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Objectives: 
 
This proposal describes a research program to develop the technology for constructing, 
programming, and training a cognitive conscious machine – a computational device which is 
conscious “in a similar way to ourselves” and which therefore possesses the characteristics of 
conscious human cognitive intelligence unattainable using current approaches. The key enabling 
idea in our approach is an architecture that features understandable internal models [Holland & 
Goodman 2004]. This work falls in the area of “Cognitive Computing”; it is revolutionary in that 
we propose a paradigm shift in the design and architecture of intelligent machines, which will, if 
successful, underpin a revolutionary approach to many aspects of computation itself. It also has 
the potential to revolutionize the relationship between humans and computers; in particular we 
expect this research to result in significant advances in the development of human machine 
interfaces, making intelligent interaction with everyday machines such as cell phones, cars, etc 
possible. 

 

Motivation: 
 
The original and ultimate aim of artificial intelligence was, and is, to develop systems that 
exhibit human-like intelligence. Such systems, if they existed, would be so different from, and 
superior to, current AI systems that they would effectively constitute a revolution in information 
technology. We believe that consciousness is an essential component of any truly human-like 
intelligence, and that true artificial intelligence will not be achieved unless and until it 
incorporates some adequate form of artificial consciousness. We therefore propose to directly 
address the problem of developing artificial consciousness, by constructing a series of 
biologically inspired physical systems based on current neuroscientific knowledge of the 
structures supporting consciousness, and studying and demonstrating the emergence of key 
features of consciousness under the appropriate environmental circumstances.   We believe that 
the structures revealed and developed by this approach will enable the incorporation of some 
form of artificial consciousness into purely computational artificial intelligence systems.   
 
Previous work by Aleksander (1999) using computer simulation has resulted in the development 
of neural network architectures which, through a technique of iconic learning, can display forms 
of artificial awareness, and the capability of visualization of internal “thought” processes. For the 
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reasons set out below, we first intend to develop these ideas into artificial neural network 
controller architectures for mobile robots, which will build “ego-centric” representations of the 
environment and themselves, and which will display properties emulating many of the key 
functional and phenomenal characteristics of consciousness. We will then progressively de-
emphasize the robotic aspects of the implementation, with the aim of arriving at a purely 
computational system with the desired characteristics of a conscious artificial intelligence. This 
project is clearly very high-risk – most of this is unknown territory, and the technical demands 
are formidable. Nevertheless, we believe that the project is feasible at this time, and that the 
potential rewards are so great that it should be carried out. 
 
 
Human and Artificial Consciousness:     
 
The search for adequate explanations of human consciousness has recently received much 
attention (Chalmers 1996, Crick 1994, Dennett 1991, Humphrey 1993, Kelly 1955, 
McGinn1991, Nagel 1982, Penrose 1989 and 1994, Searle 1992) and indeed our collaborator 
(Koch) has been at the forefront of such investigations (Crick and Koch 1995, 1998, 1999, and 
Koch 1994a, 1998a, 1998b).  However, the theoretical and practical study of artificial or machine 
consciousness has received relatively little attention; most of the work has been done by our 
colleague Aleksander, in the development of his neural state machine “Magnus” and its 
successors (Aleksander 1993,1994,1996), and by this proposal team’s collaboration and 
interaction (Holland and Goodman 2004). 
 
We endorse the view of Crick and Koch (1998) that it is unprofitable to attempt a formal 
definition of consciousness at this stage, because of the dangers of premature definition, but that 
it must involve selective attention, short term memory, and access to the planning stages of the 
brain. Our approach is constrained and informed by the current state of scientific knowledge in 
the area. Until the last couple of decades, the field of consciousness was mapped out by 
philosophers and psychoanalysts, primarily centered around subjective experience, and 
dominated by argument and speculation. Since then, a tide of neuroscientific data has washed 
away the traditional content and structure, replacing it with a wealth of often startling findings, 
such as Sperry’s split-brain work (Sperry 1977) but as yet providing no unifying theory.  
 
However, it is still possible to be reasonably certain of a number of facts about consciousness: 
 

• It is a function of neural activity within the brain. (Crick 1994) 

• It arises in all normal humans as a function of time, experience, and perhaps interactive 
human communication. 

• It appears to depend on sensory input from the body, since damage to structures 
interfacing such input with the brain leads to disorders, or the disappearance, of 
consciousness. (Damasio 1999). 

• It exists even when no cognitive processing is taking place, or when some aspects of 
cognitive processing are impaired by structural or functional damage or abnormality. 
(Damasio 1999). 
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• Its contents are normally dominated by the cognitive processing of representations, 
especially those involving language, logic, and symbolic processing, and by the 
registration of feelings. (Baars 1988) 

• It is closely associated with a process or structure normally referred to as the conscious 
self, which develops as a function of time and experience, which appears to be stable 
over extended time periods, and which appears to be the site of cognitive events and the 
subject of feelings.  

• It is possible to make “the self” the subject of conscious attention; this is normally known 
as self-consciousness. 

• The conscious self appears to itself to have a voluntary capacity, which can be used to 
direct attention in cognitive operations, and to initiate and direct action. 

• Because consciousness is a property of highly evolved systems, it must bring some 
benefit to its possessor. 

 
It is in the light of these observations that we have developed our unique approach. We aim to 
construct artificial systems, which reflect the characteristics listed above, and which can be used 
as tools to investigate whether the observed processes and activities can be said to correspond to 
“what is meant by being conscious”.  
 
Approach to Designing a Cognitive Machine: 
 
Our approach combines several technologies: Learned neural network controllers, robotics, 
neuromorphic and other machine sensory systems, visual and other sensory learning, and insights 
from the biological origins of consciousness. The course we have mapped out is at first sight 
rather unusual. That is, most of the questions are about information processing, but the answers 
will be sought initially via robotics. There are several reasons for this, but all ultimately derive 
from the same fact, that embodiment seems to be crucial for both the development and the 
maintenance of consciousness, and much of the content of consciousness is related to bodily 
sensations and actions. In fact, one of the most surprising findings to emerge from consciousness 
research in neuroscience has been the discovery that consciousness appears to be greatly 
concerned with, and extremely dependent on, the processing of bodily sensations (Damasio 
1999). Such sensations may arise from the state of the body itself, or from the effects on the body 
of its interaction with the environment, or from changes directly produced in the body by brain 
activity such as emotion. No-one knows at this stage whether this intimate involvement with 
bodily sensation, and indeed with embodiment per se, is necessary for the development and 
support of every possible form of consciousness, but it is certainly so for human consciousness, 
and this is the only model available for us to follow. At the same time, much of the content of 
consciousness is to do with the planning of actions in the world – actions that are executed by the 
body, and that often have (desirable) effects on the body. We therefore propose to study the 
initial emergence of phenomena analogous to consciousness by building and studying artificial 
agents which are richly endowed not only with the ability to sense their environment, but also 
with the ability to sense their own bodies, that is, robots, and in particular robot controllers. 
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It would of course be possible in principle to develop these concepts using simulated agents, with 
simulated bodies, operating in simulated environments. Our simple initial experiments have done 
just this. However, we seek to utilize real robots, with real vision systems, for four reasons. First, 
much of our ability to deal with the concept of consciousness depends on intuition based on our 
own experience of consciousness – this is the insight underpinning Crick and Koch’s (1998) 
disinclination to attempt a tight definition of the phenomenon. This intuition exists in the context 
of embodied systems (ourselves) operating in the real physical world, and we foresee difficulties 
in applying it to the interpretation of behavior of simulated agents in a simulated and unreal 
world, beyond the initial research stages. Second, it is clear that a certain richness of internal 
representations is crucial for the emergence of consciousness, and we can be sure that the real 
world is rich enough both to enable and to require such representations, whereas a simulated 
world might not be. Our previous work at the Caltech NSF Engineering Research Center on 
neuromorphic sensing systems (Braun 2000, Dickson 2000, Gupta 1996, Goodman 1996, 
Higgins 1994, Keaton 1997, Koch 1994b, Koch 1996, Koch 1999, Kreiman 2000, Lee 1999a, 
Lee 1999b, Moore 1991, Zeng 1994), and on robotics (Beckers 1994, Holland 1992, Holland 
1996, Kyberd 1995, Schoonderwoerd 1997) convinces us that only real robot experiments can 
capture this richness. Third, there is the simple fact that, given the current state of the art in 
simulation and in robotics, it is far easier to use real robots. Fourth, and perhaps most 
importantly, if our proposed robot controller architectures do not “work” – it will be painfully 
and immediately obvious in a real environment with real robots – they will crash or fail to 
perform their learned task. Nevertheless, we emphasize that we are not describing a program 
aimed purely at research into robotics. Far from it: our long-term aim is to develop the 
technology for embedding artificial consciousness and cognitive processing into computers. 
Once we have successfully established the structures responsible for a robotic consciousness, we 
will tackle the challenging problem of migrating the architecture into a purely computational 
context.  
  
One of the most difficult problems with investigating consciousness in humans (or animals) is 
that it is essentially private. It is generally agreed that the existence of conscious phenomena in a 
system in which they are not known to occur cannot reliably be inferred either from action, or 
from reporting by the system. (This issue has been examined by philosophers of consciousness 
using the so-called zombie thought experiment, but is also of concern in the areas of clinical 
neurology and animal rights (Dennett 1991). And while work on the neural correlates of 
consciousness is advancing, it is still impossible in practice to identify any type of neural activity 
as being necessarily associated with consciousness. To some extent, this is due to limitations in 
recording brain activity, but it is also doubtful whether even perfect access to brain activity 
would enable the identification of such processes, given the current state of knowledge.  
 
In dealing with possibly conscious activity in artificial systems, the situation may, surprisingly, 
be rather better. As well as having full access to behavior and reporting, we can also have access 
to all internal ‘brain’ activity at any required resolution. Critically, we can also have a full record 
of all previous behavior, reporting, and brain activity, and we can carry out experimental 
manipulations that would be technically or ethically impossible with humans or animals. What 
we require is the ability to identify configurations of brain activity as constituting the systems’ 
private “thoughts”, and to characterize and represent those thoughts in a public way. Searle 
(1992) has referred to a hypothetical instrument able to do this with humans as a “cerebroscope”; 
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others have called it “the secret policeman’s brain scanner”). We propose to deal with this by 
adapting and extending a solution developed by Aleksander (1999). In an appropriately 
structured system, exposure to sensory experience builds internal representations of what has 
been experienced. The problem is this: given a particular sequence of activity in the robot’s 
“brain”, how can we know whether it involves such a representation of experience, and how can 
we know the experience to which it corresponds? Aleksander dealt with this in the realm of 
simulated visual sensing by constraining his system to develop representations of visual images 
(iconic representations) which were themselves topographically arranged in the form of images; 
this enabled the experimenter to recognize the public aspects of these representations directly. 
These representations were also used by the system in a way which exploited their resemblance 
to images: when the private representations were evoked in the absence of direct visual 
stimulation, in various situations analogous to imagination, they could then be processed or used 
by the system in the same way as real images. As an example of this architecture and approach 
we show the computer simulation due Aleksander (1999) which illustrates visual or iconic 
learning, awareness, and the ability to visualize previously unseen objects in an “awareness” area 
from their sensed features. The system is “iconically trained”, that is, the internal representation 
in the awareness and other neural areas is an image or “visualization” of the object, and is thus 
“public”. The architecture is shown below. 

 

In this si
modalities
in which 
specialist 
architectu
modalities
features in
specialist 
appropriat
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mple example the input to the architecture consists of only two input “sensory” 
. A visual input area in which objects can be displayed, and a written verbal input area 
visual text labels can be inserted and displayed.  These input areas project into 
feature detector neural areas. These specialist neural areas have individual 

res, distinct from the overall system architecture, which can implement quite complex 
 such as local feedback, reentrant feedback, and self-adaption. The input objects have 
 different categories. E.g. red in color, square in shape, smooth in texture etc. The 
visual neural areas have been trained to detect these features, and output the 
e value. The specialist verbal areas detect such features as “noun” or “adjective”. The 
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specialist neural areas project into a (visual) awareness area, in which the object is visualized.  In 
addition, there is feedback between all the five (non-input) neural areas.  

 
The system is presented with an 
incomplete training set such as 
red square, blue circle, etc in its 
visual and textual input areas, as 
shown at left. The learning 
problem is such that when 
presented with test objects, the 
system must visualize them 
correctly in its awareness area.  
Most importantly, when 
presented with a yellow triangle 
at its input, even though it has 
never seen such an object, it must 
display a yellow triangle and its 
verbal label in its visualization 
area. Note that this is much 
harder than what is called 
“concept learning” in the 
literature. The concept of 
“yellowness” must have been 
learned from other objects, and it 
must be correctly blended with 

the out-of -context shape word to visualize the previously unseen object.  In a sense the 
architecture has to solve what is commonly called the “binding problem” (Zeki 1993). The 
system was trained in various strategies of “hard” and “easy” learning. That is, with various 
degrees of real cues and noise as input. The results indicate that the system is capable of 
visualizing “unseen” inputs in its awareness area with remarkable robustness as claimed above. 
A pleasingly anthropomorphic result is that a “visualized” object in the awareness area has more 
“noise” than a real “seen” object. 
 
We propose to retain both the public and private aspects of this strategy; however, we believe 
that this particular implementation of the idea imposes limitations on what can be represented 
successfully. Aleksander’s images are static, and it is difficult to see how the technique of iconic 
representation could be applied to sensory inputs unsuitable for representation in topographical 
form – for example, sound, or non-visual feedback from motor activation. Therefore we also 
propose to investigate an alternative strategy of allowing the system to form its own non-iconic 
private representations of both static and dynamic inputs, capable of being exploited by the 
system as in Aleksander’s work, but also training a conventional neural network to produce 
public reconstructions of the inputs to which these representations appear to correspond – a 
simple process of inversion. (Such an inverse network would be trained by supplying the internal 
activity as input, and the simultaneous sensory input as the desired output.) 
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An immediate objection to this program might be that much of our conscious thought consists of 
abstractions or relationships that do not correspond to any concrete visual or other image, and so 
the representational capacities of the scheme will prove inadequate to capture anything deserving 
the name “mental life”. The counter-argument to this is illustrated by the autobiography of a 
remarkable autistic American woman, Temple Grandin, (Grandin 1996) perhaps best known 
because she was studied by the distinguished neurologist Oliver Sacks, in his paper “An 
anthropologist on Mars” (Sacks 1996). Grandin entitled her autobiography “Thinking in 
Pictures” because that is what she does: in spite of the fact that she has mastered spoken and 
written language, almost her entire mental life consists of pictures – still and moving. Most 
important, she has described how her use of words expressing abstract relationships, such as 
“over” and “under”, is accompanied by stereotyped visual representations of the concept, such as 
an image of herself as a young girl under a particular table in a particular room. Although 
Grandin is certainly very odd in many respects, no-one, not even Sacks, has ever expressed any 
doubts that she is fully conscious. (She is also highly intelligent and talented: she is a professor 
of animal science at Colorado State University, and almost half of the cattle-handling equipment 
in the US uses her designs). Because of Grandin’s revelations, we can have some grounds for 
optimism that any emergent internal activity corresponding to relational concepts may be 
accompanied by an internal image capable of being decoded by our inversion network. 
 
Learning Robot Controllers:  
 
At the most fundamental level, learning in robots implies learning the robot controller, and 
moreover that controller is “intelligent” according to some criterion. Some points to bear in mind 
about robot controllers are: 
 
• Animal and human brains evolved to control behavior in a changeable and partially 

knowable environment. 
• The goal of the controller is to produce the agent’s next action. 
• The agent uses sensory input, memory, goals, drives, to produce the correct action given 

the current state of the environment. 
• There is only one action at a time. 
• Incorrect or multiple actions are very obvious and can damage the robot quickly. 

(Parkinson’s, Huntington’s, Tourette’s) 
• The action may change the environment. 
• Good control requires the ability both to predict events, and to exploit those predictions. 
• Controllers are layered in increasing levels of abstraction. 
• The best such control systems known to engineers are adaptive model-based predictive 

controllers. 
 
Controllers should be able to: 
 
• Learn models of the environment, the self, and of the interaction of the self with the 

environment. 
• Adapt models automatically based on experience. 
• Deal with novel situations automatically, and assimilate the new experience. 
• Manipulate models internally to plan actions and goals. 
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• Make their internal models and reasoning visible in human terms. 
• Be able to interact, model, and collaborate on tasks with other similar agents. 
 
The components needed to implement real time intelligent adaptive controllers are: 
 
• Learning – Adaptation- Reinforcement 
• Explicit internal representations 
• Environment models - Self models 
• Model based predictive control 
• Novelty detection 
• Attention - Awareness 
• Neural Networks - Genetic Algorithms 
• Sensory processing, of which vision is the most important 
 
Our approach to learning such robot controllers follows. The controller architecture is a novel 
neural layered architecture that approaches robot control by layering controllers of increasing 
abstraction in much the same way as a protocol stack layers functionality in communications 
systems. The input sensory data is refined and abstracted into higher level concepts by higher 
level layers. For example, the lowest levels extract “features” from the raw vision input and 
implement “reactive” control such as crash obstacle avoidance. Higher layers deal with learned 
feature sequences and “state”, and are capable of executing “plans”.  Information flows both up 
and down the controller stack, and each layer is capable of taking direct control of the output 
which at the simplest level is control of the robot’s motors. Information flowing “down” the 
stack allows higher layers to “modulate” the output of the lower layers. In addition, the controller 
is a neural controller the operation of which is normally “hidden” from us. By implementing 
inverse modeling, the internal workings of the controller are visible to us and hence credit can be 
assigned. 
 
A Generic Neural Controller Architecture: 
 
The basic computer architecture for machine consciousness we propose develops from our above 
hypothesis and approach, and is shown at the system level in the figure below.  
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The characteristics of this architecture are as follows: 
 

• The controller of the robot is a neural network with recurrent feedback, capable of 
forming internal representations of sensory information in the form of a neural state 
machine.  

• Sensory inputs (vision, sound, smell, etc) are fed into the controller, including feedback 
signals from the motors and effectors. 

• Controller outputs drive the locomotion and manipulators of the robot.  
• The neural controller learns to perform a task, using NN and GA techniques. 
• Novel inputs that are unrecognized must be adaptively learned by the model. 
• The model learns continuously over sequences of actions in time via reinforcement 

learning, supervised learning, or mimicing a human controller. 
• The model continuously refines itself to improve its prediction accuracy. 
• But - the internal model of the controller is implicit and therefore hidden from us. 

 
We assume that the brain or controller of the robot is an artificial neural network with recurrent 
feedback, capable of forming internal representations of sensory information in the form of a 
neural state machine. Sensory inputs (vision, sound, smell, etc) from sensors are fed to this 
structure via a gating attentional mechanism, that can select inputs to flow through to the 
controller. (We defer for now the question of how this is controlled). Sensory inputs also include 
feedback from the motors and effectors, thus giving the robot sensory information on “self”. This 
enables the neural controller to implement a sensory-based ego-centered representation of the 
environment, and eventually of itself. Output actuation drives the locomotion and manipulators 
of the robot. The neural controller “learns” to perform its goals, which have been either 
programmed in, or learned using standard neural network techniques, or “evolved” over 
“generations” of interaction with the environment via genetic algorithm or evolutionary search 
techniques (Nolfi 2000).  
 
As well as gating the various input channels on and off, the attention module can also shut off all 
inputs, perhaps apart from a certain amount of noise. (As well as gating off all inputs, the 
attention module should be able to gate off the outputs, for reasons that will become clear 
shortly.) The neural state machine is then free to run as a purely state-determined dynamical 
system. It is well known that the activity in such systems is highly non-random, and tends to 
converge to attractors related to those formed under the influence of inputs and consolidated by 
learning. Within the framework of his iconic learning scheme, Aleksander (1996) has shown 
how the functions of prediction and imagination can be implemented using this scheme; an 
imagined action is then followed by its predicted environmental consequences, setting the stage 
for another imagined action, and so forth. This constitutes a potential mechanism for exploring 
possible sequences of action and evaluating the consequences, and then releasing the motor 
inhibition to execute an appropriate or desirable sequence in the real world – a classic planning 
and execution scenario. 
 
There are some interesting consequences of this architecture. In “normal” mode the controller is 
producing motor signals based on the sensory input it “sees” (including its own motor and 
effector feedback). Thus it is just like a standard reactive neural controller and can go about its 
mission according to its learned goals. In “thinking or planning” mode the real world is 
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disconnected from the controller input, and sequences of planned action towards a goal can take 
place in “mental space”. The actual motor outputs are disconnected from the motors, so that the 
robot does not actually move; if this were not done, the robot could execute an inappropriate 
sequence and damage itself or waste energy, and the whole point of thinking rather than acting is 
to avoid these contingencies. It is interesting to note that there are a number of pathological 
conditions in humans that correspond to a failure to prevent thoughts or dreams from becoming 
actions. For example, in Tourette’s syndrome, sufferers are unable to refrain from producing 
utterances and actions which others would inhibit because their consequences are negative. In 
other conditions, patients and normals may act out components of their dreams while still asleep, 
often waking in the process. And we are all familiar with sleeping dogs yelping and scrabbling 
with their paws, presumably while dreaming. (Sleepwalking, and in particular murders 
committed during sleepwalking, are probably instances of dissociation rather than acting out 
dreams, as cases are typically characterized by a complete absence of memory for the incident.) 
The details of a credible neural mechanism for switching this motor engagement on and off 
appropriately have not yet been worked out in the context of Aleksander-like systems; this is one 
of the sub-goals of this research program.  
 
Understanding the Controller: 
 
Let us now make a crucial modification of this architecture so that in addition to the usual 
sensory-motor neural controller, a second recurrent neural network exists, hidden from the first 
system, which learns the inverse relationship between the internal activity of the sensory-motor 
controller (the hidden and the state units) and the current and previous inputs and outputs. This is 

illustrated in the diagram 
below.  This mechanism will 
allow us to represent the 
hidden state of the sensory-
motor controller in terms of 
the closest corresponding 
sensory input coming from the 
real world. Thus we may 
claim to know “what the robot 
is thinking”, by expressing its 
“private mental image” in 
terms of the “public sensory 
image” which is visible and 
available to us. As is standard 
in learning inverse networks, 
we require that the controller 
be learned first, and that, once 
this is learned and reasonably 
stable, the inverse can be 
learned. The advantage of this 
method is that we are no 
longer constrained by 
Aleksander’s method of iconic 
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learning and internal representation, and so we can use any suitable neural model for the sensory-
motor controller.  
 
Inverse Predictor Architecture:  
 
Let us make a further crucial modification: let us incorporate the inverse network into the 
functional architecture of the system, so that the reconstructed sensory input is not just made 
available to us, but is also available as an input to the system via the attention module. This is 
shown in the diagram below. 
   

 
There are now some further 
interesting consequences of 
this architecture. In 
“normal” mode, as before, 
the controller is producing 
motor signals based on the 
sensory input it “sees” 
(including motor/effector 
feedback). Thus it is just 
like a standard reactive 
neural controller and the 
robot can go about its 
mission according to its 
learned goals. The inverse 
allows for detecting 
mismatch between a 
predicted and an actual 
sensory input (a vital 
function currently thought to 
be associated with the 
cerebellum), or allowing the 
attentional mechanism to 
guide the trajectory of the 
system during planning, just 
as it would during 

execution. The inverse system allows us (humans) to “observe” the controllers hidden state, in 
terms of its sensory input representation, so that we can see what the machine is “thinking” in 
terms of the “mental images” of the environment. In “thinking or planning” mode the real world 
is disconnected from the controller input, and the mental images being output by the inverse are 
input to the controller instead. Thus sequences of planned action towards a goal can take place in 
mental space, and executed as action. Note that by switching between normal mode and 
“thinking” mode in some way, we can emulate the robot doing both reactive control and thinking 
at the same (multiplexed really) time. That is, like humans do when driving a car on “automatic” 
while “thinking” of something else. In “sleeping” mode we shut off the sensory input and allow 
noise to be input.  
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Then the inverse will output “mental images”, which themselves can be fed back into the input 
(because they have the same representation) producing a complex series of “imagined” mental 
images or “dreams”.  Note that we can use this “sleeping” mode to actually learn (or at least 
update) the inverse.  The input noise vector is a “sensory input” vector like any other (whether it 
is structured accordingly or not), thus the inverse should be able to output this vector like any 
other from the state and motor signals. Thus we can use the error to update the inverse. If we do 
not disconnect the motors during “dreaming” we will have “sleepwalking”. If we assume that the 
controller is continually learning, then the inverse must be continually updated. If they get too 
much out of synchronization we could get irrational sequences in “thinking” or worse in 
execution mode, an analog of “madness”. 
 
An Experiment: 

 
To illustrate our approach in making the internal model visible in real 
robots, we describe an experiment we have performed using an 
embodied robot simulator “Webots” (Michel1998), and real Khepera 
robots (Mondada1993). In this experiment, we utilize a controller 
model based on (Linaker2000) which is much less powerful than the 
recurrent controllers described above, but allows us to illustrate the 
principle, and in particular makes “inversion” of the forward controller 
extremely simple. 
 
The simulated robot is modeled on the Khepera robot (Mondada1993) 
and features 8 IR sensors which allow it to detect objects, and two 

independently controlled motors. The picture 
shows webots in a maze like environment.  There 
are six IR sensors arranged on the forward 
semicircle of the robot and 2 in rear. The motor 
drive signals are available.  The input feature 
space of the robot is the 10 dimensional vector of 
IR sensor values plus the motor drive signals.  
 
The crucial simplification we make is that the 
controller will learn its representation directly in 
the input space. Thus there is no inverse to learn - 
the internal representation learned by the robot is 
directly visible as an input space vector.  
 
The first phase is to learn or program the forward 
model or robot controller. Simple behaviors such 
as collision avoidance or seeking a goal can be 
programmed in, and more complex behaviors can 
be developed using behavior based robot 
controllers (Brooks1986, Mataric1996).  In our 
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experiments controllers are learned or evolved (Banks 2000). In this simple experiment we 
program in a simple reactive wall-following behavior, rather than learn a complex behavior.  The 
robot starts with no internal model, and adaptively learns its internal representation in an 
unsupervised manner as it performs its wall following behavior.  Learning is accomplished as 
follows. At every time tick the input vector consisting of the sensor and motor signals is input to 
the learning controller. The controller maintains an input buffer of N=10 input vectors, and 
smoothes the current input according to a weighted average of the vectors in the input buffer, in 
order to cope with noise. The controller has four user defined parameters: a novelty criterion δ, a 
stability criterion ε, a buffer size n, and a learning rate α. In operation the controller network 
maintains a set M of “concepts”, where each concept is represented using a model vector directly 
in input space. If the input constitutes a novel and stable situation, i.e., the inputs reflect a 
previously unencountered concept, an additional model vector is allocated and initialized to 
match the particular input. That is, the set of model vectors M is extended to represent an 
additional concept, with an accompanying model vector. Additional model vectors are only 
allocated when novel and stable inputs are encountered, i.e., when the following criteria are 
fulfilled: 

• The input is considered as novel if the Euclidean distance between the existing model 
vectors and the last n inputs, compared to the distance between the moving average and 
the last n inputs is larger than the distance δ. 

• The input is considered as stable if the difference between the actual inputs and the 
moving average is below the threshold ε. 

 
If both the stability and novelty criteria are met, the filtered input is incorporated as an additional 
model vector.  Each time step, a winning model vector is selected, indicating which concept the 
filtered input currently matches: If the winning model vector matches the filtered input very 
closely, the filtered input is considered to represent a “typical” instance of the concept, and the 
model vector is adapted to match the input even closer by an amount dependent on the learning 
rate. The adaptation is similar to the adaptation of model vectors applied in Learning Vector 
Quantization (Gray 1998). 

The picture below shows the result of a simulation experiment.  The robot has learned a set of 
concepts (represented by the different colors left in its track). The concepts correspond to “wall 
on right” (blue), “wall ahead” (green), “right corner” (gray), and “corridor” (light blue).  By 

observing the sequence of 
winning model vectors 
(colors) in time we can 
directly observe what the 
robot’s internal 
representation is at that 
time.  
 
The extracted 10-
dimensional model vectors 
can be denormalized to get 
the actual sensor readings 
and motor commands for 
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the concept. By analyzing the sensors, and building up a distance-vs.-activation table, we can 
find out which distance a sensed obstacle needs to be at, in order to produce a given activation on 
the sensors as shown below. 

 
This table can then be inverted in order to find 
the appropriate distance to the wall when we 
have a given sensory activation, as is the case 
with our model vectors. That is, we can plot the 
location where the robot “thinks” walls “ought” 
to be, given a certain activation pattern on the 
sensors. That is, an ego-centric map of the 
environment can be built up as shown below. 
 
The local representation of detail is 
surprisingly good; however the global map is 
distorted. This is primarily because of errors of 

rotational movement – a well known problem in robotics 
 

We next demonstrated that the learning 
algorithm could function in the real world by 
implementing the concept learning and 
mapping algorithms on a real Khepera robot as 
shown below. Again, the algorithm proved 
very robust to real world sensor and motor 
noise and real world environments. 
The next crucial step was to allow the learned 
model, both in simulation and for real, to 
control the robot. To do this the “teacher” wall 
follower is turned off, and the robot sees 

“concepts” as it moves. At each time step the closest learned model vector to the sensory feature 
seen is chosen. The model vector motor drive values are then used to actually drive the motors 
for this time step. This worked surprisingly well. The robot was able to run under “concept” 
control without any “crashes”.  Not only did this work for models learned in simulation and on 
the real robot, but also for models learned in the simulation but run on the real robot. 
Furthermore, the environment used for learning was different to that used in execution mode 
showing that the learned knowledge could be generalized and used in a new previously unseen 
situation.  
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For example, the robot learned on the simulated environment shown at left below. The learned 
model was then downloaded into the real robot shown at right below, and run. 
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Not only did the controller work in this new 
real (and previously unseen) environment, 
but a passable ego centric map of the new 
environment below was produced. This 
shows that knowledge can be transferred 
from one environment and utilized 
effectively in another completely new 
environment. 
 
 

We next implemented an example of manipulating the 
model mentally in order to allow the simulated robot to 
make a decision. First we take the sequence of learned 
model feature vectors and cluster sub –sequences into 
higher-level concepts (for example: Green-Purple-Blue = 
Left Corner). Then, at any instant we ask the robot to go 
to “home”. The robot then runs the model forwards 
mentally to decide if it is shorter (in terms of “concept” 
sequence length) to go ahead or to go back, and then take 
the appropriate action. Again this worked robustly. We 
have thus demonstrated the use of internal models in 
“planning”. 
Finally, we implemented a more complex controller and 

environment. A Braitenberg obstacle avoider was implemented as a teacher, and the environment 
was as shown above. This resulted in more (22) learned models, which is still very low in terms 
of complexity of robot behavior. 
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Higher level controllers:  
 
The controller architecture we propose can be extended by layering controllers of increasing 
abstraction in much the same way as a protocol stack layers functionality in communications 
systems. The lowest level operates at the ms timescale of sensors and actuator control. The 

highest levels operate at symbolic levels and 
much longer goal-driven timescales. The 
input sensory data is refined and abstracted 
into higher level concepts by higher level 
layers. For example, the lowest levels extract 
“features” from the raw vision input and 
implement “reactive” control such as crash 
obstacle avoidance. Higher layers deal with 
learned feature sequences and “state”, and 
are capable of executing “plans”.  
Information flows both up and down the 
controller stack, and each layer is capable of 
taking direct control of the output which at 
the simplest level is control of the robot’s 
motors. Adjacent layers modulate (Linaker 
2002) the predictions of higher and lower 
layers, as opposed to subsumption (Brooks 
1990). Information flowing “down” the stack 
allows higher layers to “modulate” the 

output of the lower layers. In addition, the controller is a neural controller the operation of which 
is normally “hidden” from us. By implementing inverse modeling, the internal workings of the 
controller are visible to us and hence credit can be assigned.  This type of controller should be 

capable of solving much 
more difficult tasks such 
as delayed response tasks 
– e.g. the road sign 
problem at left, learned 
using delayed 
reinforcement learning. 
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The proposed program of research: 
 
 
Our basic strategy is to construct an artifact – a robot – which can sense its environment and its 
bodily changes with a wide range of sensors, and which can control its behavior using 
biologically inspired artificial neural structures. The welfare of the robot will be a function of its 
behavior within the dynamic environment, which will contain other similar robots providing 
opportunities for cooperation and competition. The environment will be so structured (rich 
hidden state, requirements for sequenced actions etc.) that good performance will only be 
achievable if the robot learns to operate at a sufficiently high cognitive level. The robot will be 
provided with additional internal structures allowing us to monitor its internal processes, 
especially those in the neural structures, and enabling the representation of the activity within 
those structures in a form intelligible to us, in visual and auditory displays.  
 
We propose to continue using the Khepera robot(s), and the Webots simulator for our 
experiments. These robots have a number of advantages. They are professionally built and 
supported, and have a rich suite of sensors (such as vision systems) and manipulators. In 
addition, their small size allows for “desktop experiments” of considerable complexity. In this 
way we will gradually build up the complexity of both the robot and its environment. 
 
We will successively provide various versions of artificial neural structures, and will attempt to 
demonstrate, by relating the monitored activity to the observed behavior, that the robots are 
capable of achieving the following aspects of machine consciousness: 
 
1. (a) The development of internal representations of the sensory characteristics of elements in 

the environment, as a function of sensor-related bodily feedback, ranging from raw sensor 
images, through feature-based or categorical representations, and perhaps even to symbolic 
representations. (b) The persistence for some time of such representations when input ceases. 
(c) The production of such representations in the presence of incomplete or ambiguous 
stimuli. (d) The reproduction of such representations in the absence of input but in the 
presence of noise. (e) The use of such representations for functional benefit.  We expect all 
representations at this stage to be indexed by their relationship to the ‘point of view’ of the 
robot – so-called ego-centered representations. Items (a) to (d) have already been 
successfully demonstrated by Aleksander in simulation. 

2. (a) The development of internal representations of sequential, temporal, and associative 
relationships between elements in the environment, with elaborations as in 1.b) – 1(e) above. 
Items (a) – (d) have already been investigated in simulation using Aleksander’s (1999) 
original MAGNUS architecture, with considerable success. 

3. (a) The development of internal representations of the proprioceptive and metabolic inputs 
from the robot itself, and of their temporal and associative relationships, with elaborations as 
1(b) – 1(e) above. Such inputs will include the effects of hard-wired responses associated 
with mission-related contingencies (“instincts”) and may include direct input from neural 
activity. For example, the internal sensing of low battery voltage could be hard-wired to 
trigger approach to a recharging station, with perhaps closer approaches to obstacles en route 
than normally permitted. Low battery voltage might also produce changes in motor actuation 
(low torque, low speed), reduced motor temperatures, increased battery temperature, reduced 
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range of sensor operation, and so on. The compound internal representation of all these 
factors would differ in these respects from the normal representation. We would expect these 
related representations to form a single complex dynamically changing representation, 
providing the basis for a “self”. By arranging for this representation to form in a particular 
region, and having various connections from that region to other parts of the control system, 
the ‘self’ can have the possibility of exciting or inhibiting activity in particular locations, 
modalities, structures, or functions, depending on the values of its own internal variables at 
any time. This corresponds in many ways to enabling the “self” to direct attention, select 
actions etc., as a function of its own state. 

4. (a) The development of internal representations of the various movements possible for the 
robot, such that the instantiation of these representations initially leads to the execution of the 
movements. (b) The growth of such representations to include the sensory and/or 
environmental consequences of the execution of the movement. (c) The growth of such 
representations to include any effects on internal and metabolic inputs. This stage 
corresponds to the development of instrumental learning in animals; there are also many 
analogues in the literature on neural networks in the control of articulated structures.  

5. (a) The development of the ability of the ‘self’ to wholly or partly disconnect sensory input 
from later, dependent, representations. (b) The activation of those representations by noise 
and/or other input. This amounts to giving the system autonomous control of the “switch” 
between internal and external sources of images which is controlled by the experimenter in 
Aleksander’s (1994) early work. 

6. (a) The development of the ability of the ‘self’ to inhibit movement. (b) The subsequent 
development of representations similar to those in 4 which do not involve the execution of 
movement, but which involve representations of the sensory and/or environmental 
consequences which would accompany the execution of the movement. (c) As (b) but 
involving representations of any internal and metabolic inputs.  

7. (a) The integration of all of the above, to produce the entirely internal representation of a 
situation in which the robot represents the making of a movement which alters both the 
representations of the sensed environment and the internal and metabolic inputs – in other 
words, in which the robot imagines making a movement, and imagines the consequences of 
that movement. (b) The use of such “imagined” actions in delivering benefit, by allowing the 
‘self’ to cease to inhibit movement (i.e. to carry out a particular movement) if the outcome of 
the ‘imagined’ movement stimulates the ‘self’ in certain ways – for example, by stimulating 
the internal representation of successful recharging. This allows the system to explore the 
consequences of actions without having to try them out in the current situation, marking the 
important transition from a Skinnerian to a Popperian machine in Dennett’s (1995) 
terminology. This reflects the contents of consciousness in a conscious cognitive agent 
solving a problem; these contents would be publicly available to the experimenter as a 
sequence of images, and could be interpreted as a sequence of thoughts. However, we believe 
it would not be justified to claim this as consciousness, although it would certainly qualify as 
a precursor. 

8. (a) The development by the robot of an internal representation of its ‘self’ and its behavior. 
(b) The use of such a representation to improve performance. If it can be reached, this is a 
crucial stage. In previous stages, the “self” has no way of taking its own existence into 
account in dealing with imagined situations; having a representation of itself to manipulate is 
an important advance. Now the behavior of the “self” includes its responses to internal 
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representations, whether internally or externally stimulated; these responses include the 
direction of attention and the release or inhibition of movement, and so it may prove 
necessary to model not only the “self” but also all of the representations on which the “self” 
acts, and by which it can be affected. The model “self” would therefore not deal with the 
“real” representations dealt with by the “self”; this has intriguing parallels with the work of 
Jackendoff, reinterpreted by Crick and Koch (1999), which hypothesizes that we are not 
directly aware of thoughts, which are produced by an unconscious homunculus, but are only 
aware of some derivative sensory aspects of thoughts. This train of thought points us towards 
the possibility that consciousness is associated not with the “self”, but with this internal 
representation of the “self”, which operates not in the world of the “self”, but in a derived 
and secondary representation of that world. This stage would at least qualify as a precursor of 
self-consciousness, and also should display many of the additional features of consciousness 
set out in Crick and Koch (1999).  The remaining two stages, although vital for an 
understanding of human-level consciousness and cognition, do not involve the qualitative 
leaps found in 7 and 8: 

9. (a) The development of representations of other similar robots which in some way derive 
from the system’s internal representation of its “self” (Theory of Mind). This may drive an 
ability for imitation – at many levels – which is critical for the emergence of memes (cultural 
transmission independent of expected or experienced benefits). 

10. (a) The development of language based communication between systems, using signs at first, 
then arbitrary tokens or symbols, and then introducing syntax. This could be expected to 
drive the development of internal representations and symbolic thought within each system. 

 
These experiments represent the starting point of this research. Other applications could clearly 
follow once this architecture is proven to work, and be scalable to larger, more complex, and 
more unstructured environments, with multiple interacting agents. 
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