. • •
~ • -5 ~ -
Q)
u
~
Q)
I-< -10 r- • -
~ • a

-15 r- -
•

-20
0 5 10 15 20 25 30 35 40 45

Data Set Index

Figure 3.32: Difference in accuracy of Naive Bayes using Cross Validation
(NB-CV) between using unstemmed and stemmed words to identify relevant
articles. The average difference is -0.33%.

20

15 -
;>..,
u
C\l 10 1-0

I-

;:J
U
U

<r: 5 I-
4-'
C
(l.)
u

0 1-0
(l.)

P-.
C .- -5 OJ

-
u
C
(l.)
1-0 -10 OJ -

""" """ .-Q
-15 -

-20

126

NB-CV: Accuracy with Unstemmed Words Minus
Accuracy with Stemmed Words

.

1 2 3 4 5 6 7 8 9

Topic Index

-

-

-

-

-

-

10 11

Figure 3.33: Difference in accuracy of Naive Bayes using Cross Validation
(NB-CV) between using unstemmed and stemmed words to identify relevant
articles. For each topic, 20 independent data sets were generated. The data
point represents the difference in average accuracy on the test data, while the
error bar indicates the standard deviation of the difference in accuracy. The
average difference in accuracy over all 11 topics is -0.52%. As explained in
the Section 4.2, NB-CV was chosen for use in Poirot.

127

Run time of the NB-CV algorithm

...--. 1 rJl
"'0

I=:
0
u
(J)
rJl

'--'
(J)

8
:p
I=:
;j
~

0.1

10 100

Number of Training Examples (N train)

Figure 3.34: The discrete points show the measured run times of the NB-CV
algorithm as a function of the number of training examples. The solid line
has the slope of N train- By comparing the data points and the line, it is evi
dent that the NB-CV run time is approximately proportional to N train-

..--..
U)

'"Cl
~
0
u
(l)
U)

'-"
(l)

S
'.P
r::
;:J

p::::

1

0.1
10

128

Run time of the CART-Boolean algorithm

•

100

Number of Training Examples (N train)

•

•
•

Figure 3.35: The discrete points show the measured run times of the CART
Boolean algorithm as a function of the number of training examples. The
solid line has the slope of YNtrain. By comparing the data points and the line,
it appears that the CART run time is approximately proportional to Y N train·

129

Run time of the SVM algorithm when using 100 words and phrases

1 .---------------------~--------_r--------------------~

Q)

S
. .0 0.1

a

10 100

Number of Training Examples (N train)

Figure 3.36: The discrete points show the measured run times of the SVM al
gorithm as a function of the number of training examples. The solid line has
the slope of N train" By comparing the data points and the line, it is evident
that the SVM run time is approximately proportional to N train" Since cross
validation was done by a separate program and was therefore very slow, as ex
plained in Section 3.4.5, the time required for this computation was not mea
sured. Instead, the run time was measured for the case when the top 100
words and phrases were used as input variables. If all the computations were
done in one program, cross validation would, in the worst case, produce an
additional factor of N train in the computational complexity.

130

Appendix 3-A: List of stop words

a being et most study
about below few much such
above best for must take
according better forward my taken
across between from near takes
actual beyond further nearly taking
added birthday get next than
after both gIve not that
against but given now the
ahead by giving of their
all can has off them
almost certain have on then
alone come having only there
along comes his onto therefrom
also coming honor or these
among completely how other they
amongst concerning in our this
an consider inside out those
and considered instead outside through
and-or considering into over throughout
and/or consisting IS overall to
anon de it per together
another department items possibly toward
any der its pt towards
are despite just put under
arising discussion let really undergoing
around do lets regarding up
as does little reprinted upon
at doesnt look same upward
award doing looks seen various
away down made several versus
be dr make should very
because du makes shown via
become due making since vol
becomes during many so-called vols
been each meet some vs
before either meets spp was
behind especially more studies way

131

ways
we
were
what
whats
when
where
which
while
whither
who
whom
whos
whose
why
with
within
without
yet
you
your

132

Appendix 3-B: The analytical expression for computing the precisionlrecall

breakeven point (PRBEP) based on the Probability of

Relevance (PRR) algorithm

The Probability of Relevance (PRR) formula for computing the

precision/recall breakeven point is derived in Raghavan et al. (1989). Only a

short summary is presented here.

Elaborating on the discussion in Section 3.7, assume that the threshold

for predicting "relevant" is initially set larger than any value in the sorted list

of test articles, and that this threshold is then lowered so that it is placed

successively between each pair of adjacent values in this sorted list. In most

cases, the list will actually consist of clusters of the same value, so lowering

the threshold by one step actually moves past several test articles instead of

only one. Let the numbers of relevant and irrelevant articles above the

threshold be represented by nr,prev and nr,prev, respectively, and the numbers

of relevant and irrelevant articles in the cluster, C, directly below the

threshold be represented byn r and ny, respectively. If the precision is greater

than the recall when the threshold is above C and visa versa when the

threshold is below C, and if N r denotes the total number of relevant articles

in the test data, then the PRR formula for computing the breakeven point

where the precision, P, is equal to the recall, R, can be derived from Theorem

3.5 in Raghavan et al. (1989). The result is:

P=R=
N _ nr,prev_

r - nr,prev + nr nr

N r (~: + 1)

133

Chapter 4

The design of the autonomous agent Poirot

134

4.0. Introduction

The primary goal of the research presented in this thesis was to develop

an autonomous computer program that can help W orId Wide Web users stay

up to date on any topic of interest.1 The resulting system is called Poirot be

cause in a sense, it acts like a dedicated private investigator. It is designed to

repeatedly search the W orId Wide Web and interact with the user in order to

learn why particular web pages are relevant and others are not. A block dia

gram of the system is shown in Figure 4.1.2

4.1. An example of a brief session with Poirot

The simplest way to explain how the user can interact with Poi rot is to

provide an example. Figures 4.2 through 4.7 show screen shots from an actu

al session with Poirot. The goal of the session was to find web pages related

to Dr. Rodney Goodman and his research at the California Institute of

Technology. In order to make the task challenging, the user asked Poirot to

search for web pages containing only the word "Goodman," as illustrated in

Figure 4.2. After Poirot displayed the initial search results depicted in Figure

4.3, the user studied a few of the web pages and rated them as either relevant

(+) or irrelevant (-), as shown in Figure 4.4. Figure 4.5 shows the window

after the user requested that Poirot train its classifier on the rated pages. Note

that in this case, only the relevant pages received a high score from the re-

1 As an example, medical doctors might use the program to keep track of new developments
in their field, including both legitimate new treatments that might be recommended to their
patients and drugsthat should be avoided. Poirot's autonomy should be particularly valuable
in this case because using it would free physicians from having to search the Web manually and
thereby allow them to spend more time with their patients.

2 The software currently runs only on UNIX systems. The algorithms are not system depen
dent, however, so the only obstacle to implementing Poirot on Macintosh and Windows systems
is the effort required to translate the source code.

135

suIting classifier. The words chosen by Poirot for use In the classifier are

shown in Figure 4.6. The user subsequently requested that Poirot search for

web pages matching these new words. The results of this search are displayed

in Figure 4.7. Note that the top ranked pages are all relevant to Dr.

Goodman's research, i.e., his projects, his collaborators, and the Caltech

Electrical Engineering Department. It is also important to note that these

pages are not limited to Dr. Goodman personally, i.e., that the results are

much broader than the initial keyword "Goodman."

4.1.1. General description of the user's interaction with Poirot

Before Poirot can start on a new topic, it must be provided with key

words pertaining to that topic, as illustrated in Figure 4.2. Poi rot sends the

keywords to several search engines3 in order to obtain web pages for the user

to rate. If the user knows of other relevant web pages, they can be added

manually.

Once Poirot has downloaded the web pages, it displays a list of their titles

in a separate window devoted to the topic. An example is shown in Figure

4.3. The user can double click on an item in the list to display the correspond

ing web page in a web browser. To indicate that a page is or is not relevant,

the user must rate the page as + or -, respectively, in Poirot's window, as il-

lustrated in Figure 4.4. If the user follows a link from one of these pages and

finds another relevant page, this can be added manually. A third designation,

"Index," denoted by 0, is also provided to distinguish pages that consist pri

marily of links to other pages. Instead of rating these index pages, Poirot uses

3 Several search engines are required because each engine covers only a small fraction of the
web (Selberg and Etzioni, 1995; Lawrence and Giles, 1998).

136

them as starting points to search for additional relevant pages. The use of the

Index designation is demonstrated in Figure 4.7.

The next step is for Poirot to train a classifier on the pages that have been

rated. Simultaneously, it also follows the links from the rated web pages and

index pages in search of other relevant pages. Once the training is complete,

Poirot uses the words from the classifier to retrieve more pages from the web

search engines. Finally, Poirot rates all the newly discovered pages.

Since downloading and analyzing many web pages can potentially take

several hours, the process is usually performed at night so the results will be

available to the user the next morning. Since there is less traffic on the

Internet at night, this strategy has the additional benefit that the downloading

will require less computer time than during the day. The next morning,

when the user starts Poirot again, it presents the list of all the newly rated

pages so the user can study them and then provide more feedback. An exam

ple of the results is shown in Figure 4.7.

The process outlined above can be repeated indefinitely. The classifier is

only retrained if the user changes any of the ratings or adds new pages. The

web search engines are only contacted if the list of words used by the classifier

changes significantly, i.e., more than 10% of the words are different, or if they

haven't been contacted within a user specified interval, e.g., one month. In

addition, known web pages are periodically retrieved and checked for

changes. As discussed in Section 4.3, a separate rating indicates whether or

not the changes are important.

137

Poirot Core Poirot Interfaces Outside World

I I
User Interface ... Web Browser ... Web Browser I Interface

I ~

I I
.4~

I I

"
I I

I I
Topic - ... Web Page - ... Web

Manager I Downloader I Server
I I

J
I

"
I I

I I
Naive Bayes

I
Search Engine - ... Search

Classifier Interface I Engine
I I

Figure 4.1: System block diagram for the autonomous agent called Poirot

138

Figure 4.2: Screen shot from Poirot showing the dialog window where the
user enters one or more initial keywords describing a topic of interest

139

Gun Show.lndex
Ida Long Goodman Memorial Library - st. John, KS
iDomain-\lIIwr rfo .com

Jim Goodman's Home Page
MutuaIFunds-. IGBeutel .· GoOdmanFunds
personal Page- ErikGoodman
Professor RodneyM.F. Goodman
Professor Rodney M.Goodman
Scientology: LeisaGoodman: Media Director
Scientology: LeisaGoodman: Media Director
This site has moved · ~ The Fans of John Goodman
Tim Goodman I eXaminer.com
Washi m: Degrees of
W~lc rn~nin MUSiC dman

N
N
N
N
N
N
N
N 1 month
N 1 month
N 1 month
N 1 month
N 1 month
N 1 month
N 1 month
N 1 month

Figure 4.3: Screen shot showing the results of Poirot's initial search for web
pages containing the word "Goodman." The pages are listed in alphabetical
order by title. The "N" in the Status column stands for "New" and indicates
that the user has not yet viewed the page with a web browser. The values in
the "Check" and "Interval" columns specify how often Poirot should check
for changes in each web page.

!

140

. ' Goodman
··.w " .'. . "''' ''. ''~.''''_w.~._" " ".''' F".· . "."" .. _ ..

; TopicS File Edit .' Topic .. Preferences ~ Help " ,.

Goodman Family Home Page
Goodman Oaks Church of Christ
Gun Show Index

.. ..

Ida Long Goodman Memorial Library - St John, KS
iDomain - www.rfo.com
Jim Goodman's Horne Page
Mutual Funds - IG Beutel Goodman Funds
Personal Page - Erik Goodman

+ Professor Rodney M, F, Goodman
+ Professor Rodney M, Goodman

Scientology: Leisa Goodman: Media Director
Scientology: Lei sa Goodman: Media Director
This site has moved - The Fans of John Goodman
Tim Goodman I eXaminer-com
Washingtonpostcom: Degrees of Separation
Welcome to Women in Music with Laney Goodman

.. ,._,'.'" ... ' ,.. "'.

. rStatuS 'l'checkllnterv8l1 [el l

.c

N 1 month I~ ,
N 1 month
N 1 month
N 1 month
N 1 month

1 month
N

N
N
N
N
N
N

1 month
1 month
1 month
1 month
1 month
1 month
1 month
1 month
1 month ,~

~
1 month /A

I

Figure 4.4: Screen shot from Poirot after the user has studied and rated a few
of the web pages by placing + and - symbols in the Opinion column

141

i ,I:'
.. -- .. ~~. .. -• . ' -.......... ~ , .. ,... ._'.. ... -_ •.. -- ,.,._ .. _• -~. - "7":Goodman " y' T " . 1,'1 I :' ... , " ., ",.,.'." "",~."" .. ,,.", ./ :{." ';:':':-"YY,:'W, , ~..:' ':::~' // 'X1::<'.lW"·' · ~~_' .". '-~ ' ..

" Ii "
;; Y".- .-"'"

Topics File Edit Topic Preferences , Help i
;c. ,.,.

! m121 dt::J&b Add and rate+
.'.", ;: '.' ..;/

i I ,
.. •. .. ",

L.~rScore I, 0Elnioal
........ ,-,,,, TItle'.; 'V" . " '_ 'A ' .""' , , _"M

"1:' slaiuslCileck 1 jalerv8i I i~
I
i 10 + Professor Rodney M, F. Goodman 1 month

10 + Professor Rodney M. Goodman 1 month
5 Washingtonpostcom: Degrees of Separation N 1 month
5 - .Jim Goodman's Horne Page 1 month .,

! 1 - Personal Page - Erik Goodman 1 month
1 Tim Goodman I eXaminer.com N 1 month "

; 1 Famil y Tree Maker's Genealogy Site N 1 month
1 Mutual Funds - IG Beutel Goodman Funds N 1 month
1 Benny Goodman N 1 month
1 Allegra Goodman's Home Page N 1 month
1 Benny_ Goodman N 1 month
1 - Dr ~Io n athan Goodman 1 month ~"

1 Goodies from Goodman " N 1 month !
1 Goodman and Carr N 1 month I

1 Goodman Family Home Page N 1 month f~ i
r 1 Goodman Oaks Church of Christ N 1 month I ~ 1J.i ...•.. 'v'" •• ~. .;;;; ", cc·.,· _ ...

Figure 4.5: Screen shot from Poirot after it has constructed a classifier based
on the ratings provided by the user in the Opinion column. The words cho
sen by the classifier are shown in Figure 4.6. The numeric values in the Score
column are the output from the classifier. The pages are sorted in descending
order of this rating. Note that the pages rated + by the user have the highest
numeric rating, and that the pages rated - by the user have a lower numeric
rating. As explained in Section 4.2.1, a numeric rating greater than five indi
cates that the web page is relevant.

142

expected accuracy (approximate): 100%

prior p{relevant) = 0.103448

"electrical engineering"
if not there: p{relevant) = 0.0359801
if there: p{relevant) = 0.935484

"information processing"
if not there: p{relevant) = 0.0359801
if there: p(relevant) = 0.935484

"microsystems"
if not there:
if there:

"rodney"
if not there:
if there:

p{relevant) 0.0359801
p{relevant) = 0.935484

p{relevant) = 0.0359801
p{relevant) = 0.935484

"rodney goodman"
if not there: p{relevant) = 0.0359801
if there: p(relevant) = 0.935484

"signal"
if not there:
if there:

p{relevant) = 0.0359801
p{relevant) = 0.935484

"signal processing"
if not there: p{relevant) 0.0359801
if there: p{relevant) = 0.935484

"vlsi"
if not there:
if there:

"information"
if not there:
if there:

"work"
if not there:
if there:

"research"
if not there :
if there:

p(relevant) 0.0359801
p(relevant) 0.935484

p{relevant) = 0.0584677
p{relevant) = 0.215881

p(relevant) = 0.0467742
p{relevant) = 0.311828

p(relevant) 0 . 0550285
p(relevant) = 0.233871

Figure 4.6: Output from Poi rot showing all the words and phrases used by
the classifier that was constructed from the user's feedback displayed in
Figure 4.4. Also shown are the probabilities that a web page is relevant if the
word or phrase enclosed in quotation marks is present or absent.

143

Professor· RodneyM. F. Goodman
10 ProfessorHodney M.Goodman
10 TheWWW Virtual Library: Computing
10 Title: ActivEl Drag Reduction using Neural Networks
10 ~ lEE Booksc:Te.lecommunicationsSeries
10 '0 IEEE CAS Society Technical Comrnittees
10 Digital Signal Processing
10 The DATA CenterRoster
10 Christof Koch's Home Page
10 David G. Stork,MLP group at the California Research Center
10 Signal Processing and Artificial Neural Networks Lab,(SPANN LAB) Dept
10 ECAL97 - "-"- Papers to appear in Proceedings
1 0 ntrol · automation.

Figure 4.7: Screen shot showing the results of Poirot's second search for web
pages. This search used the words and phrases from the classifier shown in
Figure 4.6 instead of the original keywords. The numeric values in the Score
column are the output from Poirot's classifier. Note that both pages which
the user rated as + are near the top of the list, and that all the pages that are
shown pertain to Dr. Goodman's research interests. Also, note that the user
has marked several of the items as index pages. These provide excellent start
ing points for further exploration of the topic.

144

4.1.2. A note on obtaining feedback from the user

In order to minimize the number of questions that the user must an

swer, some systems have been designed to use indirect methods of measuring

the relevance of a web page. One popular approach is to assume that the rele

vance is proportional to the amount of time that the user spends studying

the page (Morita and Shinoda, 1994; Voigt, 1995; Mladenic, 1996; Nichols,

1998). However, since Poi rot does not run inside web browsers, there is no

way to measure this time interval. Moreover, the question of how the time

is spent cannot be answered without actually asking the user. The user might

for instance have been distracted or simply decided to take a break instead of

studying the web page. If the user did actually spend the time studying the

page, however, it might simply have taken a while to decide that it was not

relevant, or the user might have spent the time because it was relevant to a

different topic. Conversely, if the user does not spend much time on a page,

it might still be relevant, but the user might have decided to follow an inter

esting link near the top of the page. These uncertainties add an unacceptable

amount of noise to the training data. Manual rating by the user is therefore

the most reliable approach. It should be noted, however, that if an accurate

method of obtaining implicit feedback can be found, then the NB-CV algo

rithm will be able to use this information to construct an accurate classifier.

145

4.2. Description of Poirot's page rating algorithm

In order to simplify the problem, Poirot's learning algorithm is designed

to work on only one topic at a time. Web pages that previously have been

rated by the user as germane to other topics are utilized as additional negative

training examples for the current topic. This approach eliminates the need to

maintain a list of irrelevant web pages for each topic.

The experimental results presented in the previous chapter show that

the accuracies of the NB-CV, ITRule CV-J, and SVM algorithms are essential

ly identical. Moreover, all three perform significantly better than the other

algorithms that were tested. Thus, from this stand point, one could use any

of them in Poirot.4 However, as explained in Section 3.4.5, the implementa

tion of the SVM algorithm is very slow because cross validation is performed

by a separate program. The current implementation of the IT Rule CV-J algo

rithm is also slow because it is disk-based in order to allow it to be used on ex-

tremely large data sets. Rewriting either the SVM or the ITRule software

would require a considerable amount of work. Thus, since Poirot only needs

to handle relatively small data sets, it uses the much faster NB-CV imple

mentation that was employed during the experiments discussed in Chapter 3.

In the web pages that the user has rated, all single words and all two and

three word phrases are potential input features. The classifier uses the pres

ence or absence of the words and phrases chosen by cross validation to decide

whether or not a new page is likely to be relevant or irrelevant. Depending

on the probabilities that are calculated from the training data, the presence of

a word or phrase may increase or decrease the likelihood of relevancy.

4 As discussed in Section 3.4.2, NB-CV and ITRule CV-J can be considered variants of the
same algorithm.

146

It should be noted that it is the NB-CV algorithm which makes the final

decision concerning which words and phrases to use. Thus, the classifier is

not constrained to use the keywords initially provided by the users since there

is no guarantee that these words are the best features for discriminating be

tween relevant and irrelevant pages. In some rare situations, the initial key

words might not even occur in the pages that the user has rated, in which

case no statistics could even be computed. However, in practice, the key

words will almost always occur in the rated pages. Thus, the keywords will

usually be included in the list of potential input features.

Poirot's learning algorithm only considers the unformatted text of the

web page, i.e., fonts, styles, and paragraph breaks are ignored. Some studies

have attempted to use formatting to select the important words from each

web page (Krulwich and Burkey, 1997). There are two reasons why this ap

proach is not used in Poirot. First, formatting tends to vary widely between

different web sites and is non-existent in plain text (.txt) web pages. Second,

rigorous statistical analysis is a far more robust method of choosing words.

Headlines and other emphasized words are only meant to provide visual

cues while the user is reading the web page. A word may be emphasized for a

wide variety of reasons including such trivial situations as italicizing "and"

between two statements that are related in an unexpected way. Thus, there is

no guarantee that such words are correlated with the reader's judgment of

relevance. At best, they may correlate with the author's interests. A direction

for future research might be to explore the possibility of using emphasis to

give particular words more weight by, for example, treating them as if they

5 As demonstrated by the example session in Section 4.1, this can be very important for
serendipity, i.e., making fortuitous, relevant discoveries beyond the scope of the original inten
tion and related keywords.

147

had been repeated several times, with the number of repetitions proportional

to the level of emphasis. However, since none of the classifiers that were

tested in Chapter 3 were able to use word frequency effectively, and since the

Reuters-21578 data set which was used for most of the experiments did not

contain any formatting information, this issue was not explored.

Poirot's learning algorithm also ignores the images on a web page.

Analyzing the images is beyond the scope of this thesis because it is an entire

ly different field of research. At the present time, the field is considered to be

wide open, and no proven algorithm is available for use in Poirot. However,

ignoring images is not a serious deficiency as long as the web page includes

captions or other text describing the images.

4.2.1. Computing the rating displayed in the Score column

Misclassifying a relevant page is normally considered to be more serious

than misclassifying an irrelevant page. Poirot is therefore designed to mini

mize the amount of trouble caused by its mistakes rather than merely mini

mizing the number of mistakes.6 Mathematically, one can define the amount

of trouble caused by misclassifying an irrelevant page to be one and then use

the positive parameter C to represent the amount of trouble caused by mis

classifying a relevant page. Under the assumption that the probabilities pro

duced by the classifier are correct, the expected amount of trouble that will be

caused by predicting "relevant" is O·p(r Ipage) + l·p(r Ipage), while the expect

ed amount of trouble that will be caused by predicting "irrelevant" is

Cp(r Ipage) + O·p(r Ipage). Here, p(r Ipage) represents the probability of the

6 This is a special case of the general concept of risk minimization discussed by Duda and
Hart (1973).

148

web page being relevant, while p(r Ipage) represents the probability of the

page being irrelevant. Poirot minimizes the expected amount of trouble by

predicting "relevant" when this decision will cause less trouble, i.e., when

p(r I page) < C p(r I page)

This formula is intuitively reasonable because when the value of C is in

creased, a larger range of the output probability, p(r Ipage), is mapped to the

decision "relevant." Thus, the page is only classified as irrelevant if this is

overwhelmingly likely. Based on the results presented in Section 3.5.3, C was

set equal to two in Poirot.

Since C is not equal to one, the breakpoint between "relevant" and "not

relevant" does not occur at the midpoint of the classifier's output, i.e., not

where p(r Ipage) is equal to p(r Ipage). In order to compute a symmetric rating

between zero and ten that can be displayed to the user, Poirot first defines the

function:

Rl = C p(r I page) - p(r I page)

A web page is considered to be relevant when the value of this function

is greater than zero, i.e., when p(r Ipage) > 1/(C+1). Since the value of R1lies

in the interval [-l,C], an intermediate function, R 2, is introduced to shift and

scale the value Rl so that the result lies in the interval [0,1]:

Rl+1 (Cp(rlpage)-p(rlpage»)+l (I)
R2 = C + 1 = C + 1 = P r page

If one defines n=C+l, then the breakpoint between "relevant" and "not

relevant" occurs when R2 = lin. In order to shift this breakpoint to five and

achieve symmetry in the interval [0, 10], a parabola was fitted to the three

points (0,0), (lin, 5), and (1, 10). This provides a smooth transformation of

149

the interval [0, 1] to [0, 10]. The resulting rating function is:

(
n (2-n)Ri+(n2-2)R2) 5

R = 10 2 (n-l) = 2 [7 - 3 p(r I page)] p(r I page)

The rounded off value of R is the page rating displayed to the user in the

Score column, as illustrated in Figures 4.5 and 4.7. At the breakpoint between

"relevant" and "not relevant," R=5, and p(r Ipage)=1/3.

4.3. Reporting significant changes to a web page since it was last visited

The previous sections have dealt with the problem of how to rate a

newly discovered web page. These are the ratings displayed in the Score

column in Figures 4.5 and 4.7. Since the World Wide Web is extremly dy

namic, Poi rot must also periodically revisit web pages to check for significant

changes, i.e., addition, deletion, or modification of relevant information.

However, insignificant modifications such as changes in font or spelling and

grammar corrections should not be reported. In order to filter out trivial al

terations, the changes to the web page are given a rating, Rchange' Note that

this change rating is different from the rating assigned to the entire page.

When Rchange is non-zero, it is displayed in the Status column using the

transformation discussed in Section 4.2.1, as illustrated in Figure 4.8.7

The change in the rating of the entire page, Rnew-Rold' is usually the

most important contribution to Rchange' However, significant additions and

deletions must also be taken into account because it is possible for Rnew and

7 The number of new links on the web page to other web pages, images, PostScript files, etc.,
is also often of interest, but for different reasons, so this is displayed separately in the Status
column, as illustrated in Figure 4.8.

150

RaId to be nearly equaJ.8 Poirot therefore computes Rchange as the maximum of

the change in the rating of the entire page, the rating of the text that was

added, if any, and the rating of the text that was removed, if ant:

Rchange = max (IRnew - Ral~' w(.t1N add) Radd, w(.t1N del) Rdel)
N new Nald

Here, Rnew is the rating of the new version of the page, RaId is the rating

of the old version of the page, Radd is the rating of the added text, and Rdel is

the rating of the deleted text. The "max" function is used because each of the

three terms represents a separate reason for the user to re-read the web page,

and one good reason is enough to warrant bringing the page to the user's at

tention. The absolute value is used in the first term because a large decrease

in relevance may be just as important as a large increase.

The function w is a weighing function that reduces the effect of Radd and

Rdel when the number of words that were added to the new version, .t1N add' is

small relative to the total number of words in the new version, N new' or

when the number of words that were deleted from the old version, .t1N del' is

small relative to the total number of words in the old version, N old, respec

tively. As an example of why this is appropriate, the addition of a sentence to

a long thesis is probably not nearly as important as the addition of a para

graph to a short abstract. Since additions and deletions may be equally inter-

BTwo examples of a change that does not affect the overall rating are (1) significant addi
tions to a page that already has a high rating and (2) significant removals that leave behind
enough keywords so that the rating remains high.

9 The current implementation of Poirot uses the UNIX utility program called "diff" to find
the text that was added or removed. A paragraph formatted version of the text is compared,
not the raw Hypertext Mark-up Language (HTML) source code. When "diff" reports that a
paragraph has changed, this is treated as an addition if the new text is morethan twice the
length of the old text, and a removal if the old text is more than twice the length of the new
text.

151

esting, the weights for Radd and Rdel have the same form. The functional

form that Poirot uses for w is:

w(x)
o ~ x < Xo

The value of Xo is set to 0.1 so that Radd and Rdel are only reduced if the total

size of the additions or deletions is less than 10% of the total length of the

web page.

Unfortunately, this method of computing Rchange cannot detect all signif

icant changes. As an example, the addition or removal of the word "not" can

be quite significant, but since "not" is a so called stop word that Poirot ig

nores, this change will never be considered significant. lO More generally, it is

often possible to rewrite a paragraph so that it contains the same keywords

but says something very different. Without a complete understanding of the

text, such changes cannot be correctly labeled as significant. The only solu

tion appears to be to display Rchange for all pages that have changed and to

warn the user that a low value does not guarantee that the changes are not

significant. This is therefore the approach used in the design of Poirot.

It is also worth noting that web pages may change at different rates.

Some pages change suddenly because the maintainer decides to restructure,

rewrite, or even replace the entire text. Other pages change gradually as the

maintainer adds or modifies information bit by bit over a long period of time.

10 One could check for the special case of "not" occurring in front of a keyword, but there are
two problems with this approach. First, English is flexible enough to allow one to obtain the
same meaning by placing "not" somewhere else in the sentence. The second and more serious
problem is that one will never run out of special cases that need to be fixed. This endless spiral
leads inevitably to the topic of Natural Language Processing (NLP). However, since this is a
very different research problem, it was deemed to be beyond the scope of this thesis.

152

In order to correctly report the cumulative effect of gradual changes, Poirot

calculates Rchange based on the changes from the user's last visit instead of

Poirot's last visit. ll In this way, a page that repeatedly undergoes minor

changes may eventually acquire a large Rchange and thus rise to the top of the

list where it will be noticed by the user.

10
10
10
10

10

rnod ifiedtoTe levant 10
+ relevant modification counted as addedtext, same links 10

rele'./ant modification notcounted as added text 10
+ relevant modification notcounted as added text, 2 new links 1

lnew link
+ added irrelevant text

added irrele'/snt text

2
1

1 month
1 month
1 month
1 month
1 month
1 month
1 month

Figure 4.8: Screen shot from Poirot showing how the rating, Rchange' which is
assigned to the changes in each web page is displayed on the left-hand side of
the Status column. Rchange is different from the rating assigned to the entire
page which is displayed in the Score column. Note that the number of new
links is displayed separately on the right-hand side of the Status column.
Also note that the pages are sorted by the value of Rchange' rather than by the
main rating displayed in the Score column.

Unlike the other screen shots, this one does use actual web pages. Since it is
not possible to modify web pages created by somebody else, it was necessary to
create a set of simple test pages. The Title column in the above screen shot is
used to explain the changes that were made to each test page so that the val
ues displayed in the Status column can be interpreted correctly.

11 The user is assumed to have visited a page if he double clicks on the page in Poirot's list,
and at least 30 seconds elapse before he double clicks on another page in the list.

153

4.4. Sharing relevant pages with other Poirot users via index pages

The previous sections have discussed the problem of filtering the results

returned by web search engines. Filtering is necessary because search engines

typically return more irrelevant pages than relevant pages. If one instead

were able to search web pages discovered by other users with similar interests,

then the signal-to-noise ratio would presumably be much higher since more

pages would be relevant.

One challenge associated with this method is to disseminate each user's

discoveries. Poirot provides a very simple, yet powerful mechanism to ac

complish this task. For each topic, Poirot creates an index page ranking all

the discovered web pages. Other Poirot users may find this topic index page

via a web search engine or by personal communication. If they add the page

to their own lists of web pages on the topic and designate the page as an index

page, i.e. 0, Poirot will automatically rate all the pages mentioned and watch

for the addition of links to other pages. 12

In order to make it easy for search engines to find topic index pages creat

ed by Poi rot, the program generates a master index web page that contains

links to all the individual topic index pages. A user only has to add a single

link from his home page to this master index page in order to provide full ac

cess to all the topics.13

12 Poirot "signs" the index pages that it creates by including its name in the meta informa
tion, as illustrated in Figure 4.9. This allows Poirot to recognize these pages when they are re
turned by a search engine. Poirot can then automatically label the pages as index pages in
stead of having to wait for the user to study them.

13 For this method to work, the user's home page mustbe easily locatable by search engines.
Poirot cannot enforce this, butit is not a problem because users normally have a strongincentive
to ensure that the requirement is satisfied.

154

The likelihood that a search engine will return the topic index page in

response to a query from another Poirot user is improved by explicitly includ

ing the words employed by the classifier on the index page via the special

"meta" tag, as illustrated in Figure 4.9. Most search engines give significant

weight to such words. In addition, on each index page, Poirot uses the title of

each listed web page to anchor the link to the actual web page, as depicted in

Figures 4.9 and 4.10. These titles often include words that are strongly corre

lated with the topic, thereby further increasing the probability that the index

page will be returned during a search.

In addition to the improvement in the signal-to-noise ratio, there is an

other reason why using an index page created by Poirot instead of the results

from a search engine can significantly improve the accuracy of Poirot's rat

ings. In general, the meaning of a word depends on the context in which it is

used. This is the primary theoretical objection to computing ratings based

only on the presence or absence of words.14 Including phrases helps some

what since they tend to have fewer possible meanings. However, the best

way to ensure that a word has a particular meaning is to restrict the topic of

discussion. Utilizing index pages created by Poirot users with similar inter

ests enforces this constraint. Since the words used by the classifier are likely

to have the desired meaning, Poirot is less likely to make mistakes in this

case than when evaluating web pages returned from a keyword search of all

the web pages known to a search engine.

14 The results presented in Chapter 3 indicate that this objection is apparently not a serious
problem in practice.

155

Poirot's method of sharing discoveries can also aid serendipity. Each

user will have a unique approach to a given topic which will be evident from

the contents of the index page. By presenting the union of these index pages,

Poirot may provide some users with ideas that would not have occurred to

them if they instead had worked in isolation.

Previous research has estimated the relevance of an item to a given user

directly from the ratings assigned to the item by other users (Shardanand and

Maes, 1995; Alspector et al., 1997; Billsus and Pazzani, 1998; Herlocker et al.,

1999). This approach is called collaborative filtering. It requires information

about how well matched the interests of the users are. If there is little over-

lap between the subsets of items that each user has rated, as is very likely in

the case of web pages since there is effectively an unlimited number of them,

then this may degenerate into pure guessing. IS In contrast, Poirot's approach

ensures that all ratings are computed from each individual user's classifier,

thereby eliminating the possibility of not having any information from

which to calculate a rating. This is very similar to the approach used in the

Do-I-Care system (Starr et al., 1996), except that they only disseminated the

index pages through direct personal communication, not via existing web

search engines. Poirot's method is therefore more efficient because it requires

negligible effort to reach everybody on the Internet.

15 Most collaborative filtering systems are designed to work in a very restricted domain,
e.g., music, movies, or single topic Usenet newsgroups. In such restricted domains, it is much
easier to find several users who have rated the same items.

156

<html>

<head>
<title> Index Page for "Goodman" </title>
<meta name=lIdescription ll content=IIPoirot Index Page ll >
<meta name=lIkeywords ll content=lI e l ectrical engineering, infor
mation processing, microsystems, rodney, rodney goodman, sig
nal, signal processing, vlsi ll >
</head>

<body>

<h3> Index Page for "Goodman" </h3>

Professor
Rodney M. Goodman

<p>
Professor
Rodney M. F. Goodman

</body>
</html>

Figure 4.9: Hypertext Mark-up Language (HTML) source code for the topic
index page generated by Poirot from the topic "Goodman" shown in Figure
4.5. The "meta" information near the top specifies the keywords that are rele
vant to the topic so that web search engines can exploit them.

Index Page for "Goodman"

Professor Rodney M. Goodman

Professor Rodney M. F. Goodman

Figure 4.10: The result of displaying the source code from Figure 4.9 in a web
browser. The meta information is not displayed but is taken into account by
search engines. Underlining indicates that the text is the anchor for a link to
another page. The Universal Resource Locator (URL) for the page comes
from the hypertext reference (href) specification in the source code of Figure
4.9. The URL is not displayed, but when the user clicks on the text with the
mouse cursor, the web browser will display the page.

157

4.5. Miscellaneous features provided by Poirot

4.5.1. User interface design

Poirot's user interface is designed with the idea in mind that all relevant

information should be available to the user. However, in order to prevent

the user from feeling overwhelmed, it should also be easy to ignore as much

as possible. The various ratings and other information provided by Poirot

are therefore discreetly placed in peripheral columns in the windows, as il

lustrated in Figure 4.8. Furthermore, the user can choose to have Poirot sort

the web pages by either the main rating, which is displayed in the Score

column (dr. Figure 4.5), or the change rating, which is displayed in the Status

column (dr. Figure 4.8). In this way, one does not have to manually inspect

the values. Moreover, the values that indicate "relevant" are displayed in

bold so it is easier to find the cutoff between relevant and irrelevant pages. 16

In addition, information about the performance of the learning algorithm,

such as the words that are used and the expected probability of correctly rating

new web pages, is available on demand in separate windows, as shown in

Figure 4.6.

4.5.2. Avoiding loss of information

Web pages are sometimes deleted or moved to different locations.

When this happens, Poirot displays an X in the Status column to indicate

that the page is unavailable. The information is not lost, however, because

16 Since the data used in Chapter 3 only provides a Boolean measure of relevancy, it is not
certain that a lower rating is less relevant than a higher rating, e.g., that a rating of eight
will be less relevant than a rating of ten. However, since the web pages are displayed in a lis t
and must therefore be presented in some particular order, sorting in descending order of rating
seems least likely to confuse the user.

158

the content of every relevant page that Poirot has located is stored in a cache.

Poirot provides the option to view the cached version.

Poirot also provides the option to search through the cache for relevant

information17
, e.g., particular names, statistics, or quotations. This approach

requires both less time and effort than using a web search engine. The reason

is that only relevant web pages are searched, not everything that would be re

turned by a web search engine. This is especially helpful when the set of

pages grows very large because, in this case, one would otherwise be faced

with the same problem as at the start, namely searching a large number of

web pages for specific information. If the desired information is not found

among the cached pages, Poirot automatically offers to create a new topic and

start searching the Web.

4.5.3. Benefiting from newly available search engines

New search engines are constantly becoming available. As indicated in

the block diagram in Figure 4.1, the modular design of Poirot makes it easy to

provide support for additional search engines. The interface to a search en

gine is simply the Universal Resource Locator (URL) for initiating the search,

the URL for continuing the search, and a regular expression (regex) for ex

tracting the web page links from the results returned by the search engine.

17poirot thus subsumes the service provided by Backflip, http://www.backflip.com/. a
web site that lets each user store a personalized set of links to web pages and includes the abil
ity to search the contents of these pages.

159

4.6. Results of initial user testing

Several users have tested Poirot on topics of personal interest. All of

them have reported that Poirot successfully located many relevant pages, just

as it did in the example session documented in Section 4.1. One user stated

that the quality of Poirot's results was significantly better than that of his fa

vorite web search engine. Another user reported that the focus of his interest

tended to drift as he studied the web pages discovered by Poi rot, and that the

program successfully tracked this drift as it interacted with him. Moreover,

all users agreed that Poirot often found unexpectedly relevant pages. This

helped them both improve their understanding of the topic and broaden

their search for more relevant web pages.

4.7. Comparison with other systems

Poirot differs from systems such as Letizia (Lieberman, 1995), LIRA

(Balabanovic et al., 1995), and Web Watcher (Armstrong et al., 1995) which

were designed to supply immediate answers to individual questions while

the user is browsing the Web rather than providing continuing support for

topics of long term intereses The "Syskill & W ebert" system (Pazzani and

Billsus, 1997), on the other hand, resembles Poirot more closely. It was also

designed to support the user's long term interests. However, as with the pre

viously mentioned systems, "Syskill & W ebert" only provides suggestions

while the user browses, and does not independently search the Web for addi

tional, relevant pages while the user is occupied with other tasks.

18 The system called Watson (Budzik and Hammond, 1999) takes this goal to the extreme by
providing immediate answers via what the authors refer to as "just-in-time information re
trieval system." It analyzes the text that the useris editing in a word processor and automati
cally searches for relevant web pages.

160

Furthermore, "Syskill & W ebert" uses the NB-96 algorithm which has been

shown to perform quite poorly (see Section 3.5).

The project with design goals closest to that of Poirot seems to be

EUROgatherer (Amato et al., 2000). Unfortunately, at this point in time19
,

there does not appear to be any published information on its algorithms or its

performance, and the software is not available, so a quantitative comparison

with Poirot cannot be made.

Another system that deserves mention is WebACE (Boley et al., 1999).

Although the authors do not directly discuss the issue, it appears that it

might be possible to use this system to track topics of long term interest since

it is designed to first group web pages into related clusters and then search for

more web pages to add to each cluster. However, WebACE uses an unsuper

vised learning algorithm. Thus, even though it does group web pages into a

small number of clusters, it can be difficult to determine what topic each clus

ter represents, in contrast to Poirot where each topic is defined explicitly by

the user.

Poirot also differs from most other systems by being able to decide

whether or not changes made to previously located web pages are important.

There are services such as URL-mindeeo that will send the user email when a

specific page changes. However, none of these systems are able to determine

why the user considers the web page to be relevant in the first place. Thus,

they are unable to evaluate whether or not a detected change is likely to be of

interest. The user will therefore have to manually reread web pages with

only insignificant changes such as spelling or grammatical corrections.

19 Since the EUROgatherer projectis no longer being funded (Amato, 2000), it seems unlikely
that any more information will be made available in the future.

20 http://www.urlminder.com/

161

The Do-I-Care system (Starr et al., 1996) appears to be the only other sys-

tern that attempts to filter out such trivial and irrelevant changes.21 However,

unlike Poirot, Do-I-Care trains separate classifiers for new and changed web

pages, thereby requiring considerably more feedback from the user.

Furthermore, Do-I-Care provides only a single rating, while Poirot displays

the number of new links separately from the rating for the changes to the

text. In addition, the rating displayed by Do-I-Care is computed from only the

additions to the web page since the program's last visit. This ignores the

other two issues discussed in Section 4.3 that are accounted for in Poirot's for-

mula for Rchange and also the possibility that a page may infrequently change

in small increments. Do-I-Care will therefore report only large, sudden

changes to a web page and will miss the accumulation of smaller, gradual

changes.

4.8. Suggestions for future work

4.8.1. Natural Language Processing (NLP)

One possible direction for future research is to attempt to improve

Poirot's learning algorithm by using Natural Language Processing (NLP).

Other researchers have addressed the problem of using NLPto determine the

topic of a document, but these efforts have so far concentrated on restricted

vocabularies or fixed sets of documents (Lewis et al., 1989; Jacobs and Rau,

1990). This might be sufficient, however, assuming that each topic is ana

lyzed separately. The issue was not considered in this thesis because the NB-

21 Amato et al. (2000) claims that EUROgatherer also does this, but they do not provide
any details.

162

CV algorithm performs so well that there is not much room left for improve

ment. The uncertain prospect of only a small increase in accuracy does not

seem to warrant the considerable effort required to implement an NLP sys

tem.

4.8.2. Using a thesaurus to expand the list of keywords

A more modest approach than implementing NLP would be to add an

on-line thesaurus that could provide additional keywords for both the initial

search and the nightly updates. Web pages that use synonyms of the user's

initial keywords would then also be retrieved. However, since a thesaurus

stores synonyms for all meanings of each word, one must be careful to pick

the appropriate ones (Krovetz and Croft, 1992). Gauch and Smith (1991) have

demonstrated that retrieval is most effective when using a combination of

user supplied keywords, user selected terms from a thesaurus, and statistical

ly relevant words from previously retrieved documents. Thus, Poirot should

only use a thesaurus to suggest additional keywords, not to augment the key

word list automatically. Several on-line thesauri are available from

http://www-a2k.is.tokushima-u.ac.jp/member/kita/NLP/lex.html.

4.8.3. Exploiting the links between web pages

Spertus (1997) has suggested that one might be able to determine the rel

evance of web pages from the connectivity graph of links between the pages.

The issue was not considered in this thesis because it was beyond the scope of

comparing classification algorithms that use the contents of each individual

web page. It would be possible for Poirot to search for additional web pages by

163

using a special feature of the Alta Vista web search engine22 to retrieve web

pages that link to known, relevant pages. However, it is not clear that this

would yield any pages that would not be returned by direct searches. It is pos

sible that it might provide a way to find index pages, but it seems very likely

that these index pages would constitute a negligible fraction of all the pages

that would be returned. If so, the results would not be worth the effort.

4.8.4. Extracting information from Use net and mailing lists

Usenet and mailing lists have been suggested as possible sources of in

formation. If one subscribed to specific newsgroups or mailing lists, Poirot

could automatically scan every message for links to web pages and then test

each page for relevance to each of the user's topics. Unfortunately, many

users automatically include miscellaneous links in the "signature" (.sig) at

the end of every message they send. Without sophisticated filters to detect

and ignore these signatures, Poirot will likely be overwhelmed with irrele

vant web pages. Developing such filters was deemed to be beyond the scope

of this thesis.

It has also been suggested that Poirot could directly filter messages sent to

Usenet newsgroups and mailing lists. This is likely to be far more difficult

than filtering web pages, however, because topics of discussion may vary

widely within a single news group or mailing list and each topic is typically

discussed for only a short time, after which interested users are politely re

ferred to an archive somewhere on the Web. It therefore seems better to sim

ply let Poirot extract relevant messages from these archives via the search en

gines that index them.

22 http://www.altavista.com/

164

Chapter 5

Summary

165

Substantial improvements have been made to ITRule. Extensive tests

conducted with the Reuters-21578 data set show that the new CV-J algorithm

constructs a significantly more accurate classifier than the original MDL algo

rithm. In addition, ITRule has been extended in several ways to provide bet

ter support for data exploration beyond that of merely printing a list of rules

sorted by their J-measures. A robust algorithm for quantizing continuous

variables has also been developed so that this task no longer has to be done

manually by an experienced user.

In addition, the design, experimental justification, and experimental

demonstration of a completely new, user friendly information gathering sys

tem called Poirot has been presented. This autonomous software agent can

assist World Wide Web users in staying up to date on new developments of

importance by first learning what is of interest to the user and then indepen

dently searching for relevant new web pages and significant changes to previ

ously discovered ones. The performance of Poirot's learning algorithm on

the Reuters-21578 and WebKB data sets demonstrates that this autonomous

system can provide substantial improvements over manually surfing the

Web or performing a keyword search via a Web search engine.

166

References

Alspector, J, A. Kolcz, and N. Karunanithi. (1997). Feature-based and Clique

based User Models for Movie Selection: A Comparative Study. User

Modeling and User-Adapted Interaction 7(4):279-304.

Alspector, J. (2001). Personal communication.

AltaVista.

http://www.altavista.com/

Amato, G. (2000). Personal communication.

Amato, G., C. Thanos, and U. Straccia. (2000). EUROgatherer: A Personalized

Gathering and Delivery Service on the Web. In "Proc. of the 4th World

Multiconference on Systemics, Cybernetics and Informatics (SCI-2000)."

http://pc-erato2.iei.pi.cnr.it/eurogatherer/

Armstrong, R., D. Freitag, T. Joachims, and T. Mitchell. (1995). WebWatcher:

A Learning Apprentice for the World Wide Web. In "Proceedings of

the 1995 AAAI Spring Symposium on Information Gathering from

Heterogeneous, Distributed Environments."

http://www-ai.cs.uni-dortmund.de/PERSONAL/joachims.html

Backflip.

http://www.backflip.com/

Balabanovic, M., Y. Shoham, and Y. Yun. (1995). An Adaptive Agent for Au-

tomated Web Browsing. Technical Report CS-TN-97-52. Palo Alto, CA:

Stanford University.

167

Bay, S. D. and M. J. Pazzani. (1999). Detecting Change in Categorical Data:

Mining Contrast Sets. In "Proceedings of the Fifth ACM SIGKDD Inter

national Conference on Knowledge Discovery and Data Mining."

http://www.ics.uci.edu/-sbay/

Billsus, D. and M. J. Pazzani. (1998). Learning Collaborative Information Fil-

ters. In "Proceedings of the International Conference on Machine

Learning." Madison, WI: Morgan Kaufmann.

http://www.ics.uci.edu/-pazzani/Publications/

Boley, D., M. Gini, R. Gross, E. Han, K. Hastings, G. Karypis, V. Kumar, B.

Mobasher, and J. Moore. (1999). Document Categorization and Query

Generation on the World Wide Web Using WebACE. Journal of Arti

ficial Intelligence Review 13(5-6):365-391.

http://rnaya.cs.depaul.edu/-rnobasher/

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. (1984). Classifica-

tion and Regression Trees. New York, NY: Chapman & Hall.

Budzik, J. and K. J. Hammond. (1999). Watson: Anticipating and Contextu

alizing Information Needs. In "Proceedings of the Sixty-second Ann u

al Meeting of the American Society for Information Science." Med

ford, NJ: Information Today, Inc.

http://dent.infolab.nwu.edu/infolab/projects/projectrnain.asp

Buntine, W. and R. Caruana (1992). Introduction to IND Version 2.1 and Re-

cursive Partitioning. NASA Ames Research Center, Mail Stop 269-2,

Moffet Field, CA 94035.

Cohen, W. W. (1995). Fast Effective Rule Induction. In "Machine Learning

Conference Proceedings," 115-123.

168

Corana, A., M. Marchesi, C. Martini, and S. Ridella. (1987). Minimizing Mul

timodal Functions of Continuous Variables with the "Simulated An

nealing" Algorithm. ACM Transactions on Mathematical Software

13(3):262-280.

Cover, T. M. and J. A. Thomas. (1991). Elements of Information Theory.

New York, NY: Wiley.

Craven, M., D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and

S. Slattery. (1998). Learning to Extract Symbolic Knowledge from the

World Wide Web. In" AAAI-98."

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/

http://www.cs.cmu.edu/-textlearning/

Dietterich, T. G. (1998). Approximate Statistical Tests for Comparing Super-

vised Classification Learning Algorithms. Neural Computation,

10(7):1895-1924.

http://www.cs.orst.edu/-tgd/

Domingos, P. and M. Pazzani. (1996). Beyond Independence: Conditions for

the Optimality of the Simple Bayesian Classifier. In "Proceedings of the

Thirteenth International Conference on Machine Learning," 105-112.

San Francisco, CA: Morgan Kaufmann.

http://www.ics.uci.edu/-pazzani/Publications/

Dougherty, J., R. Kohavi, and M. Sahami. (1995). Supervised and Unsuper

vised Discretization of Continuous Features. In "Machine Learning

Conference Proceedings," 194-202.

http://robotics.stanford.edu/users/ronnyk/

Duda, R. O. and P. E. Hart. (1973). Pattern Classification and Scene Analysis.

New York, NY: John Wiley & Sons.

169

Ezawa, K. J. and T. Schuermann. (1995). Fraud/Uncollectable Debt Detection

Using a Bayesian Network Learning System. In "UAI-95," 157-166.

Frakes, W. B. and R. Baeza-Yates, eds. (1992). Information Retrieval, Data

Structures and Algorithms. Englewood Cliffs, NJ: Prentice Hall.

Gauch, S. and J. B. Smith. (1991). Search Improvement via Automatic Query

Reformulation. ACM Transactions on Information Systems 9(3):249-

280.

Goodman, R. M., P. Smyth, C. M. Higgins, and J. W. Miller. (1992). Rule

Based Neural Networks for Classification and Probability Estimation.

Neural Computation 4(6):781-804.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation, 2nd

edition. Upper Saddle River, NJ: Prentice Hall.

Herlocker, J. L., J. A. Konstan, A. Borchers, and J. Riedl. (1999). An Algorith

mic Framework for Performing Collaborative Filtering. In "Proceed

ings of the 1999 Conference on Research and Development in Informa

tion Retrieval."

http://www.cs.umn.edu/Research/GroupLens/

Jacobs, P. S. and L. F. Rau. (1990). SCISOR: Extracting Information from On-

line News. Communications of the ACM 33(11):88-97.

Joachims, T. (1996). A Probabilistic Analysis of the Rocchio Algorithm with

TFIDF for Text Categorization. Technical Report CMU-CS-96-118. Pitts

burgh, PA: Carnegie Mellon University, School of Computer Science.

Joachims, T. (1998). Text Categorization with Support Vector Machines:

Learning with Many Relevant Features. LS-8 Report 23. Dortmund,

Germany: University of Dortmund, Computer Science Department.

170

Joachims, T. (1999). Making Large-scale SVM Learning Practical. In" Ad

vances in Kernel Methods - Support Vector Learning." MIT-Press.

http://ais.gmd.de/-thorsten/svrn_light/

John, G. H., R. Kohavi, and K. Pfleger. (1994). Irrelevant Features and the

Subset Selection Problem. In "Machine Learning: Proceedings of the

Eleventh International Conference," 121-129. San Francisco, CA: Mor

gan Kaufmann.

http://robotics.stanford.edu/users/ronnyk/ronnyk-bib.htm1

JX Application Framework.

http://www.newplanetsoftware.com/jx/

Kohavi, R., B. Becker, and D. Sommerfield. (1997). Improving Simple Bayes.

Poster at ECML-97.

http://rObotiCS.stanfOrd.edU/USerS/rOnnYk/rOnnYk-bib.html

Koller,D.andM.sahami.(1996).TowardOPtimalFeatureSelection.In

"Machine Learning: Proceedings of the Thirteenth International Con

ference," San Francisco, CA: Morgan Kaufmann.

Krovetz, R. and W. B. Croft. (1992). Lexical Ambiguity and Information Re

trieval. ACM Transactions on Information Systems 10(2):115-14l.

Krulwich, B. and C. Burkey. (1997). The InfoFinder Agent: Learning User In

terest through Heuristic Phrase Extraction. IEEE Intelligent Systems

Journal (Expert) 12(5):22-27.

http://www.geocities.com/ResearchTriangle/9430/

Lawrence, S. and C. L. Giles. (1998). Searching the World Wide Web. Science

280:98-100.

171

Lewis, D. D., W. B. Croft, and N. Bhandaru. (1989). Language-Oriented Infor

mation Retrieval. International Journal of Intelligent Systems 4:285-

318.

http://www.research.att.com/-lewis/

Lieberman, H. (1995). Letizia: An Agent That Assists Web Browsing. In

"Proceedings of the International Joint Conference on Artificial Intelli

gence."

http://lieber.www.media.mit.edu/people/lieber/Lieberary/Letizia/

Lieberman, H. (1997). Autonomous Interface Agents. In "Proceedings of the

ACM Conference on Computers and Human Interface, CHI-97."

http://lieber.www.media.mit.edu/people/lieber/Lieberary/Letizia/

McCallum, A. and K. Nigam. (1998). A Comparison of Event Models for

Naive Bayes Text Classification. AAAI-98 Workshop on "Learning for

Text Categorization."

http://www.cs.cmu.edu/-mccallum/

Mladenic, D. (1996). Personal Web Watcher: Implementation and Design.

Technical Report IJS-DP-7472. Ljubljana, Slovenia: J. Stefan Institute,

Department for Intelligent Systems.

http://www-ai.ijs.si/DunjaMladenic/home.html

Morita, M. and Y. Shinoda. (1994). Information filtering based on user be-

havior analysis and best match text retrieval. In "Proceedings of the

Seventeenth Annual International ACM SIGIR Conferencon Research

and Development in Information Retrieval," 272-28l.

NeIder, J.A., and R. Mead. (1965). A Simplex Method for Function Mini

mization. Comput. J. 7:308-313.

172

Nichols, D. M. (1998). Implicit Rating and Filtering. In "Proceedings of the

Fifth DELOS Workshop on Filtering and Collaborative Filtering," 31-

36. Budapest, Hungary.

http://tina.lancs.ac.uk/computing/users/dmn/

Oard, D. W. and Marchionini, G. (1996). A Conceptual Framework for Text

Filtering. Technical Report CAR-TR-830. College Park, MD: Universi

ty of Maryland, Human Computer Interaction Laboratory.

Pazzani, M. and D. Billsus. (1997). Learning and Revising User Profiles: The

Identification of Interesting Web Sites. Machine Learning 27:313-331.

http://www.ics.uci.edu/-pazzani/Publications/

Quinlan, J. R. (1993). C4.5: Programs for Empirical Learning. San Francisco,

CA: Morgan Kaufmann.

Raghavan, V. V., G. S. Jung, and P. Bollmann. (1989). A Critical Investigation

of Recall and Precision as Measures of Retrieval System Performance.

ACM Transactions on Information Systems 7(3):205-229.

Rocchio, J. (1971). Relevance Feedback in Information Retrieval. In "The

SMART Retrieval System: Experiments in Automatic Document Pro

cessing," 313-323. Prentice-Hall.

Reuters-21578, Distribution 1.0. (1987).

http://www.research.att.com/-lewis/

Salton, G. (1991). Developments in Automatic Text Retrieval. Science

253:974-979.

173

Schapire, R. E., Y. Singer, and A. Singhal. (1998). Boosting and Rocchio Ap

plied to Text Filtering. In "SIGIR '98: Proceedings of the 21st Annual

International Conference on Research and Development in Informa

tion Retrieval."

http://www.research.att.com/-schapire/

Segal, R. and O. Etzioni. (1994). Learning Decision Lists Using Homogeneous

Rules. In "Proceedings of the Twelfth National Conference on Artifi

cial Intelligence."

http://www.cs.washington.edu/hornes/etzioni/

Selberg, E. and O. Etzioni. (1995). Multi-Service Search and Comparison

Using the MetaCrawler. In "Proceedings of the 4th W orId Wide Web

Conference," 195-208.

http://www.cs.washington.edu/hornes/etzioni/

Setiono, R. (1997). Extracting Rules from Neural Networks by Pruning and

Hidden-Unit Splitting. Neural Computation 9:205-225.

Shardanand, U. and P. Maes. (1995). Social Information Filtering: Algo

rithms for Automating "Word of Mouth." In "CHI95: Proceedings of

the Conference on Human Factors in Computing Systems," 210-217.

Denver, CO: ACM Press.

Smyth, P. (1988). Ph.D. thesis, California Institute of Technology.

Smyth, P. and R. M. Goodman. (1992). An Information Theoretic Approach

to Rule Induction from Databases. IEEE Transactions on Knowledge

and Data Engineering 4(4):301-316.

Smyth, P. (1996). Personal communication.

Spangler, R. R. (1999). Ph.D. thesis, California Institute of Technology.

174

Spertus, E. (1997). ParaSite: Mining Structural Information on the Web.

Computer Networks and ISDN Systems 29:1205-1215.

Starr, B., M. S. Ackerman, and M. Pazzani. (1996). Do-I-Care: A Collaborative

Web Agent. In "Proceedings of the ACM Conference on Human Fac

tors in Computing Systems (CHI'96)," 273-274.

http://www.ics.uci.edu/-pazzani/Publications/

Towell, G. G. and J. W. Shavlik. (1993). The Extraction of Refined Rules from

Knowledge-Based Neural Networks. Machine Learning 13:71-1Ol.

http://www.cs.wisc.edu/-shavlik/

UCI machine learning data set repository.

http://www.ics.uci.edu/-mlearn/MLRepository.html

URL-minder.

http://www.urlminder.com/

Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York, NY:

Springer.

Voigt, K. (1995). Reasoning about Changes and Uncertainty in Browser Cus

tomization. In" AAAI-95 Fall Symposium Series, AI Applications in

Knowledge Navigation and Retrieval." Cambridge, MA: MIT.

http://www.csci.csusb.edu/voigt/

Weiner, E., J. O. Pedersen, and A. S. Weigend. (1995). A Neural Network Ap-

proach to Topic Spotting. In "Proceedings of the Fourth Annual Sym

posium on Document Analysis and Information Retrieval

(SDAIR'95)," 317-332.

http://www.stern.nyu.edu/-aweigend/

175

Weiss, S. M. and N. Indurkhya. (1995). Rule-based Machine Learning Meth

ods for Functional Prediction. Journal of Artificial Intelligence R e

search 3:383-403.

Yang, Y. and X. Liu. (1999). A Re-examination of Text Categorization Meth

ods. In "Proceedings of ACM SIGIR Conference on Research and De

velopment in Information Retrieval," 42-49.

http://www.cs.cmu.edu/-yiming/

